Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering.

Størrelse: px
Begynne med side:

Download "Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering."

Transkript

1 11 CAS i GeoGebra Fra og med versjon 4.2 får GeoGebra et eget CAS-vindu. CAS står for Computer Algebra System og er en betegnelse for programvare som kan gjøre symbolske manipuleringer. Eksempler på slike manipuleringer er å løse likninger med rotutdragning (eksakte verdier), faktorisering av polynomer, integrering og derivering, beregning av summer osv. I GeoGebra 4.2 finner du CAS ved å hake av for dette under «Vis» på menylinjen: 11.1 Verktøylinjen i CAS Eksempel 33 Faktoriser polynomet x 4 x 3 5x 2 x 6. Vi skriver polynomet inn i CAS og trykker på Faktoriser-verktøyet får da følgende resultat: på verktøylinjen. Vi Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering. I eksempel 33 brukte vi ett av de åtte CAS-spesifikke verktøyene som vi har. Det første verktøyet er Regn ut. Med dette vertøyet blir uttrykk evaluert og regnet ut eksakt. Skriver du for eksempel inn 1/2+1/3 og klikker så på vil du få 5 6 som svar. Tilsvarende vil du få 0,8333 som svar dersom du klikker på Numerisk. Klikker du på Bruk inntasting vil 82

2 11.1 Verktøylinjen i CAS det ikke bli gjort noe med uttrykket du har skrevet inn. I eksempelet med 1/2+1/3 vil vi få som svar Figur 63: Du får ulike output alt etter som hvilket verktøy som er valgt. Merk at du kan enten skrive inn uttrykket og så klikke på ett av disse verktøyene beskrevet over eller du kan aktivere verktøyet, skrive inn uttrykket og så trykke <enter>. Har du for eksempel aktivert Numerisk og skriver inn 4/7 vil du få 0,5714 som svar. Neste verktøy på verktøylinjen er Faktoriser. I eksempel 33 brukte vi dette til å faktorisere et polynom. Du kan selvsagt også bruke dette til å faktorisere hele tall. Figur 64: Faktorisering av hele tall i GeoGebra. Går vi ett hakk til høyre på verktøylinja finner vi verktøyet Utvid GeoGebra om å multiplisere ut parenteser etc.. Vi bruker dette til å be Eksempel 34 Gang ut (a + b) 5 Vi skriver inn (a+b)^5 og klikker på : 83

3 11.1 Verktøylinjen i CAS Figur 65: Det kan ta litt tid å gange ut (a + b) 5 dersom du ikke kan binomialteoremet... Neste verktøy er Sett inn variable eller tall.. Med dette kan du erstatte én eller flere variable med andre Eksempel 35 Skriv inn formelen F = m ċ a i CAS finn a når F = 12 og m = 55. Vi skriver inn F=m*a og klikker på substitusjonene:. Vi får da opp et vindu der vi kan skrive inn de ønskede Figur 66: Vi bytter ut F med 12 og m med 55 ved å bruke Sett inn-verktøyet Klikker vi på får vi svaret 12 = 55a. Vi løser denne likningen ved å bruke verktøyet Løs. For å bruke dette må vi hente opp forrige output og så klikke på. Du kan lett kopiere inn siste output ved å trykke på space-baren på tastaturet. Klikk deretter på (Løs) og får a = Dersom vi ønsker desimaltall trykker vi på mellomromstasten en gang til og så på. 84

4 11.1 Verktøylinjen i CAS Figur 67: Vi har funnet at a 0,22 når F = 12 og m = 55. Helt til høyre på verktøylinja ligger det to verktøy: Derivert og Integral. For å bruke disse er det bare til å skrive inn et uttrykk og klikke på verktøyet. Uttrykket du skriver inn behøver ikke å være et uttrykk i x. Men dersom du skriver inn a 4 b 2, så vil GeoGebra derivere med hensyn på a. Mer generelt, så vil GeoGebra derivere/integrere med hensyn på den første av varbiablene i lista x, y, z, a, b,...v, w som er uttrykket inneholder. Oppgave 55 a) ċ 43 b) Figur 68: Derivering og integrering i CAS. Bruk CAS til å regne ut c) Oppgave 56 Gang ut: (a + b + c) 3. Oppgave 57 Finn de eksakte røtten til likningen x 3 + 8x 2 2x 16 = 0 85

