GeoGebra-opplæring i Matematikk S1

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "GeoGebra-opplæring i Matematikk S1"

Transkript

1 GeoGebra-opplæring i Matematikk S1 Emne Underkapittel Utregning av algebraiske uttrykk 1.4 Forenkle uttrykk 1.5 Faktorisering 1.5 Kvadratsetningene 1.6 Grafisk løsning av eksponentiallikninger 1.8 Grafisk løsning av logaritmelikninger 1.9 Grafisk løsning av likningssett I.1 Grafisk løsning av likningssett II. Fakultet. Binomialkoeffisient i regneark 3.3/3.4 Binomialkoeffisient I 3.4 Binomialkoeffisient II 3.4 Binomiske sannsynligheter 3.7 Kumulative binomiske sannsynligheter 3.7 Binomisk og kumulativ binomisk i regneark 3.7 Graftegning 4.1 Graftegning med definisjonsmengde 4.1 Andregradsfunksjoner 4.1 Tredjegradsfunksjoner 4.1/5.6 Rasjonale funksjoner 4. Eksponentialfunksjoner 4.3 Potensfunksjoner 4.3 Nullpunkter 4.4 Å finne y- og x-verdier 4.4 Grafisk løsning 4.4 Lineær regresjon 4.5 Polynomregresjon 4.5 Eksponential- og potensregresjon 4.5 Gjennomsnittlig vekstfart 5.1 Momentan vekstfart 5. Den deriverte 5.4 Fortegnslinje for den deriverte 5.5 Tabell med funksjonsverdier og derivertverdier 5.6 Å bruke den deriverte til å finne når et uttrykk er størst mulig 5.6 Grafområde 6. Lineær optimering 6.3/6.4 Aschehoug

2 Utregning av algebraiske uttrykk med GeoGebra GeoGebra kan regne ut algebraiske uttrykk som inneholder én bokstav. NB! Du må alltid bruke x som navn på den bokstaven som inngår i uttrykket. Vi viser tre eksempler på utregning av uttrykk med GeoGebra. Du skal regne ut (x + 3)(x 4). Skriv RegnUt [(x + 3)(x 4)] i inntastingsfeltet og trykk Enter. Da får du bildet nedenfor. GeoGebra gir svaret på utregningen som et funksjonsuttrykk. (Svaret er gitt som f( x) = x 5x 1til venstre på bildet ovenfor.) I tillegg tegner GeoGebra grafen til denne funksjonen. Du skal regne ut x + 3 x 1. 6 Skriv RegnUt [(x+3)/-(x-1)/6] i inntastingsfeltet og trykk Enter. Da får du bildet nedenfor. Svaret blir altså x x Du skal regne ut. x Skriv RegnUt[(x+6)/(x+4)-(1/6)] i inntastingsfeltet og trykk Enter. Da får du bildet nedenfor. Legg merke til at GeoGebra her gir et svar som kan forenkles til x + 8 3( x + ) eller x + 8 3x + 6. GeoGebra kan også forenkle uttrykket i Algebrafeltet. Det viser vi under Forenkle algebraiske uttrykk. Aschehoug Side 1 av 1

3 Forenkle uttrykk med GeoGebra NB! Du må alltid bruke x som navn på den bokstaven som inngår i uttrykket. Du skal forkorte brøken x 6. 4 Skriv Forenkle [(x+6)/4] i inntastingsfeltet og trykk Enter. x 3 Da får du bildet nedenfor. Svaret blir altså. x 3x Du skal forkorte brøken. x 6 Skriv Forenkle [(x +3x)/(x+6)] i inntastingsfeltet og trykk Enter. x Da får du bildet nedenfor. Svaret blir altså. x 6 1 I Utregning av algebraiske uttrykk skulle du regne ut. x 4 6 x 16 GeoGebra ga svaret. Denne brøken kan forkortes. 3(x 4) Skriv Forenkle [(x+16)/(3(x+4))] i inntastingsfeltet og trykk Enter. x 8 x 8 Da får du bildet nedenfor. Svaret kan altså skrives eller 3( x ) 3x 6. Hvis du skriver Forenkle [(x+6)/(x+4)-1/6] i inntastingsfeltet og trykker Enter, får du svaret på figuren ovenfor direkte. Det kan derfor være lurt å bruke kommandoen Forenkle i stedet for å bruke kommandoen RegnUt. Prøv med flere uttrykk og se hva som fungerer best. Aschehoug Side 1 av 1

4 Faktorisering med GeoGebra NB! Du må alltid bruke x som navn på den bokstaven som inngår i uttrykket. Du skal faktorisere x 3x. Skriv Faktoriser[x +3x] i inntastingsfeltet og trykk Enter. Da får du bildet nedenfor. Svaret blir altså ( x 3) x. Du skal faktorisere x 3x 10. Skriv Faktoriser[x -3x-10] i inntastingsfeltet og trykk Enter. Da får du bildet nedenfor. Svaret blir altså ( x 5)( x ). Du skal faktorisere x 4x 4. Skriv Faktoriser[x +4x+4] i inntastingsfeltet og trykk Enter. Da får du bildet nedenfor. Svaret blir altså. x Du skal faktorisere 3x 1. Skriv Faktoriser[3x -1] i inntastingsfeltet og trykk Enter. Da får du bildet nedenfor. Svaret blir altså 3( x )( x ). Aschehoug Side 1 av 1

5 Kvadratsetningene med GeoGebra NB! Du må alltid bruke x som navn på den bokstaven som inngår i uttrykket. Du skal regne ut x 4. Skriv RegnUt [ x 4 ] i inntastingsfeltet og trykk Enter. Da får du bildet nedenfor. Svaret blir altså x 8x 16. Du skal regne ut x 3. Skriv RegnUt [ x 3 ] i inntastingsfeltet og trykk Enter. Da får du bildet nedenfor. Svaret blir altså 4x 1x 9. Du skal regne ut ( x 3)( x 3). Skriv RegnUt [ ( x 3)( x 3) ] i inntastingsfeltet og trykk Enter. Da får du bildet nedenfor. Svaret blir altså x 9. Aschehoug Side 1 av 1

6 Grafisk løsning av eksponentiallikninger med GeoGebra x Du skal løse eksponentiallikningen 85 0,9 = 50. Sett f( x ) = 85 0,9 x og gx ( ) = 50. Skriv f(x)=85*0.9^x i Inntastingsfeltet og trykk Enter. Skriv g(x)=50 i Inntastingsfeltet og trykk Enter. Tilpass aksene slik at skjæringspunktet mellom grafene vises i grafikkfeltet. Klikk på knappen Skjæring mellom to objekter og deretter på de to grafene. Skjæringspunktet A dukker nå opp i Grafikkfeltet og i Algebrafeltet. Høyreklikk på punktet og velg Verdi under Egenskaper / Vis navn. Da får du dette bildet: Skjæringspunktet mellom grafene har koordinatene (6,36, 50). Løsningen på likningen er x = 6,4. Aschehoug Side 1 av 1

7 Grafisk løsning av logaritmelikninger med GeoGebra Du skal løse logaritmelikningen lg(x 3) lg 3. Sett f( x) lg(x 3) og gx ( ) lg3. Skriv f(x)=lg(x+3) i Inntastingsfeltet og trykk Enter. Skriv g(x)=lg3 i Inntastingsfeltet og trykk Enter. Tilpass aksene slik at skjæringspunktet mellom grafene vises i grafikkfeltet. Klikk på knappen Skjæring mellom to objekter og deretter på de to grafene. Skjæringspunktet A dukker nå opp i Grafikkfeltet og i Algebrafeltet. Høyreklikk på punktet og velg Verdi under Egenskaper / Vis navn. Da får du dette bildet: Skjæringspunktet mellom grafene har koordinatene (3, 0,95). Løsningen på likningen er x = 3. Aschehoug Side 1 av 1

8 0BGrafisk løsning av likningssett I med GeoGebra Du skal løse likningssettet x+ y = 1 (1) x+ y = 4 () Skriv x+y=1 i inntastingsfeltet og trykk Enter. Klikk på Sett inn tekst (, knapp nr. fra høyre), og detter et sted i Grafikkfeltet. Skriv a i tekstboksen som dukker opp og klikk på OK. Klikk på F-pila og flytt teksten bort til grafen. Da får du dette bildet: (Hvis du høyreklikker på likningen i Algebrafeltet og klikker på Likning y = ax + b, får du dette bildet: Du ser at GeoGebra kan omforme uttrykket til formen y = x+ 1.) Skriv -x+y=-4 i inntastingsfeltet og trykk Enter. Gjør det samme som du gjorde for likning (1) ovenfor. Klikk på knappen Skjæring mellom to objekter og deretter på de to grafene. Skjæringspunktet A dukker nå opp i Grafikkfeltet og i Algebrafeltet. Høyreklikk på punktet og velg Verdi under Egenskaper / Vis navn. Da får du dette bildet: Skjæringspunktet mellom grafene til likningene har koordinatene (1,, 1,4). Likningssettet har løsningen x = 1, og y = 1,4. Aschehoug Side 1 av 1