5 11.2 CAS-kommandoer Oppgave 58 Oppgave 59 Deriver funksjonen f(x) = x 4 ln(x). Finn integralet x 4 ċ sin(2x) dx 11.2 CAS-kommandoer Vi har så langt sett hvordan vi kan bruke CAS-verktøyene til å utføre ulike operasjoner på uttrykk. Dersom vi kikker godt etter, ser vi at til de fleste verktøyene har en tilhørende kommando. Når vi utvidet (a+b) 5 ved å bruke Utvid ser vi at dette verktøyet kjører kommandoen RegnUt. Figur 69: Verktøyet Utvid kjører kommandoen RegnUt I stedet for å bruke verktøyet Utvid kunne vi med andre ord kjørt kommandoen RegnUt direkte: Figur 70: Du kan utvide parenteser ved å direkte bruke kommandoen RegnUt Det fins godt over 100 slike kommandoer i GeoGebra og du finner dem alle på nettsiden Vi har listet opp et utvalg kommandoer i tabell 2 på neste side. 86

6 11.2 CAS-kommandoer Kommando Binomialkoeffisient[a, b] Delbrøkoppspalting[<Funksjon>] Derivert[<Uttrykk>] Derivert[<Uttrykk>, <Variabel>] Derivert[<Uttrykk>, <Variabel>,n] Faktoriser[<Uttrykk>] Kryssprodukt[{a,b,c},{d,e,f}] Løsninger[likninger, <Variable>] Nevner[<Uttrykk>] NLøs[<Likning>] NLøs[<Likning>, <Variabel>] Nløsninger[<Likninger>, <Variable>] Nullpunkt[ <Polynom> Prikkprodukt[ <Vektor>, <Vektor>] Sum[<Uttrykk>, <Variabel>, a, b] Forklaring Regner ut a b Gir delbrøksoppspaltningen (om mulig) til funksjonen. Gir den deriverte til uttrykket. Gir den deriverte til uttrykket med hensyn på variabelen. Gir den n-te deriverte til uttrykket med hensyn på variabelen. Faktoriserer uttrykket. Regner ut vektorproduktet [a, b, c] [d, e, f]. Løser likningssystemet i de oppgitte variablene. Gir nevneren eller fellesnevneren til uttrykket. Finner en numerisk løsning til likningen. Finner en numerisk løsning til likningen med hensyn på variabelen. Finner en numerisk løsning av likningssystemet i de oppgitte variablene. Finne nullpunktene til polynomet. Gir prikkproduktet mellom vektorene. Regner ut b a (uttrykk) Tabell 2: Et utvalg av kommandoer du kan bruke i CAS Eksempel 36 Faktoriser polynomet 2x 3 + 3x 2 32x

7 11.2 CAS-kommandoer Vi skriver inn Faktoriser[2x^3+3x^2-32x+15] og trykker enter. Vi får at 2x 3 + 3x 2 32x + 15 = (2x 1)(x + 5)(x 3) Eksempel 37 Løs likningen sin(x) + cos(x) = 1. Vi skriver inn kommandoen Løs[sin(x)+cos(x)=1] og får: Merk at GeoGebra bruker radianer som vinkelmål i CAS. Ønsker du å løse likningen med grader som vinkelmål må du skrive x som vist på figuren over. Vi ser at x = 2π ċ n + π 2 eller x = 2nπ. Eksempel 38 Finn eventuelle topp- eller bunnpunkter til grafen til f(x) = xe x. Vi kan definere en funksjon i CAS ved å skrive inn f(x):=x*e^x Vi bruker kolon foran likhetstegnet når vi definerer en funksjon i CAS. Du kan selvsagt også definere funksjonen på vanlig måte i inntastingsfeltet før du jobber videre med den i CAS. I så tilfelle skriver du kun inn f(x)=x*e^x i inntastingsfeltet. Når funksjonen er definert kan vi skrive inn Løs[f (x)=0] og får x = 1 som svar. Det neste vi vil gjøre er å finne punktet på grafen. Siden vi allerede har definert f(x) kan vi nå skrive inn f( 1) og få at bunnpunktet er ( 1, 1 e). 88

8 11.3 Litt mer om input og output Figur 71: Vi har funnet eksakte verdier med CAS. Oppgave 60 Løs likningssystemet 2y x 2 + 2x = a y 2x = 3 For hvilke verdier har systemet én løsning to løsninger ingen løsninger Oppgave 61 Vi har en stige som er 10 meter lang. Denne skal plasseres opp mot en vegg. Problemet er at inntil veggen står en kasse som er 1 meter høy og 1 meter bred og som vi ikke kan ta vekk. Hva er det høyeste punktet over bakken at stigen kan nå på veggen? Se figur m x m 1 m Figur 72: Stigeproblemet i oppgave Litt mer om input og output Når vi skal løse litt større oppgaver, slik som den i eksempel 39 er det viktig å få en god arbeidsflyt. Vi har tidligere nevnt at det er unødvendig å skrive opp uttrykk manuelt dersom vi allerede har regnet dem ut i CAS. Her er noen nyttige tips: 89

9 11.3 Litt mer om input og output Likhetstegn (=) vil skrive inn forrige input Mellomromstast vil skrive inn forrige output Høyreparentes ) vil skrive inn forrige output med parenteser rundt. Du kan referere til forrige output ved å skrive enten $ (for dynamisk output) eller # (for statisk output). Tilsvarende kan du referere til output på rad n ved å skrive $n (for dynamisk output) og #n (for dynamisk output. Forskjellen på disse to er dersom du går inn og endrer på en verdi slik at output på rad n endres, så vil du også få endring i raden du skrev $n i mens du vil beholde den gamle verdien fra rad n dersom du skrev #n. Eksempel 39 La f være en tredjegradsfunksjon som har tre nullpunkt a, b og c. La T være tangenten til f i d = a + b. Hva kan du si om denne tangenten? 2 Før vi går i gang med selve løsningen i CAS kan det være en ide å utforske problemet litt. Vi kan for eksempel se på funksjonen f(x) = (x 1)(x 3)(x 4). I dette tilfellet blir d = 2 og vi kan tegne og finne tangenten ved å skrive inn kommandoen Tangent[2,f] i inntastingsfeltet. y 3 T f x Ut fra denne figuren får vi en mistanke om at tangenten vil gå gjennom det tredje nullpunktet. Vi ønsker derfor å bevise dette ved å bruke et CAS! Det første vi gjør er å definere funksjonen ved å skrive inn 90

10 11.3 Litt mer om input og output f(x):=(x-a)(x-b)(x-c) Vi kan finne tangenten i a+b 2, f a+b 2 ved å bruke ettpunktsformelen. Til det trenger vi f a+b 2 og stigningstallet f a+b. 2 Sistnevnte får vi ved å bruke verktøyet Sett inn. Ettpunktsrmelen gir oss at tangenten har likningen y = a3 + a 2 (b + 2c) + a(b 2 4ac) b 3 + 2b 2 c 8 + a2 + 2ab b 2 4 x a + b 2 På linje 5 på figur 73 har vi definert denne som en egen funksjon g(x). Merk hvordan vi refererer til outputene $3 og $4 i definisjonen av g. Dette gir oss mulighet til finne g(c). Vi ser at svaret blir 0 som forventet! Figur 73: Tangenten til f i middelverdien til to av nullpunktene går alltid gjennom det tredje nullpunktet! Nå finnes det finnes en enklere måte å løse dette problemet på i GeoGebra. Vi kan rett og slett bruke kommandoen Tangent[<punkt>,<funksjon>] som vist på figur 74. Merk at tangenten ikke er en funksjon, men en linje. For å kunne finne y-verdien til denne tangenten når x = c bruker vi derfor verktøyet Bytt ut. 91

11 11.3 Litt mer om input og output Figur 74: Tangent-kommandoen fungerer i CAS også! For den interesserte leser kan vi også nevne en tredje løsning som like lett lar seg gjøre med papir og blyant. Ved et eventuelt koordinatskifte kan vi anta at nullpunktene er x = ±1 og x = c. Middelverdien mellom de to første nullpunktene er da 0. Vi har altså at f(x) = (x 2 1)(x c). Den deriverte er f (x) = 2x(x c) + (x 2 1). Videre er f (0) = 1 og f(0) = c. Ettpunktsformelen gir oss derfor at tangenten er grafen til g(x) = c (x 0) = c x Vi ser da at g(c) = 0. Smart ikke sant?! Eksempel 40 La f være en tredjegradsfunksjon som har et topp- og et bunnpunkt. La l være linja som går gjennom topp- og bunnpunktet og t være linja som tangerer grafen til f i punktet (m, f(m) der m er gjennomsnittet av x-koordinatene til topp- og bunnpunktet. Vis at forholdet mellom stigningstallene til l og t er 2 3 Vi vet at slike funksjoner generelt kan skrives som f(x) = k(x a)(x b)(x c) + d. Uten å miste generalitet kan vi anta at k = 1 og d = 0 (Hvorfor?). Vi definerer f(x): Skriver inn f(x) og klikker deretter på verkøtøyet Derivert for å finne f (x): 92