9 Grafisk løsning av likningssett II med GeoGebra Du skal løse likningssettet x + y = 5 (1) x+ y = () Skriv x +y=5 i inntastingsfeltet og trykk Enter. Klikk på Sett inn tekst (, knapp nr. fra høyre), og detter et sted i Grafikkfeltet. Skriv c i tekstboksen som dukker opp og klikk på OK. Klikk på F-pila og flytt teksten bort til grafen. Da får du dette bildet: Skriv x+y= i inntastingsfeltet og trykk Enter. Gjør det samme som du gjorde for likning (1) ovenfor. Klikk på knappen Skjæring mellom to objekter og deretter på de to grafene. Skjæringspunktene A og B dukker nå opp i Grafikkfeltet og i Algebrafeltet. Høyreklikk på punktene og velg Verdi under Egenskaper / Vis navn. Da får du dette bildet: Skjæringspunktene mellom grafene til likningene har koordinatene ( 1, 4) og (3, 4). Likningssettet har løsningene ( 1, 4) og (3, 4). Aschehoug Side 1 av 1

10 GeoGebra: Fakultet. Binomialkoeffisient i regneark Fakultet Skriv 5! i Inntastingsfeltet. Trykk Enter. I Algebrafeltet står det nå a = 10. Det betyr at 5! = 10. Binomialkoeffisient Skriv BinomialKoeffisient[10,5] i Inntastingsfeltet. Trykk Enter. 10 I Algebrafeltet står det nå b = 5. Det betyr at 5. 5 Binomialkoeffisient i regnearket Klikk på Vis og velg Regneark. Skriv n i rute A1, r i rute B1 og BinomialKoeffisient[n,r] i rute C1. Skriv 10 i rute A og 1 i rute B. Skriv B+1 i rute B3. Klikk på markøren nederst til høyre i rute B3 og dra nedover til og med rute B11. Da står tallene 1,,..., 10 i rutene B B11. Skriv BinomialKoeffisient[$A$,B] i rute C. Dra markøren i ruta nedover til og med rute C11. I rutene C C11 står verdiene for ,,...,, slik figuren nedenfor viser (Legg merke til symmetrien.) Aschehoug Side 1 av 1

11 Binomialkoeffisient I med GeoGebra 5 0 Du skal finne binomialkoeffisientene og med GeoGebra. 16 Klikk på Vis og bruk venstretasten til å huke av for Algebrafelt. Fjern eventuelt avhukningen for Akser og Rutenett. Skriv BinomialKoeffisient[5,] i inntastingsfeltet og trykk Enter. 5 I Algebrafeltet står det a = 10. Det viser at binomialkoeffisienten er 10. Hvis du holder musepekeren over a i Algebrafeltet, får du bildet nedenfor. Dobbeltklikk på a i Algebrafeltet. I boksen som dukker opp, endrer du 5 over til 0 over 16. Klikk på OK. Hvis du holder musepekeren over a i Algebrafeltet, får du bildet nedenfor. Aschehoug Side 1 av 1

12 Binomialkoeffisient II med GeoGebra Du skal finne binomialkoeffisienten n r med GeoGebra. n og r er hele, positive tall. Klikk på Vis og bruk venstretasten til å huke av for Algebrafelt. Fjern eventuelt avhukningen for Akser og Rutenett. Skriv n = 1 i Inntastingfeltet og trykk Enter. Klikk i rundingen foran n i Algebrafeltet. Da får du dette bildet. I Grafikkfeltet har du fått glideren for n. Du kan klikke på F-pila og deretter på punktet på glideren. Hvis du drar punktet, endrer du verdien til n. Høyreklikk på glideren, klikk på Egenskaper og deretter på fanen Glider. Siden n er et helt, positivt tall, endrer du Min fra 5 til 1. Endre Maks til for eksempel 0. Animasjonstrinnet endrer du til 1. Endre Bredde til for eksempel 00. Klikk på Lukk. Aschehoug Side 1 av

13 Skriv r = 1 i Inntastingfeltet og trykk Enter. Klikk i rundingen foran r i Algebrafeltet. Fortsett slik du gjorde for n. Da får du dette bildet. Skriv BinomialKoeffisient[n,r] i inntastingsfeltet og trykk Enter. 1 I Algebrafeltet står det a = 1. Det viser at binomialkoeffisienten er 1. 1 Klikk på F-pila og flytt punktene på gliderne slik at n = 15 og r = 5. Da får du bildet nedenfor. 15 Binomialkoeffisienten er Hvis du skal regne ut for større verdier enn 0 for n eller r, må du endre Maks under glideregenskapene. Du må vurdere om du da bør endre Bredde. Du bør også vurdere om verdien for Min bør endres. Aschehoug Side av

14 Binomiske sannsynligheter med GeoGebra Vi sår 0 frø og ser om de spirer. Et bestemt frø spirer med 70 % sannsynlighet. Vi vil finne sannsynligheten for at 16 av de 0 frøene spirer. Skriv n = 0 i Inntastingsfeltet. Trykk Enter. Klikk i sirkelen til venstre for n = 0 i Algebrafeltet. Glideren for n dukker opp i Grafikkfeltet. Høyreklikk på glideren og klikk på Egenskaper. Velg: Min: 1 Maks: 50 Animasjonstrinn: 1 Bredde: 00 Klikk på Lukk. Skriv r = 16 i Inntastingsfeltet. Trykk Enter. Klikk i sirkelen til venstre for r = 16 i Algebrafeltet. Glideren for r dukker opp i Grafikkfeltet. Høyreklikk på glideren og klikk på Egenskaper. Velg: Min: 0 Maks: 50 Animasjonstrinn: 1 Bredde: 00 Klikk på Lukk. Skriv p = 0.70 i Inntastingsfeltet. Trykk Enter. Klikk i sirkelen til venstre for p = 0.70 i Algebrafeltet. Glideren for p dukker opp i Grafikkfeltet. Høyreklikk på glideren og klikk på Egenskaper. Velg: Min: 0 Maks: 1 Animasjonstrinn: 0.01 Bredde: 00 Klikk på Lukk. Skriv BinomialKoeffisient[n,r] i Inntastingsfeltet. Trykk Enter.! 0" I Algebrafeltet står a = Det betyr at # $ = % 16 & Skriv a*p^r*(1-p)^(n-r) i Inntastingsfeltet. Trykk Enter. Da får du dette bildet: I Algebrafeltet står b = Det betyr at P(16 av 0 frø vil spire) = 0,13. For å finne andre binomiske sannsynligheter kan du nå endre gliderverdiene for n, r og p. Aschehoug Side 1 av 1

15 Kumulative binomiske sannsynligheter med GeoGebra Vi sår 0 frø og ser om de spirer. Et bestemt frø spirer med 70 % sannsynlighet. Vi vil finne sannsynligheten for at minst 1 av de 0 frøene spirer. Skriv n = 0 i Inntastingsfeltet. Trykk Enter. Klikk i sirkelen til venstre for n = 0 i Algebrafeltet. Glideren for n dukker opp i Grafikkfeltet. Høyreklikk på glideren og klikk på Egenskaper. Velg: Min: 1 Maks: 50 Animasjonstrinn: 1 Bredde: 00 Klikk på Lukk. Skriv p = 0.70 i Inntastingsfeltet. Trykk Enter. Klikk i sirkelen til venstre for p = 0.70 i Algebrafeltet. Glideren for p dukker opp i Grafikkfeltet. Høyreklikk på glideren og klikk på Egenskaper. Velg: Min: 0 Maks: 1 Animasjonstrinn: 0.01 Bredde: 00 Klikk på Lukk. Skriv a = 1 i Inntastingsfeltet. Trykk Enter. Klikk i sirkelen til venstre for a = 1 i Algebrafeltet. Glideren for a dukker opp i Grafikkfeltet. Høyreklikk på glideren og klikk på Egenskaper. Velg: Min: 0 Maks: 50 Animasjonstrinn: 1 Bredde: 00 Klikk på Lukk. Skriv b = 0 i Inntastingsfeltet. Trykk Enter. Klikk i sirkelen til venstre for b = 0 i Algebrafeltet. Glideren for b dukker opp i Grafikkfeltet. Høyreklikk på glideren og klikk på Egenskaper. Velg: Min: 0 Maks: 50 Animasjonstrinn: 1 Bredde: 00 Klikk på Lukk. Skriv Sum[Følge[BinomialKoeffisient[n,r]*p^r*(1-p)^(n-r),r,a,b]] i Inntastingsfeltet. Trykk Enter. Da får du dette bildet: I Algebrafeltet står c = Det betyr at P(minst 1 av 0 frø vil spire) = 0,887. For å finne andre kumulative binomiske sannsynligheter kan du nå endre gliderverdiene for n, p, a og b. Aschehoug Side 1 av 1

16 GeoGebra: Binomiske sannsynligheter og kumulative binomiske sannsynligheter i regneark En bestemt type frø spirer med 70 % sannsynlighet. Vi sår 10 frø og ser om de spirer. Binomiske sannsynligheter Vi går ut fra at dette er et binomisk forsøk og bruker formelen n r n r Pr ( frø spirer) p 1 p r Her er n 10 og p 0,70. Vi vil bruke regnearket i GeoGebra til å finne sannsynligheten for at r frø spirer for ulike verdier av r. Klikk på Vis og velg Regneark. Skriv n i rute A1, p i rute B1, r i rute C1, BinomialKoeffisient[n,r] i rute D1 og P(r frø spirer) i rute E1. Skriv 10 i rute A, 0.70 i rute B, 0 i rute C. Skriv C +1 i rute C3. Klikk på markøren nederst til høyre i rute C3 og dra nedover til og med rute C1. Da står tallene 0, 1,,..., 10 i rutene C C1. Skriv BinomialKoeffisient[$A$,C] i rute D. Dra markøren i ruta nedover til og med rute D1. I rutene D D1 står verdiene for ,,..., Skriv D*$B$^C*(1-$B$)^($A$-C) i rute E. (Du kan i stedet for de to gangetegnene * taste mellomrom.) Dra markøren i ruta nedover til og med rute E1. Da får du bildet nedenfor. Du ser for eksempel at P(7 frø spirer) 0,67. Aschehoug Side 1 av

17 Kumulative binomiske sannsynligheter Skriv E i rute F. Skriv F + E3 i rute F3. Dra markøren i rute F3 nedover til og med rute F1. Da får du dette bildet: For eksempel ser du at det står 0,617 i rute F9. Det betyr at P(høyst 7 frø spirer) = 0,617. Aschehoug Side av

18 Graftegning med GeoGebra Du skal tegne grafen til y = x +1. Klikk på Vis og bruk venstretasten til å huke av for Akser, Rutenett og Algebrafelt. Skriv y = x + 1 i Inntastingsfeltet og trykk Enter. Grafen dukker opp i Grafikkfeltet. x-aksen skal gå fra 3 til 3, og det samme skal y-aksen. Innstillinger av aksene kan gjøres på flere måter, men her viser vi to. Metode 1 Høyreklikk på Grafikkfeltet og velg Egenskaper. Endre Min for x-aksen til 3 og Maks til 3. Klikk på y-akse og foreta de samme endringene her. Klikk på Lukk og du får bildet nedenfor. Metode Klikk på Flytt grafikkfelt. (, knapp nr. 1 fra høyre.) Dra i aksene med venstretasten slik at innstillingen blir som ønsket, se bildet ovenfor. I stedet for å aktivere Flytt grafikkfelt kan du holde Shift-tasten nede. Denne virker som hurtigtast til Flytt grafikkfelt. Aschehoug Side 1 av 1

19 Graftegning med gitt definisjonsmengde med GeoGebra Du skal tegne grafen til y = x + 1 med definisjonsmengden D = [ 1, 1]. Klikk på Vis og bruk venstretasten til å huke av for Akser, Rutenett og Algebrafelt. Skriv funksjon[x + 1,-1,1] i Inntastingsfeltet og trykk Enter. Grafen dukker opp i Grafikkfeltet. Se bildet nedenfor. Legg merke til at i Algebrafeltet har GeoGebra gitt funksjonsuttrykket navnet f(x) og ikke y. Grafen har fått navnet f. Aschehoug Side 1 av 1

20 Andregradsfunksjoner med GeoGebra Du skal finne eventuelle nullpunkter, topp- eller bunnpunkter. Ta for deg funksjonen f ( x) = x x 3. Tegn først grafen til f i grafikkfeltet. Tips! Du kan taste inn x slik: Skriv x og deretter hold Alt-tasten nede og skriv. Nullpunkter Skriv Nullpunkt[f] i Inntastingsfeltet og trykk Enter. Skjæringspunktene A og B mellom grafen til f og x-aksen dukker opp i Grafikkfeltet. Høyreklikk på A, og velg Egenskaper og verdi under Vis Navn. Gjør det samme med B. Tips! Etter at du har utført handlingen ovenfor med punkt A kan du klikke på Kopier format eller stil (, knapp nr. 1 fra høyre), og klikke først på punkt A og deretter på punkt B. Da får du bildet nedenfor. Førstekoordinatene til skjæringspunktene med x-aksen er 1 og 3. (Dette ser du også i Algebrafeltet.) Nullpunktene er derfor 1 og 3. Aschehoug Side 1 av

21 Bunnpunkt Skriv Ekstremalpunkt[f] i Inntastingsfeltet og trykk Enter. Bunnpunktet C dukker opp i Grafikkfeltet. Høyreklikk på C, og velg Egenskaper og verdi under Vis Navn. Da får du bildet nedenfor. Grafen har bunnpunktet (1, 4). (Dette ser du også i Algebrafeltet.) For å finne toppunkter går du fram på samme måte. Aschehoug Side av

22 Tredjegradsfunksjoner med GeoGebra Du skal finne eventuelle nullpunkter, topp- eller bunnpunkter. 3 Ta for deg funksjonen f ( x) = x 3x x+ 3. Tegn først grafen til f i grafikkfeltet. Tips! Du kan taste inn x slik: Skriv x og deretter hold Alt-tasten nede og skriv. 3 Du kan taste inn x slik: Skriv x og deretter hold Alt-tasten nede og skriv 3. Nullpunkter Skriv Nullpunkt[f] i Inntastingsfeltet og trykk Enter. Skjæringspunktene A, B og C mellom grafen til f og x-aksen dukker opp i Grafikkfeltet. Høyreklikk på A, og velg Egenskaper og verdi under Vis Navn. Gjør det samme med B og C. Tips! Etter at du har utført handlingen ovenfor med punkt A kan du klikke på Kopier format eller stil ( og C., knapp nr. 1 fra høyre), og klikke først på punkt A og deretter på punktene B Da får du bildet nedenfor. Førstekoordinatene til skjæringspunktene med x-aksen er 1, 1 og 3. (Dette ser du også i Algebrafeltet.) Nullpunktene er derfor 1, 1 og 3. Aschehoug Side 1 av

23 Bunnpunkt og Toppunkt Skriv Ekstremalpunkt[f] i Inntastingsfeltet og trykk Enter. Toppunktet D og bunnpunktet E dukker opp i Grafikkfeltet. Høyreklikk på D, og velg Egenskaper og verdi under Vis Navn. Gjør det samme med E. Da får du dette bildet: Grafen har toppunktet ( 0,15, 3,08) og bunnpunktet (,15, 3,08). (Dette ser du også i Algebrafeltet.) Aschehoug Side av

24 Rasjonale funksjoner med GeoGebra 3x + 3 Ta for deg funksjonen f( x) = x 4. Tegn grafen til f i grafikkfeltet. Tast inn slik i inntastingsfeltet: f(x)=(3x+3)/(x-4) Trykk Enter og du får bildet nedenfor. Asymptoter GeoGebra finner ikke asymptotene. Hvis vi skal tegne disse, må vi skrive inn asymptoteuttrykkene i Inntastingsfeltet. Vertikal asymptote Skriv inn x= og trykk Enter. Horisontal asymptote Skriv inn y=3/ og trykk Enter. Endre farge på asymptotene Høyreklikk på den ene asymptoten, og velg Egenskaper, farge og klikk på ønsket farge. Trykk Lukk. Etter at du har utført handlingen ovenfor med den ene asymptoten kan du klikke på kopier format eller stil (, knapp nr. 1 fra høyre), og klikke først på asymptoten du har endret farge på og deretter på den andre asymptoten. Aschehoug Side 1 av

25 Nullpunkter GeoGebra finner ikke eventuelle nullpunkter ved å skrive Nullpunkt[f] i Inntastingsfeltet og trykke Enter. Du må hjelpe til: Metode 1 Oppgi en x-verdi som ligger i nærheten av nullpunktet, for eksempel x =. Skriv Nullpunkt[f,-] og trykk Enter. Metode Oppgi et intervall som nullpunktet ligger i, for eksempel [, 0]. NB! Intervallet må ikke inneholde bruddverdien x =. Skriv Nullpunkt[f,-,0] og trykk Enter. Skjæringspunktet A mellom grafen til f og x-aksen dukker opp i Grafikkfeltet. Høyreklikk på A, og velg Egenskaper og verdi under Vis Navn. Da får du bildet nedenfor. Førstekoordinaten til skjæringspunktet med x-aksen er 1. (Dette ser du også i Algebrafeltet.) Nullpunktet er derfor 1. Aschehoug Side av

26 Eksponentialfunksjoner med GeoGebra Du skal tegne grafen til funksjonen Tt ( ) = 85 0,9 t, med D = [0, 10]. Legg merke til at t er navnet på den variable. NB! I GeoGebra må du bruke x som navnet på den variable. Skriv derfor Funksjon[85*0.9^x,0,10] i Inntastingsfeltet og trykk Enter. Funksjonen får navnet f. Tilpass aksene slik at grafen blir tegnet i definisjonsområdet. Å endre navn Høyreklikk på funksjonsuttrykket i Algebrafeltet og velg Gi nytt navn. Endre navnet til T. Å sette navn på aksene Høyreklikk i grafikkfeltet og velg Egenskaper. Skriv t under Navn på aksen. Klikk på yakse og skriv T(t) under Navn på aksen. Klikk på Lukk. Du får da dette bildet: Aschehoug Side 1 av 1

27 Potensfunksjoner med GeoGebra 0,5 Du skal tegne grafen til funksjonen f( m) = 00 m. Legg merke til at m er navnet på den variable. NB! I GeoGebra må du bruke x som navnet på den variable. Skriv derfor f(x) = 00x^-0.5 i Inntastingsfeltet og trykk Enter. Funksjonen får navnet f. Sett navn på aksene. Tilpass aksene slik at grafen blir tegnet for m-verdier opp til Aschehoug Side 1 av 1