12 11.3 Litt mer om input og output Trykker på mellomromstasten og bruker verktøyet Løs null: for å finne når den deriverte er Output er en liste på formen x =..., x =.... Vi ønsker å regne ut middelverdien til de to uttrykkene på høyresiden av elementene i listen over. For å gjøre dette kan vi først lage en liste som består av høyresiden til de to elementene i output på rad 3: Det neste vi vil gjøre er å finne middelverdien til disse to tallene. Vi gjør dette ved å bruke kommandoen Middelverdi: Bruker kommandoen ByttUt for å bytte ut x med (a + b + c) 3 (det vil si output på rad 5). Vi finner da stigningstallet til tangenten t: Regner ut stigningstallet til linja l gjennom topp-og bunnpunktet: Til slutt regner vi ut forholdet mellom stigningstallene. Disse står nå som output i rad 6 og 7. Skriver derfor inn $7/$6: Vi ser at forholdet mellom stigningstallet til t og l alltid er

13 11.4 Oppgaver 11.4 Oppgaver Oppgave 62 Bruk CAS til å forenkle uttrykkene: a) x 12 1 x 4 x b) (x + 1) 3 x x + 1 Oppgave 63 Løs likningene a) x 2 + 2x 3 = 0 b) e 2x e + 1 = 10 c) x x + 3 x + 14 x + 5 = 0 Oppgave 64 Løs likningssystemet x + y + 3 x + y = 18 x y 2 x y = 15 Oppgave 65 Bruk CAS til å faktorisere polynomene: a) P(x) = 2x 4 7x 3 + x x 10 b) Q(x) = x 12 1 c) h(x) = x 5 + x 4 + x 3 + x 2 + x + 1 Følgende tre oppgaver er hentet fra utdanningsdirektoratets forslag til ny eksamensordning for videregående skole. Oppgave 66 (1T) En funksjon f er gitt ved f(x) = 2 x(x 1) 3x x + 1 x 2 x Skriv funksjonsuttrykket så enkelt spm mulig, og bestem eventuelle vertikale og horisontale asymptoter for grafen til f. Oppgave 67 (S2) I denne oppgaven skal du finne mønstre og sammenhenger. a) Det minste tallet som kan skrives som summen av to kubikktall på to måter er 1729: 1729 = n = m 3 + (m + 1) 3 Bestem n og m. b) Det eneste kubikktallet som skrives som summen av tre påfølgende kubikktall, er 6 3. Bestem de tre kubikktallene ved å løse en likning. 94

14 11.4 Oppgaver Oppgave 68 (R1) 12 y S x Et rektangel er innskrevet i en sirkel med sentrum i S og med radius 12. a) Forklar at arealet av rektangelet er gitt ved A(x) = 4x 144 x 2, x 0, 12 b) Bestem det største arealet rektangelet har. Kommenter formen på rektangelet. Oppgave 69 Fermatprimtall er primtall på formen F n = 2 2n + 1. a) Vis at F n er primtall når n er 1, 2, 3 og 4. b) Vis at F n ikke er primtall når n er 5, 6, 7, 8, 9 og 10. I denne oppgaven kan du bruke kommandoen ErPrimtall[<tall>]. Oppgave 70 I denne oppgaven skal vi studere polynomet P(x) = x 2 x a) Undersøk om P(n) er primtall for n 1, 2, 3,..., 10. b) Finn minste naturlige tall n slik at P(n) ikke er et primtall. Oppgave 71 Finn likningen til vendetangenten til funksjonen f(x) = x 3 ax + b. 95

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

KORT INNFØRING I GEOGEBRA

KORT INNFØRING I GEOGEBRA Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER... 9 ØVELSE 2. TEGNE GRAFER TIL RASJONALE FUNKSJONER... 11 ØVELSE 3. LIKNINGSLØSNING... 15 ØVELSE 4. TANGENTER OG MAKS OG MIN

Detaljer

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Faktorisering. Side 55 i læreboka... 3 Rette linjer. Side 73 i læreboka... 3 Digital løsning av likninger. Side 77 i læreboka...