28 Nullpunkter med GeoGebra Du skal finne nullpunktet for funksjonen Tegn først grafen til f i grafikkfeltet. 3 f( x) = x+ 1,5. 7 Metode 1 Skriv Nullpunkt[f] i inntastingsfeltet og trykk Enter. Skjæringspunktet A mellom grafen til f og x-aksen dukker opp i Grafikkfeltet. Høyreklikk på A, velg Egenskaper og velg Verdi under Vis Navn. Da får du bildet nedenfor. Førstekoordinaten til skjæringspunktet med x-aksen er 3,5. (Dette ser du også i Algebrafeltet.) Nullpunktet er derfor 3,5. Metode Etter at grafen er tegnet kan du finne nullpunktet ved å klikke på Skjæring mellom to objekter. (, knapp nr. fra venstre), og deretter klikke på grafen til f og på x-aksen. Skjæringspunktet A dukker da opp. Aschehoug Side 1 av 1

29 Å finne y- og x-verdier med GeoGebra Prisen på en drosjetur er gitt ved funksjonen y = 5x+ 50. y er prisen i kroner når vi kjører x km. Du skal bruke GeoGebra til å finne a prisen på en tur på 9,6 km. (Du skal altså finne y når x = 9,6.) b hvor langt vi kan kjøre for 147 kr. (Du skal finne x når y = 147.) Vi lar navnet på funksjonsuttrykket ovenfor være P(x), og tegner grafen fra x = 0 til x = 1. a metode 1 Skriv A = (9.6,P(9.6)) i Inntastingsfeltet og trykk Enter. A vil da dukke opp på grafen til P med x-verdi 9,6. Høyreklikk på A og velg Egenskaper, Grunninnstillinger og verdi under Vis Navn. Du får da bildet nedenfor. Av figuren ser vi (både i Grafikkfeltet og i Algebrafeltet) at y er 90 når x er 9,6. Prisen på en tur på 9,6 km er 90 kr. Aschehoug Side 1 av 3

30 a metode Tast x = 9.6 i Inntastingsfeltet og trykk Enter. Linja x = 9,6 er tegnet. Klikk på Skjæring mellom to objekter. (, knapp nr. fra venstre), og deretter klikk på grafen til P og på linja x = 9,6. Skjæringspunktet A dukker da opp. Høyreklikk på A og velg Egenskaper, Grunninnstillinger og Verdi under Vis Navn. Du får da bildet nedenfor. Av figuren ser du (både i Grafikkfeltet og i Algebrafeltet) at y er 90 når x er 9,6. Prisen på en tur på 9,6 km er 90 kr. Aschehoug Side av 3

31 b Tast y = 147 i Inntastingsfeltet og trykk Enter. Linja y = 147 er tegnet. Klikk på Skjæring mellom to objekter. (, knapp nr. fra venstre), og klikk deretter på grafen til P og på linja y = 147. Skjæringspunktet A dukker da opp. Høyreklikk på A og velg Egenskaper, Grunninnstillinger og verdi under Vis Navn. Du får da bildet nedenfor. Både i Grafikkfeltet og i Algebrafeltet ser du at x = 3,88 når y = 147. For 147 kr kan vi altså kjøre 3,9 km. Aschehoug Side 3 av 3

32 Grafisk løsning med GeoGebra Ved produksjon av en vare regner en bedrift med at inntekten I(x) og kostnaden K(x) i kroner er gitt ved funksjonene K( x) = 0,x I( x) = 1x x er antall produserte og solgte enheter per dag. Du skal finne grafisk hvor stor produksjonen må være for at inntekten skal bli lik kostnaden når produksjonen gir overskudd Tegn først grafene til K og I. Tilpass aksene slik at vi ser skjæringspunktene mellom grafene i Grafikkfeltet. Klikk på knappen Skjæring mellom to objekter og deretter på de to grafene. Skjæringspunktene A og B dukker nå opp i Grafikkfeltet og i Algebrafeltet. Under Egenskaper velger du Navn og verdi for begge punktene. Du får da bildet nedenfor. Av figuren ser du at inntekten er lik kostnaden for x = 10 og for x = 50. Når det produseres og selges 10 enheter eller 50 enheter er inntekten lik kostnaden. Produksjonen gir overskudd når inntekten er større enn kostnaden. Da ligger grafen til I ovenfor grafen til K. Av figuren ser vi at dette er tilfelle når x er mellom 10 og 50. Produksjonen gir overskudd når det produseres mellom 10 og 50 enheter per dag. Aschehoug Side 1 av 1

33 Lineær regresjon med GeoGebra Du skal bruke lineær regresjon til å finne den linja som passer best til punktene A = (1, 1), B = (4, ), C = (6, 3) og D = (9, 3) Metode 1 Legg punktene inn i Grafikkfeltet. Deretter klikker du på F-pila (, knapp nr. 1 fra venstre), holder venstre musetast nede og markerer det området punktene ligger i. Klikk på Beste tilpasset linje (, knapp nr. 4 fra venstre). Deretter høyreklikker du på a i Algebrafeltet, og velger Likning y = ax + b. GeoGebra foreslår y = 0,6x + 0,93 som den best tilpassede linja. Metode Lag en liste med punktene A, B, C og D. Skriv inn i Inntastingsfeltet: L = {(1,1), (4,), (6,3), (9,3)} Trykk ENTER. Klikk på ringen foran L i Algebrafeltet. Aschehoug Side 1 av 3

34 Skriv reglin[l] i Inntastingsfeltet og trykk ENTER. NB! Hvis punktene A, B, C og D er lagt inn i Algebrafeltet, kan du lage lista slik: L = {A, B, C, D} Metode 3 Du kan legge punktene inn i regnearket. Klikk på Vis og velg Regneark. Skriv inn punktene i regnearket. Klikk på F-pila ( inneholder punktene., knapp nr. 1 fra venstre) og marker det området i regnearket som Høyreklikk på det markerte området og velg Lag liste med punkter ( venstre)., knapp nr. 4 fra Høyreklikk på liste 1 i Algebrafeltet og velg Gi nytt navn. Skriv L i stedet for liste 1. Trykk OK. Nå kan du skrive reglin[l] i Inntastingsfeltet. Aschehoug Side av 3

35 Korrelasjonskoeffisient Skriv korrelasjonskoeffisient[l] i Inntastingsfeltet og trykk ENTER. I Algebrafeltet vil det nå stå b = Dette er korrelasjonskoeffisienten. Aschehoug Side 3 av 3

36 Polynomregresjon med GeoGebra Du skal bruke andregradsregresjon til å finne den andregradsfunksjonen som passer best til punktene A = (0, 3,5), B = (3, 5,7), C = (6, 7,5) og D = (9, 9,0) Metode 1 Lag en liste med punktene A, B, C og D. Skriv inn i Inntastingsfeltet: L = {(0,3.5), (3,5.7), (6,7.5), (9,9.0)} Trykk ENTER. Klikk på ringen foran L i Algebrafeltet. Skriv regpoly[l,] i Inntastingsfeltet og trykk ENTER. I Algebrafeltet ser du uttrykket for andregradsfunksjonen. NB! Hvis punktene A, B, C og D er lagt inn i Algebrafeltet, kan du lage lista slik: L = {A, B, C, D} Aschehoug Side 1 av

37 Metode Du kan legge punktene inn i regnearket. Klikk på Vis og velg Regneark. Skriv inn punktene i regnearket. Klikk på F-pila ( inneholder punktene., knapp nr. 1 fra venstre) og marker det området i regnearket som Høyreklikk på det markerte området og velg Lag liste med punkter ( venstre)., knapp nr. 4 fra Høyreklikk på liste 1 i Algebrafeltet og velg Gi nytt navn. Skriv L i stedet for liste 1. Trykk OK. Nå kan du skrive regpoly[l,] i Inntastingsfeltet. I Algebrafeltet ser du uttrykket for andregradsfunksjonen. Tredjegradsregresjon Du skriver regpoly[l,3] i stedet for regpoly[l,]. Tilsvarende kan du skrive regpoly[l,1] og regpoly[l,4] for henholdsvis første og fjerde grad. Aschehoug Side av

38 Eksponential- og potensregresjon med GeoGebra Eksponentialregresjon Du skal bruke eksponentialregresjon til å finne den eksponentialfunksjonen som passer best til punktene A = (1, 0,5), B = (,,0) og C = (3, 4,5) Metode 1 Lag en liste med punktene A, B og C. Skriv inn i Inntastingsfeltet: L = {(1,0.5), (,.0), (3,4.5)} Trykk ENTER. Klikk på ringen foran L i Algebrafeltet. Skriv regeksp[l] i Inntastingsfeltet og trykk ENTER. I Algebrafeltet ser du at uttrykket for eksponentialfunksjonen er 1,1 f( x) 0,18 e x Dette uttrykket kan omformes til 1,1 x ( ) 0,18 e 0,18, ,1 x x 0,18 3, 00 f x NB! Hvis punktene A, B og C er lagt inn i Algebrafeltet, kan du lage lista slik: L = {A, B, C} Aschehoug Side 1 av

39 Metode Du kan legge punktene inn i regnearket. Klikk på Vis og velg Regneark. Skriv inn punktene i regnearket. Klikk på F-pila ( inneholder punktene., knapp nr. 1 fra venstre) og marker det området i regnearket som Høyreklikk på det markerte området og velg Lag liste med punkter ( venstre)., knapp nr. 4 fra Høyreklikk på liste 1 i Algebrafeltet og velg Gi nytt navn. Skriv L i stedet for liste 1. Trykk OK. Nå kan du skrive regeksp[l] i Inntastingsfeltet. I Algebrafeltet ser du at uttrykket for eksponentialfunksjonen er 1,1 f( x) 0,18 e x Dette uttrykket kan omformes til 1,1 x ( ) 0,18 e 0,18,7183 1,1 x x 0,18 3,00 f x Potensregresjon Samme framgangsmåte som for eksponentialregresjon. Du skriver regpot[l] i inntastingsfeltet i stedet for regeksp[l]. Med punktene ovenfor får du da funksjonen f ( x) 0,5x Aschehoug Side av

40 Gjennomsnittlig vekstfart med GeoGebra Du skal finne den gjennomsnittlige vekstfarten for funksjonen intervallet [ 1,4 ]. f( x) = 0,5x x+ 3 i Tegn først grafen til f i Grafikkfeltet. Deretter tegner du inn punktene A og B ved å skrive inn A= (1, f(1)) og deretter B = (4, f(4)) i Inntastingsfeltet. Høyreklikk på A, og velg Egenskaper og verdi under Vis Navn. Gjør det samme med B. Klikk på Linje gjennom to punkter (, knapp nr. 3 fra venstre), og deretter på punktene A og B i Grafikkfeltet. Da har du tegnet linja l gjennom punktene A og B. Klikk på Stigning linje ( Da får du dette bildet:, knapp nr. 4 fra høyre), og deretter på linja l i Grafikkfeltet. Både i Algebrafeltet og i Grafikkfeltet ser du at linja gjennom A og B har stigningstallet 0,5. Den gjennomsnittlige vekstfarten i intervallet [ 1,4 ] er derfor 0,5. Aschehoug Side 1 av 1

41 Momentan vekstfart med GeoGebra Du skal finne den momentane vekstfarten for funksjonen (3,5, f (3,5)). f( x) = 0,5x x+ 3 i punktet Tegn først grafen til f i grafikkfeltet. Deretter tegner du inn punktet P ved å skrive inn P = (3.5, f(3.5)) i Inntastingsfeltet. Høyreklikk på P, og velg Egenskaper og Navn og verdi under Vis Navn. Klikk på Tangenter (, knapp nr. 4 fra venstre), og deretter på grafen til f og punktet P i Grafikkfeltet. Da har du tegnet tangenten a til grafen i punktet P. Klikk på Stigning linje ( Da får du dette bildet:, knapp nr. 4 fra høyre), og deretter på linja a i Grafikkfeltet. Både i Algebrafeltet og i Grafikkfeltet ser du at tangenten i punktet P har stigningstallet 1,5. Den momentane vekstfarten i punktet P = (3,5, f(3,5)) er derfor 1,5. Aschehoug Side 1 av 1

42 Den deriverte med GeoGebra Den deriverte funksjonen og derivertverdier Du skal finne den deriverte for funksjonen f( x) = 0,5x x+ 3 og den deriverte i punktet (3,5, f (3,5)). Tegn først grafen til f i grafikkfeltet. Skriv f (x) i inntastingsfeltet og trykk Enter. Algebrafeltet viser da uttrykket for den deriverte. f ( x) = x Skriv f (3.5) i Inntastingsfeltet og trykk Enter. I Algebrafeltet dukker a = 1.5 opp. Det vil si at f (3,5) = 1,5. Figuren viser hvordan bildet i GeoGebra nå ser ut. Legg merke til at GeoGebra tegner grafen for den deriverte funksjonen f ( x) når du legger inn f (x) i Inntastingsfeltet. Du kan ta bort denne grafen fra Grafikkfeltet ved å klikke på rundingen foran uttrykket f ( x) = x i Algebrafeltet. Aschehoug Side 1 av 1

43 Fortegnslinje for den deriverte med GeoGebra Du skal bruke GeoGebra til å finne/kontrollere fortegnet for den deriverte for funksjonen f( x) = 0,5x x+ 3 Tegn først grafen til f. Skriv f (x) i inntastingsfeltet og trykk Enter. Algebrafeltet viser da uttrykket for den deriverte. Figuren viser hvordan bildet i GeoGebra nå ser ut. Legg merke til at GeoGebra tegner grafen for den deriverte funksjonen f når du legger inn f (x) i Inntastingsfeltet. Bruk ikon nr. fra venstre, Skjæring mellom to objekter, til å finne skjæringspunktet mellom grafen til f og x-aksen. Av figuren ser du at den deriverte er negativ for x-verdier mindre enn og positiv for x-verdier større enn. Den deriverte skifter altså fortegn fra negativ til positiv for x =. Det betyr at grafen til f har et bunnpunkt for x =. (Ikke overraskende stemmer dette med grafen til f.) Aschehoug Side 1 av 1

44 GeoGebra: Tabell med funksjonsverdier og derivertverdier Tabell med funksjonsverdier Du skal lage en tabell med noen funksjonsverdier for funksjonen f( x) = 0,5x x+ 3. Tegn først grafen til f i grafikkfeltet. Velg Vis og klikk på Regneark. Klikk på rute A1 og skriv x. (Hvis du skal skrive tekst i regnearket, må du bruke anførselstegn,.) Klikk på rute B1 og skriv f(x). Klikk på rute A og skriv -1. Nedover i kolonne A kan du skrive inn de verdiene du ønsker å finne funksjonsverdier for. Klikk på rute B, skriv f(-1) og trykk Enter. I rute B3 skriver du f(-0.5) og trykker Enter. Legg inn funksjonsverdiene for de andre x-verdiene du har valgt. Da kan du få bildet nedenfor. Hvis du skal tegne grafen på papir, kan du bruke tabellen til å overføre punkter på grafen. Formelkopiering i regnearket I stedet for å skrive f(-1) i rute B kan du skrive f(a). Trykk Enter. Klikk på rute B. Da får du dette bildet: Aschehoug Side 1 av

45 Klikk på den lille firkanten i nederste høyre hjørne i rute B og dra musepekeren nedover til og med rute B8. Da får du dette bildet: Tabell med derivertverdier Klikk på rute C1 og skriv f (x). Klikk på rute C, skriv f (-1) og trykk Enter. I rute C3 skriver du f (-0.5) og trykker Enter. Legg inn derivertverdiene for de andre x-verdiene du har valgt. Da kan du få bildet nedenfor. Tabellen over derivertverdier kan du for eksempel bruke til å kontrollere fortegnslinja for den deriverte. (Også her kan du bruke metoden med formelkopiering.) Aschehoug Side av

46 GeoGebra: Å bruke den deriverte til å finne når et uttrykk er størst mulig a Vi skal finne x når arealet av et rektangel gitt ved f( x) = x + 4x+ 3 er størst mulig. Her er D = [ 0,8] f Vi skriver Funksjon[-x +4x+3,0,8] i Inntastingsfeltet. Deretter skriver vi Funksjon[f (x),0,8]. Grafene til f og f er nå tegnet i Grafikkfeltet. Du ser at f ( x) endrer fortegn fra positiv til negativ for x =. f ( x ), og dermed arealet av rektanglet, har altså sin største verdi for x =. (Dette stemmer med grafen til f, som har toppunkt for x =.) Aschehoug Side 1 av

47 b Vi skal finne x når volumet av en eske gitt ved 3 f ( x) = x + 4x + 3x er størst mulig. Her er [ 0,8] D =. f Vi skriver Funksjon[-x 3 +4x +3x,0,8] i Inntastingsfeltet. Deretter skriver vi Funksjon[f (x),0,8]. Grafene til f og f er nå tegnet i Grafikkfeltet. Du ser at f ( x) endrer fortegn fra positiv til negativ for x = 4,86. f ( x ), og dermed volumet av esken, har altså sin største verdi for x = 4,86. (Dette stemmer med grafen til f, som har toppunkt for x = 4,86.) Aschehoug Side av

48 Grafområde med GeoGebra Du skal tegne grafområdet til dette settet av ulikheter: y x+ 4 0 y+ x 1 0 y+ 4x Tegn først linjene til likningene: y x+ 4= 0 y+ x 1= 0 y+ 4x+ 11 = 0 Skriv y x+ 4= 0 i Inntastingsfeltet og trykk Enter. Skriv y+ x 1= 0 i Inntastingsfeltet og trykk Enter. Skriv y+ 4x+ 11 = 0 i Inntastingsfeltet og trykk Enter. Da får du dette bildet: Klikk på ikon nr. fra venstre og klikk på Skjæring mellom to objekter. Klikk på linjene a og c. Skjæringspunktet A mellom linjene dukker opp. Finn de to andre skjæringspunktene B og C på samme måte. Grafområdet er begrenset av trekanten ABC. Aschehoug Side 1 av

49 Markering av grafområdet Klikk på Innstillinger, nr. 4 fra venstre, på verktøylinja. Klikk på Navn på objekter og velg Ikke på nye objekter. Klikk på ikon nr. 5 fra venstre og klikk på Mangekant. Klikk på punktene A, B, C og A i Grafikkfeltet. Du har markert grafområdet ABC. Hvis du vil markere grafområdet med en annen farge, kan du høyreklikke i området og velge Egenskaper Farge. Klikk på den fargen du ønsker. Skriv inn likningene i grafikkfeltet Klikk på ikon nr. fra høyre og klikk på Sett inn tekst. Klikk et sted i Grafikkfeltet og skriv a i Tekst-boksen. Klikk på OK og flytt teksten som dukker opp bort til linja a. Gjenta det samme for linjene b og c. Da får du denne figuren: Aschehoug Side av