Detaljer

Matematikk R1 Forslag til besvarelse

Matematikk R1 Forslag til besvarelse Matematikk R1 Forslag til besvarelse NITH 4. mars 014 Oppgave 1 a) Regn ut p x) når px) = x 3 3x + 6x 1. p x) = x 3 ) 3x ) + 6x) 0 = 3x ) 3x) + 6 1 = 6x 6x + 6 b) Regn ut p x) når px) = ax + bx + c. Her

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Manual for wxmaxima tilpasset R1

Manual for wxmaxima tilpasset R1 Manual for wxmaxima tilpasset R1 Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

I Katalog velger du: Ny eksamensordning i matematikk våren 2015

I Katalog velger du: Ny eksamensordning i matematikk våren 2015 CAS teknikker H-P Ulven 10.12.2014 Innledning Våren 2015 gjelder nye regler for bruk av digitale hjelpemidler: Når det står "Bruk CAS", så må kandidaten bruke CAS, og når det står "Bruk graftegner", så

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ]

Velg mellom disse kommandoene: Dersom[<Vilkår>, <Så>, <Ellers>] Funksjon[<Funksjon>, <Start>, <Slutt>] 442 Grafer Å tegne grafen til en funksjon Nullpunkter Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ] GeoGebra finner nullpunktene til en innlagt

Detaljer

Løsningsforslag matematikk S1 V14

Løsningsforslag matematikk S1 V14 Løsningsforslag matematikk S1 V14 Oppgave 1 Bruker ABC-formelen: ABC-formelen gir x = 2 x = 3 x 2 + 3x 3 = 3 2x x 2 + 5x 6 = 0 x = b ± b 2 4ac 2a lg(x + 2) = 2 lg x lg(x + 2) = lg x 2 10 lg(x+2) lg x2

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si

Detaljer

Plotting av grafer og funksjonsanalyse

Plotting av grafer og funksjonsanalyse Opplæringshefte i GeoGebra Innholdsfortegnelse: Plotting av grafer og funksjonsanalyse... 2 Oppgave 1... 2 Oppgave 2... 4 Oppgave 3... 8 Å plassere et bilde i GeoGebra... 8 Oppgave 4... 8 Vektorregning

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire CAS Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Noen forhåndsdefinerte variabler......................

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Eksamen REA3022 R1, Våren 2013

Eksamen REA3022 R1, Våren 2013 Eksamen REA30 R1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Formlene for arealet A av en sirkel og volumet

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Menyer..................................... 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Lær å bruke wxmaxima

Lær å bruke wxmaxima Bjørn Ove Thue og Sigbjørn Hals Lær å bruke wxmaxima Et godt og gratis CAS-verktøy med enkelt brukergrensesnitt. Oppdatert versjon, november 2009 Lær å bruke wxmaxima. Eksempler fra Sinus-bøkene fra Cappelen

Detaljer

Løsningsskisser til arbeidsoppgaver i CAS.

Løsningsskisser til arbeidsoppgaver i CAS. Løsningsskisser til arbeidsoppgaver i CAS. Oppgave 1 En bonde har et 20 meter langt gjerde og skal sperre av et rektangulært område der en av sidene i rektangelet er en fjøsvegg. Finn maksimalt areal som

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Løsningsforslag Eksamen R1 - REA3022-28.05.2008

Løsningsforslag Eksamen R1 - REA3022-28.05.2008 Løsningsforslag Eksamen R1 - REA3022-28.05.2008 eksamensoppgaver.org September 14, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i R1 er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka 5.1 a f( x) = 4x+ 0 I GeoGebra skriver vi f(x)=funksjon[-4x+0,-5,5]. Grafen viser at [ 0, 40] V =. f b gx ( ) =,5x+ 10 I GeoGebra skriver vi f(x)=funksjon[,5x+10,-10,4].

Detaljer

Lær å bruke CAS-verktøyet i GeoGebra 4.2

Lær å bruke CAS-verktøyet i GeoGebra 4.2 Lær å bruke CAS-verktøyet i GeoGebra 4. av Sigbjørn Hals Innhold: CAS-verktøyet... Primtallanalyse... Faktorisering og utvidelse av uttrykk... Likninger... 4 Likningssett med flere ukjente... 5 Differensiallikninger...

Detaljer

Eksempeloppgave 2014. REA3022 Matematikk R1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3022 Matematikk R1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 014 REA30 Matematikk R1 Eksempel på eksamen våren 015 etter ny ordning Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy

Detaljer

Manual for wxmaxima tilpasset R2

Manual for wxmaxima tilpasset R2 Manual for wxmaxima tilpasset R Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

Oppsummering om hva som kreves ved bruk av digitale verktøy

Oppsummering om hva som kreves ved bruk av digitale verktøy 1 Oppsummering om hva som kreves ved bruk av digitale verktøy Graftegner Det skal gå klart fram av den grafiske framstillingen hvilken skala og hvilken enhet som er brukt, på hver av aksene. Det er en

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10.

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. 2 Grafer Å tegne grafen til en funksjon Akser Rutenett Avrunding GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. Funksjonen får automatisk navnet f. Hvis grafen ikke vises, kan du høyreklikke i grafikkfeltet

Detaljer

Løsningsforslag R1 Eksamen 31.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R1 Eksamen 31.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag R1 Eksamen 6 Vår 31.05.01 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Eksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. MAT1013 Matematikk 1T Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 014 MAT1013 Matematikk 1T Ny eksamensordning våren 015 Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:

Detaljer

Eksamen R1 Høsten 2013

Eksamen R1 Høsten 2013 Eksamen R1 Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene f x e a) 3 x b) gx x ln3x c) hx x

Detaljer

DEL 1 (Uten hjelpemidler, leveres etter 3 timer) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1

DEL 1 (Uten hjelpemidler, leveres etter 3 timer) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1 HELDAGSPRØVE I MATEMATIKK 1T HØST DEL 1 (Uten hjelpemidler, leveres etter 3 timer) Oppgave 1. Trekk sammen uttrykkene: a) 3(a + 1) 4(1 a) (6a 1) 3(a + 1) 4(1 a) (6a 1) = 3a + 3 4 + 4a 6a + 1 = a. b) 1

Detaljer

Løsningsforslag eksamen R2

Løsningsforslag eksamen R2 Løsningsforslag eksamen R Vår 010 Oppgave 1 a) f (x) = x cos(3x) f (x) = x cos(3x) + x ( sin(3x) 3) = x cos(3x) 3x sin(3x) b) 1. Bruker delvis integrasjon med u = 5x og v = 1 ex slik at u = 5 og v = e

Detaljer

Hurtigstart. Hva er GeoGebra? Noen fakta

Hurtigstart. Hva er GeoGebra? Noen fakta Hurtigstart Hva er GeoGebra? En dynamisk matematisk programvare som er lett å ta i bruk Er egnet til læring og undervisning på alle utdanningsnivå Binder interaktivt sammen geometri, algebra, tabeller,

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Funksjoner med GeoGebra

Funksjoner med GeoGebra Funksjoner med GeoGebra Wallace Anne Karin 2015 G e o G e b r a 5. 0 Innhold Oppsett for arbeid med funksjoner... 2 Flytte tegneflaten, endre enheter på aksene... 4 Flytt inntastingsfeltet øverst... 4

Detaljer

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 GeoGebra som kalkulator. Eksempel side 55... 3 Omforming av formler. Side 82 i læreboka... 4 Rette linjer. Side 89 i læreboka...

Detaljer

Kapittel 2. Antiderivering. 2.1 Derivasjon

Kapittel 2. Antiderivering. 2.1 Derivasjon Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42 Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus 1P boka til Cappelen Damm til Excel- og GeoGebrastoff. Se brukerveiledningen i Lokus for perspektivtegning med GeoGebra..1 Regnerekkefølge

Detaljer

Løsningsforslag R1 Eksamen. Høst 28.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R1 Eksamen. Høst 28.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag R1 Eksamen 6 Høst 28.11.2011 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 27052010 REA022 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 1P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Eksamen 31.05.2012. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 31.05.2012. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 31.05.01 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

GEOGEBRA (Versjon 5.0.150.12.september 2015)

GEOGEBRA (Versjon 5.0.150.12.september 2015) 1 INNFØRING GEOGEBRA (Versjon 5.0.150.12.september 2015) Østerås 12. september 2015 Odd Heir 2 Innhold Side 3-10 Innføring i GeoGebra 10-12 Utskrift 12-13 Overføring til Word 13-15 Nyttige tips 15-16 Stolpediagram

Detaljer

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org Løsningsforslag AA654 Matematikk 3MX 3. juni 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

Integrasjon Forelesning i Matematikk 1 TMA4100

Integrasjon Forelesning i Matematikk 1 TMA4100 Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 21. oktober 2011 Kapittel 7.4. Delbrøksoppspalting og Integrasjon av rasjonale funksjoner 3 Integrasjon av

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-NspireCAS Innhold 1 Om TI-NspireCAS 4 1.1 Applikasjonene................................. 4 1.2 Dokumenter...................................

Detaljer

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk MX Privatister 10. desember 003 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet

Detaljer

Lineære funksjoner. Skjermbildet

Lineære funksjoner. Skjermbildet Lineære funksjoner I dette opplæringsløpet lærer du å tegne funksjoner i GeoGebra samt å bruke verktøy til å løse oppgaver som dreier seg om funksjoner. Alle oppgavene handler om lineære funksjoner. I

Detaljer

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011. 1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset

Detaljer

Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007

Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007 Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007 eksamensoppgaver.org September 17, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Løsningsforslag 1T Eksamen. Høst 24.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 24.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 4.11.011 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra

Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra Undervisningsopplegg for ungdomstrinnet om likninger og annen algebra Kilde: www.clipart.com 1 Likninger og annen algebra. Lærerens ark Hva sier læreplanen? Tall og algebra Mål for opplæringen er at eleven

Detaljer

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der: Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn

Detaljer

Krasjkurs MAT101 og MAT111

Krasjkurs MAT101 og MAT111 Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

Eksamen 28.11.2013. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 28.11.2013. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 8.11.013 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned

Detaljer

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er

Detaljer

Matematikk R1 Oversikt

Matematikk R1 Oversikt Matematikk R1 Oversikt Lars Sydnes, NITH 20. mai 2014 I. ALGEBRA ANNENGRADSLIGNINGER Annengradsformelen: ax 2 + bx + c = 0 x = b ± b 2 4ac 2a (i) 0 løsninger hvis b 2 4ac < 0 (ii) 1 løsning hvis b 2 4ac

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (2 poeng) Oppgave 2 (4 poeng) Oppgave 3 (4 poeng) I er en konstant. Deriver funksjonene

DEL 1. Uten hjelpemidler. Oppgave 1 (2 poeng) Oppgave 2 (4 poeng) Oppgave 3 (4 poeng) I er en konstant. Deriver funksjonene DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Deriver funksjonene 3 a) f( x) 5x x 5 b) g( x) x e x Oppgave (4 poeng) Polynomfunksjonen P er gitt ved 3 P( x) x x 10x 8, DP a) Faktoriser P( x ) i førstegradsfaktorer.

Detaljer

Grafer og funksjoner

Grafer og funksjoner Grafer og funksjoner Fredrik Meyer Sammendrag Vi går raskt igjennom definisjonen på hva en funksjon er. Vi innfører også begrepet førstegradsfunksjon. Det forutsettes at du husker hva et koordinatsystem

Detaljer

Eksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 28.11.2011 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Vedlegg: 5 timar: Del 1 skal leverast inn etter 2 timar. Del

Detaljer

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42 Sinus T uten grafisk kalkulator Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus T boka til Cappelen Damm til Excel- og GeoGebrastoff.. Regnerekkefølge ( + ) (6+ ):+ CTRL+J Bytter mellom

Detaljer

Løsningsforslag 1T Eksamen. Høst 24.11.2010. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 24.11.2010. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 4.11.010 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...

Detaljer

Grafisk løsning av ligninger i GeoGebra

Grafisk løsning av ligninger i GeoGebra Grafisk løsning av ligninger i GeoGebra Arbeidskrav 2 Læring med digitale medier 2013 Magne Svendsen, Universitetet i Nordland Innholdsfortegnelse INNLEDNING... 3 GRAFISK LØSNING AV LIGNINGER I GEOGEBRA...

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

GEOGEBRA (Versjon 5.0.233.0 6. mai 2016)

GEOGEBRA (Versjon 5.0.233.0 6. mai 2016) 1 KURSHEFTE INNFØRING GEOGEBRA (Versjon 5.0.233.0 6. mai 2016) Østerås 8. mai 2016 Odd Heir 2 Innhold Side 3-13 Innføring i GeoGebra 13-14 Funksjonsanalyse 14-16 Utskrift 17-18 Overføring til Word 18-20

Detaljer

DEL1 Uten hjelpemidler

DEL1 Uten hjelpemidler DEL1 Uten hjelpemidler Oppgave 1 a) Brukopplysningenenedenfortilåfinneuthvaénballkoster,oghvaén hockeykølle koster. 500 kroner 100kroner b) Figuren viser grafene til tre andregradsfunksjoner f, g og h.

Detaljer

Mer om likninger og ulikheter

Mer om likninger og ulikheter Mer om likninger og ulikheter Studentene skal kunne utføre polynomdivisjon anvende nullpunktsetningen og polynomdivisjon til faktorisering av polynomer benytte polynomdivisjon til å løse likninger av høyere

Detaljer

Løsningsforslag heldagsprøve våren 2012 1T

Løsningsforslag heldagsprøve våren 2012 1T Løsningsforslag heldagsprøve våren 01 1T DEL 1 OPPGAVE 1 a1) Skriv så enkelt som mulig x 9 x 6 Vi må faktorisere både teller og nevner. Så kan vi forkorte felles faktorer. Da får vi: x 9 x x 6 a) 4a4 b

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

NYE OPPGAVETYPER OG KRAV TIL FØRING

NYE OPPGAVETYPER OG KRAV TIL FØRING CAS, Graftegner og regneark på eksamen Eksamen 1P, 2P og 2P-Y 2 timer uten hjelpemidler 3 timer med hjelpemidler Noen oppgaver i del 2 kreves løst med digitale verktøy Aktuelle verktøy er graftegner og

Detaljer

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål Eksempeloppgave 008 REA04 Matematikk R Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer:

Detaljer

Prøve i R2 Integrasjonsmetoder

Prøve i R2 Integrasjonsmetoder Del 1 Hjelpemidler: ingen 1 Oppgave 1 Prøve i R Integrasjonsmetoder Caspar W. Hatlevik 19. oktober 1 Finn de ubestemte integralene og regn ut det bestemte integralet a. x + x + 1dx b. e 4x + x dx c. 1

Detaljer

Regelbok i matematikk 1MX og 1MY

Regelbok i matematikk 1MX og 1MY Regelbok i matematikk 1MX og 1MY Utgave 1.4 Skrevet av Bjørnar Tollaksen. Hele regelboka er et sammendrag av læreboka. Dette er ment som et supplement til formelheftet, ikke en erstatning. Skrivefeil kan

Detaljer

Løsningsforslag 1T Eksamen. Høst 26.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 26.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 26.11.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Eksamen REA3026 S1, Høsten 2012

Eksamen REA3026 S1, Høsten 2012 Eksamen REA306 S1, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) 8 8 0 1 1 4 1 8 4 3 6

Detaljer

Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen REA3022 Matematikk R1.  Nynorsk/Bokmål Eksamen 9.05.013 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Løsningsforslag R2 Eksamen 21.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R2 Eksamen 21.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag R2 Eksamen 6 Vår 21.05.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014 Eksamen MAT1005 Matematikk P-Y Høsten 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0,0003 500000000 0,00,0 10,0 4 8 3,0 10 5,0 10 3,0 5,0 4 8 ( 3) 7 3 10 7,5 10 Oppgave (1 poeng) Prisen

Detaljer

Løsningsskisser - Kapittel 6 - Differensialligninger

Løsningsskisser - Kapittel 6 - Differensialligninger Løsningsskisser - Kapittel 6 - Differensialligninger Vi bruker det vi har lært i 6.3 om løsning av separable differensialligninger også i noen av oppgavene fra 6.1 og 6.2 for å knytte denne løsningsteknikken

Detaljer

Løsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen

Løsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen Løsningsforslag eksamen T våren 00 DEL Oppgave a) Funksjonen f er gitt ved f 3. Tegn grafen og finn nullpunktene for f f 3 Grafen y 0 8 6 4-4 -3 - - 3 4 - -4 Nullpunkt 3 0 3 Nullpunkt når 3 b) Løs likningen

Detaljer

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra Tempoplan: Kapittel 5: /1 1/. Kapittel 6: 1/ 1/. Kapittel 7: 1/ 1/4. Resten av tida repetisjon og prøver. 4: Algebra Algebra omfatter tall- og bokstavregninga i matematikken. Et viktig grunnlag for dette

Detaljer