50 Lineær optimering med GeoGebra Den samlede fortjenesten for produksjonen av to typer A og B av en vare er gitt ved Z = 300x+ 00y Fortjenesten er Z kroner ved produksjon av x enheter av type A og y enheter av type B. Du skal finne hvor mange enheter som må produseres av hver type for at fortjenesten skal bli størst mulig. (Se side 6 i læreboka Matematikk S1.) Grafområdet for produksjonen er gitt ved x 0 y 0 5x+ y 40 3x+ 3y 33 x+ y 0 Figuren nedenfor viser grafområdet ABCDEA for produksjonen. Høyreklikk på punktet B i grafikkfeltet. Klikk på Egenskaper og Grunninnstillinger. Hold Ctrl på tastaturet nede og klikk på punktene A, C, D og E under Punkt. Velg Navn og verdi i rullefeltet til høyre for Vis navn. Klikk på Lukk. Da får du denne figuren: Aschehoug Side 1 av

51 Innsettingsmetoden Du må regne ut Z-verdien i punktene B, C, D og E. Det kan du gjøre med lommeregneren eller du kan for eksempel bruke GeoGebra slik: Punktet C Skriv Z=300*x(C)+00*y(C) i Inntastingsfeltet og trykk Enter. Da dukker Z = 800 opp i Algebrafeltet. Regn ut Z på samme måte for punktene B, D og E. Nivålinjemetoden Skriv Z=1000 i Inntastingsfeltet og trykk Enter. Klikk på sirkelen til venstre for Z = 1000 i Algebrafeltet. Høyreklikk på glideren og klikk på Egenskaper. Velg: Min: 1000 Maks: 3000 Animasjonstrinn: 100 Klikk på Lukk. Skriv Z = 300x + 00y i Inntastingsfeltet og trykk Enter. Nivålinja for Z=1000 dukker opp i Grafikkfeltet. (På figuren er nivålinja rød.) Beveg glideren mot høyre. Du ser at Z får sin største verdi 800 i punktet C med koordinatene (6, 5). Aschehoug Side av

GeoGebra-opplæring i Matematikk 1T

GeoGebra-opplæring i Matematikk 1T GeoGebra-opplæring i Matematikk 1T Emne Underkapittel Rettvinklede trekanter 2.4 Ikke-rettvinklede trekanter I 2.6 Ikke-rettvinklede trekanter II 2.7 Graftegning 3.2 Graftegning med definisjonsmengde 3.2

Detaljer

GeoGebra-opplæring i Matematikk 2T

GeoGebra-opplæring i Matematikk 2T GeoGebra-opplæring i Matematikk 2T Emne Underkapittel Vektorer 1.4 Lengden av vektorer 1.5 Skalarprodukt. Vinkel mellom to vektorer 1.6 Parameterframstilling 1.8 Binomialkoeffisient I 2.7 Binomialkoeffisient

Detaljer

GeoGebra-opplæring i Matematikk R1

GeoGebra-opplæring i Matematikk R1 GeoGebra-opplæring i Matematikk R1 Emne Underkapittel Vektorer 1.4 Lengden av vektorer 1.5 Skalarprodukt og vinkel mellom to vektorer 1.6 Forenkle uttrykk 2.1 Faktorisering 2.1 Grafisk løsning av eksponentiallikninger

Detaljer

GeoGebra-opplæring i Matematikk S2

GeoGebra-opplæring i Matematikk S2 GeoGebra-opplæring i Matematikk S Emne Underkapittel Faktorisering.1 Grafisk løsning av likningssett I.3 Størst mulig overskudd 3. Vendepunkter 3.4 Den naturlige eksponentialfunksjonen 3.5 3.6 Den naturlige

Detaljer

GeoGebra-opplæring i 2P-Y

GeoGebra-opplæring i 2P-Y GeoGebra-opplæring i 2P-Y Emne Underkapittel Terningkast 2.1 Valgtre I 2.3 Valgtre II 2.7 Graftegning 3.2 Nullpunkter 3.3 Å finne y- og x-verdier 3.4 Andregradsfunksjoner 3.5 Grafisk løsning 3.5 Tredjegradsfunksjoner

Detaljer

GeoGebra-opplæring i Matematikk 2P

GeoGebra-opplæring i Matematikk 2P GeoGebra-opplæring i Matematikk 2P Emne Underkapittel Graftegning 2.1 Linje gjennom to punkter 2.1 Å finne y- og x-verdier 2.1 Lineær regresjon 2.3 Andregradsfunksjoner 2.4 Polynomregresjon 2.4 Eksponential-

Detaljer

GeoGebra-opplæring i Matematikk 1P

GeoGebra-opplæring i Matematikk 1P GeoGebra-opplæring i Matematikk 1P Emne Underkapittel Perspektivtegning I 3.8 Perspektivtegning II 3.8 Terningkast 4.1 Valgtre I 4.3 Valgtre II 4.7 Graftegning 5.2 Linje gjennom to punkter 5.2 Nullpunkter

Detaljer

GeoGebra-opplæring i Matematikk 1P

GeoGebra-opplæring i Matematikk 1P GeoGebra-opplæring i Matematikk 1P Emne Underkapittel Perspektivtegning I 3.8 Perspektivtegning II 3.8 Regulære mangekanter 3.9 Flislegging I 3.9 Flislegging II 3.9 Flislegging III 3.9 Terningkast 4.1

Detaljer

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 GeoGebra som kalkulator. Eksempel side 55... 3 Omforming av formler. Side 82 i læreboka... 4 Rette linjer. Side 89 i læreboka...

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Funksjoner med GeoGebra

Funksjoner med GeoGebra Funksjoner med GeoGebra Wallace Anne Karin 2015 G e o G e b r a 5. 0 Innhold Oppsett for arbeid med funksjoner... 2 Flytte tegneflaten, endre enheter på aksene... 4 Flytt inntastingsfeltet øverst... 4

Detaljer

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10.

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. 2 Grafer Å tegne grafen til en funksjon Akser Rutenett Avrunding GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. Funksjonen får automatisk navnet f. Hvis grafen ikke vises, kan du høyreklikke i grafikkfeltet

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Faktorisering. Side 55 i læreboka... 3 Rette linjer. Side 73 i læreboka... 3 Digital løsning av likninger. Side 77 i læreboka...

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold Funksjonstegner... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 3 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 4 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Flytt inntastingsfeltet

Detaljer

Plotting av grafer og funksjonsanalyse

Plotting av grafer og funksjonsanalyse Opplæringshefte i GeoGebra Innholdsfortegnelse: Plotting av grafer og funksjonsanalyse... 2 Oppgave 1... 2 Oppgave 2... 4 Oppgave 3... 8 Å plassere et bilde i GeoGebra... 8 Oppgave 4... 8 Vektorregning

Detaljer

S1 kapittel 3 Lineær optimering

S1 kapittel 3 Lineær optimering S kapittel 3 Lineær optimering Løsninger til oppgavene i boka 3. a b c d Aschehoug www.lokus.no Side av 66 3. a b c d Aschehoug www.lokus.no Side av 66 3.3 Løsninger til oppgavene i boka Ulikhetene i oppgave

Detaljer

GeoGebra 4.2 for Sinus Påbyggingsboka T. av Sigbjørn Hals

GeoGebra 4.2 for Sinus Påbyggingsboka T. av Sigbjørn Hals GeoGebra 4.2 for Sinus Påbyggingsboka T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Nullpunkt. Side 11 i læreboka... 3 Andregradslikninger. Side 18 i læreboka... 3 Momentan vekstfart. Side 47 i læreboka...

Detaljer

GeoGebra. Menylinje Angreknapp. Verktøylinje. Aktivt verktøy med mørkeblå kant. Innstillinger. Algebrafelt. Velge oppsett.

GeoGebra. Menylinje Angreknapp. Verktøylinje. Aktivt verktøy med mørkeblå kant. Innstillinger. Algebrafelt. Velge oppsett. GeoGebra Menylinje Angreknapp Verktøylinje Aktivt verktøy med mørkeblå kant Innstillinger Algebrafelt Grafikkfelt Inntastingsfelt Velge oppsett GEOGEBRA SOM FUNKSJONSTEGNER OPPSETT FLYTTE TEGNE- FLATEN,

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 1P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

Lineære funksjoner. Skjermbildet

Lineære funksjoner. Skjermbildet Lineære funksjoner I dette opplæringsløpet lærer du å tegne funksjoner i GeoGebra samt å bruke verktøy til å løse oppgaver som dreier seg om funksjoner. Alle oppgavene handler om lineære funksjoner. I

Detaljer

KORT INNFØRING I GEOGEBRA

KORT INNFØRING I GEOGEBRA Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER... 9 ØVELSE 2. TEGNE GRAFER TIL RASJONALE FUNKSJONER... 11 ØVELSE 3. LIKNINGSLØSNING... 15 ØVELSE 4. TANGENTER OG MAKS OG MIN

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra 1 Geogebra for Sigma matematikk 2P Innledning Denne bruksanvisningen er ment som en beskrivelse av dataprogrammet

Detaljer

GeoGebra for Sinus 2T

GeoGebra for Sinus 2T GeoGebra for Sinus 2T Innhold Vektorer med GeoGebra Skalarproduktet med GeoGebra Parameterframstilling med GeoGebra Ordnede utvalg eksempelet på side 89 med GeoGebra Uordnede utvalg eksempelet på side

Detaljer

Hurtigstart. Hva er GeoGebra? Noen fakta

Hurtigstart. Hva er GeoGebra? Noen fakta Hurtigstart Hva er GeoGebra? En dynamisk matematisk programvare som er lett å ta i bruk Er egnet til læring og undervisning på alle utdanningsnivå Binder interaktivt sammen geometri, algebra, tabeller,

Detaljer

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals GeoGebra 4.2 for Sinus Påbyggingsboka P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Eksponentiell vekst. Side 45 i læreboka... 3 Søylediagram. Side 50-52 i læreboka... 4 Kurvediagram. Side 55-56 i læreboka...

Detaljer

R1 kapittel 4 Funksjonsdrøfting. Løsninger til oppgavene i boka ( 1) 5 ( 2) = = = = = = = ( ) 1 1. f ( a)

R1 kapittel 4 Funksjonsdrøfting. Løsninger til oppgavene i boka ( 1) 5 ( 2) = = = = = = = ( ) 1 1. f ( a) R kapittel 4 Funksjonsdrøfting Løsninger til oppgavene i boka 4. a 4 f( ) f ( ) 4 4 b g ( ) 6 c d e f 4. a b c d e f 4. a g ( ) 0 h ( ),8 4 h ( ),8,8 i ( ),8,8 i 0 ( ) j ( ) π j ( ) 0 k ( ) k ( ) f( )

Detaljer

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka 5.1 a f( x) = 4x+ 0 I GeoGebra skriver vi f(x)=funksjon[-4x+0,-5,5]. Grafen viser at [ 0, 40] V =. f b gx ( ) =,5x+ 10 I GeoGebra skriver vi f(x)=funksjon[,5x+10,-10,4].

Detaljer

3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter

3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter 3 GeoGebra 1. Fartsdiagrammer 2. Likningsett 3. Funksjoner Maks og min punkter MKH Innholdsfortegnelse 1. Graftegner - GeoGebra... 2 1.1 Introduksjon GeoGebra... 2 1.2 Endre innstillinger på aksene...

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 9 Kapittel 2 Bokmål 1 av 9 Kurs i GeoGebra Funksjoner og grafer I dette kurset skal vi se nærmere på hvordan vi kan bruke GeoGebra som en graftegner. Grunnleggende innstillinger Når vi skal bruke

Detaljer

QED Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42 Sinus T uten grafisk kalkulator Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus T boka til Cappelen Damm til Excel- og GeoGebrastoff.. Regnerekkefølge ( + ) (6+ ):+ CTRL+J Bytter mellom

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42 Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus 1P boka til Cappelen Damm til Excel- og GeoGebrastoff. Se brukerveiledningen i Lokus for perspektivtegning med GeoGebra..1 Regnerekkefølge

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Eksamen S1, Høsten 2013

Eksamen S1, Høsten 2013 Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df f

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Menyer..................................... 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

Løsning eksamen S1 våren 2010

Løsning eksamen S1 våren 2010 Løsning eksamen S1 våren 010 Oppgave 1 a) 1) f ( x) x x f (1) 1 1 1 1 f ( x) 6x x f (1) 6 1 1 6 4 ) Grafen går gjennom punktet (1, 1) og har vekstfarten 4. Det betyr at tangenten i punktet har stigningstallet

Detaljer

GEOGEBRA (Versjon 5.0.150.12.september 2015)

GEOGEBRA (Versjon 5.0.150.12.september 2015) 1 INNFØRING GEOGEBRA (Versjon 5.0.150.12.september 2015) Østerås 12. september 2015 Odd Heir 2 Innhold Side 3-10 Innføring i GeoGebra 10-12 Utskrift 12-13 Overføring til Word 13-15 Nyttige tips 15-16 Stolpediagram

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Geogebra for Sigma matematikk 1P Innledning Denne bruksanvisningen er ment som en beskrivelse av dataprogrammet

Detaljer

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...

Detaljer

Sigbjørn Hals. Øving i bruk av GeoGebra på eksamensoppgaver for 10. Klasse. Eksamensoppgave, Utdanningsdirektoratet V-2011

Sigbjørn Hals. Øving i bruk av GeoGebra på eksamensoppgaver for 10. Klasse. Eksamensoppgave, Utdanningsdirektoratet V-2011 Øving i bruk av GeoGebra på eksamensoppgaver for 10. Klasse Eksamensoppgave, Utdanningsdirektoratet V-2011 1 Framgangsmåten med GeoGebra Vi vil her bare se på løsningen av oppgavene c og d. Åpne GeoGebra.

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

Lineær optimering med GeoGebra

Lineær optimering med GeoGebra Lineær optimering med GeoGebra av Sigbjørn Hals Eksempler fra læreboka Sinus S1 Cappelen, 2007 1 Før vi viser fremgangsmåten for lineær optimering, vil vi vise noen nyttige kommandoer og menyvalg i GeoGebra,

Detaljer

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 2P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 2P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Linjediagram. Side 46 i læreboka... 3 Søylediagram. Side 57 i Læreboka... 5 Histogram. Side 81 i læreboka... 6 Lineær regresjon.

Detaljer

QED 1 7 Matematikk for grunnskolelærerutdanningen

QED 1 7 Matematikk for grunnskolelærerutdanningen QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære, 2. utgave Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

Løsningsforslag matematikk S1 V14

Løsningsforslag matematikk S1 V14 Løsningsforslag matematikk S1 V14 Oppgave 1 Bruker ABC-formelen: ABC-formelen gir x = 2 x = 3 x 2 + 3x 3 = 3 2x x 2 + 5x 6 = 0 x = b ± b 2 4ac 2a lg(x + 2) = 2 lg x lg(x + 2) = lg x 2 10 lg(x+2) lg x2

Detaljer

Løsningsforslag heldagsprøve våren 2010 1T

Løsningsforslag heldagsprøve våren 2010 1T Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y

Detaljer

R2 kapittel 3 Funksjoner. Løsninger til oppgavene i boka Når sin x = 1 har f( x ) sin minste verdi. π 2. 2 k

R2 kapittel 3 Funksjoner. Løsninger til oppgavene i boka Når sin x = 1 har f( x ) sin minste verdi. π 2. 2 k R kapittel Funksjoner Løsninger til oppgavene i boka. a f( ) = 7 + sin, D f = R Når sin =, har f( ) sin største verdi. sin = for = + k f( ) maks = 7+ = 8 Toppunktene på grafen til f er, Z k +,8 k. Når

Detaljer

Løsningsforslag heldagsprøve våren 2012 1T

Løsningsforslag heldagsprøve våren 2012 1T Løsningsforslag heldagsprøve våren 01 1T DEL 1 OPPGAVE 1 a1) Skriv så enkelt som mulig x 9 x 6 Vi må faktorisere både teller og nevner. Så kan vi forkorte felles faktorer. Da får vi: x 9 x x 6 a) 4a4 b

Detaljer

Oppgaver i funksjonsdrøfting

Oppgaver i funksjonsdrøfting Oppgaver i funksjonsdrøfting To av oppgavene er merket med *. Det betyr at de er ekstra interessante. Oppgave 1 Gitt funksjonen f(x) = x + 4. a) Finn nullpunktene til funksjonen. b) Bruk definisjonen på

Detaljer

1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser

1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser 1 Geometri i kunsten: 1 Introduksjon GeoGebra 2 Speiling, rotasjon og parallellforskyvning 3 Perspektivtegning 4 Symmetriakser MKH GeoGebra - Geometri i kunsten Innhold 1 Introduksjon GeoGebra... 1 1.1

Detaljer

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals GeoGebra brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals Innhold Hva er GeoGebra?... 2 Hvilken nytte har elevene av å bruke GeoGebra?... 2 Hvor finner vi GeoGebra?... 2 Oppbyggingen av programmet...

Detaljer

Skolelaboratoriet for matematikk, naturfag og teknologi. Kurshefte i GeoGebra. Ungdomstrinnet

Skolelaboratoriet for matematikk, naturfag og teknologi. Kurshefte i GeoGebra. Ungdomstrinnet Skolelaboratoriet for matematikk, naturfag og teknologi Kurshefte i GeoGebra Ungdomstrinnet Astrid Johansen - NTNU Skolelaboratoriet - 29.10.2013 GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk

Detaljer

S1 Eksamen høst 2009 Løsning

S1 Eksamen høst 2009 Løsning S1 Eksamen, høsten 009 Løsning S1 Eksamen høst 009 Løsning Del 1 Oppgave 1 a) Skriv så enkelt som mulig: 1) 5a a a a 1 5a a 4 a 1 6a a 5 ) 1 3 13 3 3 48 3 6 7 8 6 3) 4 a b a 3 a b 13 43 1 a b a b 4 4)

Detaljer

Oppsummering om hva som kreves ved bruk av digitale verktøy

Oppsummering om hva som kreves ved bruk av digitale verktøy 1 Oppsummering om hva som kreves ved bruk av digitale verktøy Graftegner Det skal gå klart fram av den grafiske framstillingen hvilken skala og hvilken enhet som er brukt, på hver av aksene. Det er en

Detaljer

GEOGEBRA (Versjon 5.0.233.0 6. mai 2016)

GEOGEBRA (Versjon 5.0.233.0 6. mai 2016) 1 KURSHEFTE INNFØRING GEOGEBRA (Versjon 5.0.233.0 6. mai 2016) Østerås 8. mai 2016 Odd Heir 2 Innhold Side 3-13 Innføring i GeoGebra 13-14 Funksjonsanalyse 14-16 Utskrift 17-18 Overføring til Word 18-20

Detaljer

Løsning eksamen 2T våren 2008

Løsning eksamen 2T våren 2008 Løsning eksamen 2T våren 2008 Del 2 løst med pc Noen gode grunner til å lære å utnytte pc-en effektivt på eksamen: I eksamensinformasjonen står det: Der oppgaveteksten ikke sier noe annet, kan du fritt

Detaljer

Eksamen REA3026 S1, Høsten 2010

Eksamen REA3026 S1, Høsten 2010 Eksamen REA6 S, Høsten Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Løs likningene ) x 7 x 6 6 x6 x 6 7 6 6 6 x 7 x

Detaljer

GEOGEBRA (Versjon desember 2016)

GEOGEBRA (Versjon desember 2016) 1 MANUAL 1P 2P 2PY GEOGEBRA (Versjon 5.0.303.0 10. desember 2016) Østerås 14. desember 2016 Odd Heir 2 Innhold Side 3-12 Innføring i GeoGebra 12-15 Utskrift 16-17 Overføring til Word 17-18 Regneark i GeoGebra

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 4 110 Funksjoner og andregradsuttrykk Studentene skal kunne benytte begrepet funksjoner og angi definisjonsmengde og verdimengde til funksjoner regne med lineære funksjoner og andregradsfunksjoner og bestemme

Detaljer

Velg mellom disse kommandoene: Dersom[<Vilkår>, <Så>, <Ellers>] Funksjon[<Funksjon>, <Start>, <Slutt>]

Velg mellom disse kommandoene: Dersom[<Vilkår>, <Så>, <Ellers>] Funksjon[<Funksjon>, <Start>, <Slutt>] 442 Grafer Å tegne grafen til en funksjon Nullpunkter Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ] GeoGebra finner nullpunktene til en innlagt

Detaljer

Eksamen REA3026 S1, Høsten 2012

Eksamen REA3026 S1, Høsten 2012 Eksamen REA306 S1, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) 8 8 0 1 1 4 1 8 4 3 6

Detaljer

GeoGebra finner nullpunktene til en innlagt polynomfunksjon f. GeoGebra finner nullpunktene til en innlagt funksjon f i intervallet [1, 8].

GeoGebra finner nullpunktene til en innlagt polynomfunksjon f. GeoGebra finner nullpunktene til en innlagt funksjon f i intervallet [1, 8]. 413 GeoGebra i S2 Grafer Nullpunkter GeoGebra finner nullpunktene til en innlagt polynomfunksjon f. Topp- og bunnpunkter GeoGebra finner nullpunktene til en innlagt funksjon f i intervallet [1, 8]. GeoGebra

Detaljer

Løsning eksamen S1 våren 2008

Løsning eksamen S1 våren 2008 Løsning eksamen S våren 008 Del Oppgave a) 0 000 0 000 0 0 3 3 b) c) lg 4 0 lg 4 lg 0 00 ) Nullpunktene til f er gitt ved 56 0 ( 5) ( 5) 4 6 5 5 = eller = 3 Nullpunktet til g er gitt ved 6 0 6 3 ) Skjæringspunktene

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter:

Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter: Spørsmål og svar om GeoGebra, versjon 3.0 bokmål. Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste

Detaljer

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER INNHOLD ALGEBRA OG FUNKSJONER... PARENTESER... USYNLIGE PARENTESER... USYNLIGE MULTIPLIKASJONSTEGN... DE TI GRUNNLEGGENDE ALGEBRAISKE LOVENE... REGNEUTTRYKK INNSATT FOR VARIABLER... 3 SETTE OPP FORMLER...

Detaljer

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet CAS GeoGebra Innhold CAS GeoGebra... 1 REGNING MED CAS-VERKTØYET... 2 Rette opp feil, slette linjer... 3 Regneuttrykk... 4 FAKTORISERE TALL... 4 BRØK... 4 Blandet tall... 5 Regneuttrykk med brøk... 5 POTENSER...

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Hylland. Digitalt verktøy for Sigma S2. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Hylland. Digitalt verktøy for Sigma S2. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Hylland Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallregning................................... 4 2.2 Tallet

Detaljer

Grensekostnad og grenseinntekt Matematikk S1 1. Refleksjon

Grensekostnad og grenseinntekt Matematikk S1 1. Refleksjon Grensekostnad og grenseinntekt Matematikk S1 1. Refleksjon Læreplanmål Matematikk S1 lage og tolke funksjoner som modellerer og beskriver praktiske problemstillinger i økonomi tegne grafen til polynomfunksjoner,

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er 7.5 Potensfunksjoner Funksjonen f gitt ved f () = 3 er et eksempel på en potensfunksjon. For alle potensfunksjoner er funksjonsuttrykket på formen f () = a k der tallet a og eksponenten k kan være både

Detaljer

Matematikk S1. det digitale verktøyet. Kristen Nastad. Aschehoug Undervisning

Matematikk S1. det digitale verktøyet. Kristen Nastad. Aschehoug Undervisning Matematikk S1 og det digitale verktøyet Kristen Nastad Aschehoug Undervisning Forord Heftet er skrevet på grunnlag av versjon 1.4.11643 2008 07 09 av operativsystemet til programmet TI-nspire TM CAS Operating

Detaljer

MATEMATISK MODELLERING Modellering med pendel

MATEMATISK MODELLERING Modellering med pendel MATEMATISK MODELLERING Modellering med pendel Utstyr: Mynter, hyssing, tape, stoppeklokke Mål: 1. Hva påvirker svingtiden til en pendel? Lag hypoteser a. Lengden på hyssingen? b. Antall mynter (vekt)?

Detaljer

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger.

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger. GeoGebra GeoGebra 1 GeoGebra er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk,

Detaljer

Eksamen 1T, Våren 2010

Eksamen 1T, Våren 2010 Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 2P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

H. Aschehoug & Co www.lokus.no Side 1

H. Aschehoug & Co www.lokus.no Side 1 1 Bli kjent med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner, uten å måtte tegne dem på nytt, figuren endres dynamisk. Dette gir oss

Detaljer

Grafisk løsning av ligninger i GeoGebra

Grafisk løsning av ligninger i GeoGebra Grafisk løsning av ligninger i GeoGebra Arbeidskrav 2 Læring med digitale medier 2013 Magne Svendsen, Universitetet i Nordland Innholdsfortegnelse INNLEDNING... 3 GRAFISK LØSNING AV LIGNINGER I GEOGEBRA...

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Funksjoner 1T, Prøve 2 løsning

Funksjoner 1T, Prøve 2 løsning Funksjoner 1T, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 I koordinatsystemet ovenfor er det tegnet fire rette linjer, j, k, m og n. Finn likningen for hver av de fire linjene.

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for i dag og i morgen Dag 1: 09.00-11.45 Del 1: teori. 11.45-12.30 Lunsj 12.30-13.15 Del 2: bruk av GeoGebra. 13.15-15.15 Oppgaveregning, del 1. Dag 2: 09.00-10.45

Detaljer

GeoGebra 3.2. for. ungdomstrinnet

GeoGebra 3.2. for. ungdomstrinnet GeoGebra 3.2 for ungdomstrinnet av Sigbjørn Hals 1 Innhold: Hva er GeoGebra?... 3 Hvor kan jeg få tak i dette programmet?... 3 Hvordan kommer jeg i gang med å bruke programmet?... 4 Å hente og legge til

Detaljer

Løsning eksamen S1 våren 2008

Løsning eksamen S1 våren 2008 Løsning eksamen S1 våren 008 Del. Oppgaver løst med pc og enkel lommeregner. Noen gode grunner til å lære å utnytte pc-en effektivt på eksamen: I eksamensinformasjonen står det: Der oppgaveteksten ikke

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold DYNAMISK GEOMETRIPROGRAM... 3 Skjermbildet i GeoGebra... 3 Oppsett av skjermbildet... 4 Verktøylinja... 4 PUNKT OG SIRKLER... 5 Punkt... 5 Sirkel... 6 Linjer... 7 NYTTIGE VERKTØY... 8 Lagre...

Detaljer

1P kapittel 5 Funksjoner Utvalgte løsninger oppgavesamlingen

1P kapittel 5 Funksjoner Utvalgte løsninger oppgavesamlingen 1P kapittel 5 Funksjoner Utvalgte løsninger oppgavesamlingen 50 a Vi ser at grafen har et toppunkt i (11, 380). Det var altså flest besøkende 11. juni. Antall besøkende var da 380. b Vi ser at grafen har

Detaljer

GeoGebra. Menylinjer og de vanligste funksjonene. GeoGebra

GeoGebra. Menylinjer og de vanligste funksjonene. GeoGebra 1 er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk, og du kan gjøre endringer

Detaljer

Del 1. Generelle tips

Del 1. Generelle tips Innhold Del 1. Generelle tips... 2 Bruk en "offline installer"... 2 Øk skriftstørrelsen... 3 Sett navn på koordinataksene... 3 Vis koordinater til skjæringspunkt, ekstremalpunkt m.m.... 4 Svar på spørsmålene

Detaljer

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste

Detaljer

Regresjon med GeoGebra 4.0

Regresjon med GeoGebra 4.0 Regresjon med GeoGebra 4.0 av Sigbjørn Hals Innhold Liste over kommandoene... 2 Lineær regresjon... 3 Potensregresjon... 5 Eksponentiell regresjon... 5 Logaritmisk regresjon... 6 Logistisk regresjon...

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer