Matematikk for økonomer Del 2

Størrelse: px
Begynne med side:

Download "Matematikk for økonomer Del 2"

Transkript

1 Matematikk for økonomer Del 2 Formelark Dokument type: Formelark Antall kapitler: 10 kapitler Antall sider: 17 Sider Forfatter: Studiekvartalets kursholdere rett til bruk av materialet. Det innebærer at materialet ikke under noen omstendigheter benyttes til videresalg eller gis bort til andre brukere uten samtykke fra Studiekvartalet.

2 Kapittel 1 Derivasjon Nr. Formel Derivert/løsning (1) Konstant f (x) = K f (x) = 0 f (x) = 3 f (x) = 0 (2) Potenser f (x) = x n f (x) = n x n-1 f (x) = nx n-1 Tall eksempler: f (x) = x 3 f (x) = 3 x 3 1 f (x) = 3x 2 f (x) = -2x -3 f (x) = -3 (-2)x -3-1 f (x) = 6x -4 (3) Kjerneregel f (x) = g(x) n f (x) = n g(x) n-1 g (x) f (x) = (3x 2 3x) 2 f (x) = 2 (3x 2 3x) 2-1 (6x 3) f (x) = 2(3x 2 3x)(6x 3) (4) Produkt f (x) = g(x) h(x) f (x) = g (x) h(x) + g(x) h (x) f (x) = (3x 2 6)(2x 4) f (x) = 2 3x 2-1 (2x-4) + (3x 2 6)2 f (x) = 6x(2x-4) + (3x 2-6)2 f (x) = 12x 2 24x + 6x 2 12 f (x) = 18x 2 24x 12 (5) Kvotient f (x) = () () () f (x) = () f (x) = f (x) = () f (x) = () " f (x) = () 2

3 (6) Logaritme f (x) = ln x f (x) = (7) Logaritme f (x) = ln3x f (x) = ln g(x) f (x) = 3 f (x) = () g (x) f (x) = ln(2x 2 + 1) f (x) = ( ) 4x => f (x) = ( ) (8) Eksponential f (x) = e x f (x) = e x f (x) = e x (9) Eksponential f (x) = e g(x) f (x) = e g(x) g (x) f (x) = e 2x f (x) = e 2x 2 f (x) = 2e 2x (10) Kvadratrot f (x) = x f (x) = f (x) = 2x + x f (x) = f (x) = () => f (x) = 3

4 Kapittel 2 2. Grads ligninger Funksjoner ved 1. Gradslikninger Flytte tallene på ene siden av likhetstegnet og x-verdiene på andre siden. Når vi flytter ett ledd fra ene siden til andre siden av likhetstegnet så skifter vi fortegnet. Dersom vi har brøk i likningen => Multipliserer vi nevneren til brøken med alle ledd for å fjerne nevneren. Flere brøk med ulike nevner => Finne fellesnevner, og deretter multiplisere det med alle ledd og fjerner nevnerne. Tillate funksjoner: Vi kan multiplisere og dividere likningene. Finnes tre typer 2. Grads likninger 1. Likninger som inneholder x 2 og konstantledd: Eksempel: x 2-25 = 0 Samme funksjoner som 1. Gradslikninger. (x-verdiene på ene siden og tallene på andre siden av likhetstegnet) Løser likningen ved hjelp av kvadratrots regler 2. Likninger som inneholder x 2 og x: Eksempel: x 2 + x = 0 Sørge for å sette leddene lik 0. Løser likningen ved hjelp av faktoriseringsregler 3. Likninger som inneholder x 2, x og konstantledd: Eksempel: x 2 + x + 10 = 0 Sørge for å sette leddene lik 0. Løser likningen ved hjelp av ABC - Formel 4

5 ABC Formel x = b ± b2 4ac 2a 5

6 Kapittel 3 Eksponential- og logaritmelikninger Nr. Formel Løse Formel Oppgave eksempel Regel 1 lna x x lna 10 x = 6 ln ln10 x = ln6 x ln10 = ln 6 : ln10 ln10 x xln10 x = " "" x = 0,778 Regel 2 ln(a b) lna + lnb ln(5 2 x ) ln(10 10) ln10 + ln10 ln5 + ln2 x ln5 + xln2 Regel 3 ln( ) lna lnb 5 3 x = 7 :5 = ln( " " ) ln10 ln10 3 x = ln3 x = ln( 7 5 ) ln3 x ln3 = ln7 ln5 "# " = "# "# " :ln3 x = 0,31 Regel 4 e ln(a) a lnx 3 = 9 3lnx = 9 :3 lnx = 3 =>e e ln10 10 e lnx = e 3 x = e 3 Huskeregler: e 0 = 1, e 1 = e, e 2 = e 2, osv. 6

7 Kapittel 4 Integraler Nr. Formel Løse formel Formel 1 ax dx a xn+1 + C 3x = 3 x + C = x 3 + C Formel 2 ( 1 x )dx ln x + C 1 x + 6 dx 1 ( x + a )dx ln (x + a) + C = ln [x + 6] + C = ln(x + 6) + C Formel 3 (e ) dx e x + C e dx (e " )dx 1 a e" + C = e + C = + C Formel 4 (lnx) dx xln x x + C Formel 5 (Bestemte integraler) f x dx f (b) f (a) 7

8 Kapittel 5 Ulikheter Finnes to typer ulikheter 1. Førstegrads ulikheter Eksempel: 2x > 4 Delvis pensum. NB Burde kunne reglene. 2. Andregrads ulikheter Eksempel: 2x x = 25 Rekkefølge for å løse en 2. Gradsulikhet: 1. Flytte leddene til venstre 2. Faktorisere (Bruk ABC-formel for å finne x-verdiene) 3. Sette x verdiene i fortegnskjema 4. Skrive notasjon Hovedregler i ulikheter som er forskjellig fra likninger 1. Bruker ulikheter for å finne når uttrykket er større eller mindre enn 0. Eksempel: x(x a) > 0 => (Når er uttrykket større enn null altså når er den positiv) x(x a) < 0 => (Når er uttrykket mindre enn null altså når er den negativ) 2. Når vi ganger eller deler uttrykket med ett negativ/minus tall snur vi ulikheten Eksempel: 2x + 3 < 4x + 9 -x > -3 (Ganger med (-1) for å fjerne minus) -2x < 6 (Deler på -2) x < 3 (Snur ulikheten) > x > -3 (Snur ulikheten) 8

9 3. Beholder nevneren. (Vi fjerner ikke nevner i ulikheter som vi gjør i ligninger). Dersom vi har flere ulike nevnere => Finner fellesnevner => Faktoriser. Eksempel: Se kurs video for gjennomgang av eksemplet. 4. Forstå notasjon x > 1 (x er større enn 1) x < 1 (x er mindre enn 1) x > -1 (x er større enn -1, altså x kan være alle tall større enn -1 => -0,9, -0,8, x < -1 (x er mindre enn -1, altså x kan være alle tall mindre enn -1 => -1,1, 1,2, 5. Fortegnsskjema (Eksempel) <-> <+> x-linje (x 2) (x + 2) x x ( x - 2) (x - 2) e x 9

10 Kapittel 6 Ligningssystemer Likningssett Likningssett er samling av to eller flere likninger med to eller flere ukjente. Løsningsmetoder Multiplikasjonsmetode/Addisjonsmetode: Denne metoden går ut på å summere likningene slik vi kan få ett av ukjentene til å forsvinne. Når nødvendig så multipliserer vi likningene med ett tall, slik det blir enklere å fjerne ett av ukjente. Innsettingsmetoden: Denne metoden går ut på å erstatte ett av ukjentene med utrykket som inneholder ett av ukjente fra den andre likningen. 10

11 Kapittel 7 Funksjoner Lineærfunksjon y = ax + b Formel for å finne ligningen til lineær funksjon: Når stigningstallet a og ett punkt (x 1, y 1 ) er kjent: y y 1 = a(x x 1 ) Når to punkter (x 1, y 1 ) og (x 2, y 2 ) er kjent: y y 1 (x x 1 ) Annengradsfunksjon: f(x) = ax 2 + bx + c Formel for å finne nullpunktene til annengradsfunksjon: x = b ± b 4ac 2a Tredjegradsfunksjon: f (x) = ax 3 + bx 2 + cx + d Formel for å finne nullpunktene til tredjegradsfunksjon: - Minst ett nullpunkt må være kjent. Dersom x = x 1 er kjent nullpunkt, så finner vi resterende nullpunktene ved å dele f (x) med x x 1. (Bruk reglene til polynomdivisjon). 11

12 Rasjonelle funksjoner: f (x) = " " Horisontale (vannrett) asymptoten: y = Vertikale asymptoten: x = Avtagende og voksende Når er funksjonen avtagende og når voksende: 1. Deriverer funksjonen av 1. Orden. 2. Faktoriser, deretter finn nullpunktene. 3. Tegn fortegnsskjema. 4. Avtagende = Negativ linjen i fortegnslinjen Voksende = Positiv linjen i fortegnslinjen. Konkav og konveks 1. Derivere funksjonen av 2. Orden. 2. Faktoriser, deretter finn nullpunktene. 3. Tegn fortegnsskjema. 4. Konkav = Negativ linjen i fortegnsskjema Konveks = Positiv linjen i fortegnsskjema Vendepunkter 1. Derivere funksjonen av 2. Orden. 2. Faktoriser, deretter finn nullpunktene. 3. Tegn fortegnsskjema. 4. Vendepunkt = Der funksjonen vender. 12

13 Kapittel 8 Rekker K Fast innskudd eller uttak (fast beløp du setter inn i sparekonto hvert år, eller fast tilbakebetalings, nedbetalings, utbetalings beløp) r Renter i desimalform n Dager, måneder og år (Antall perioder) An Sluttverdi av annuitet K0 Nåverdi t Tid Nr. Annuitet Formel Senarioer 1 Sluttverdi av annuitet rett etter siste innbetaling: A n = K 1 + r n 1 r - Hvor mye er oppspart beløp rett etter - Hvor mye skal årlig sparebeløpet være rett etter 2 Sluttverdi av annuitet ett år etter siste innbetaling: A n = K(1 + r) 1 + r n 1 r - Hvor mye er oppspart beløp rett før 3 Nåverdi av annuitet når første tilbakebetaling skjer ett år etter K 0 = K 1 + r n r n r - Hva er restgjeld rett etter - Hvilken alternativ bør velges låneopptak: (Første betaling / utbetaling om 1 år) 4 K 0 = K + K 1 + r n r n r - Hva er restgjeld rett før - Hvilken alternativ bør velges (Mottar / Betaler ett beløp i forskudd først) 13

14 5 1 K 0 = K 1 + r 1 + r n r n r Hvilken alternativ bør velges (Første betaling / utbetaling om 2 år) 6 Faste årlig tilbakebetaling når første tilbakebetaling skjer ett år K = K r n r 1 + r n 1 Hvor mye er årlige faste tilbakebetalinger / innbetalinger / etter låneopptak: nedbetalinger / utbetalinger 7 Renter på den første K 0 r Hvor mye er renter ved første tilbakebetalingen: tilbakebetaling / innbetaling / nedbetaling / utbetaling 8 Renter på den siste tilbakebetalingen: K 1 + r r Hvor mye er renter ved siste tilbakebetaling / innbetaling / nedbetaling / utbetaling 9 Avdrag i den første tilbakebetaling: K K 0 r Hvor mye er avdrag ved første tilbakebetaling / innbetaling / nedbetaling / utbetaling 10 Avdrag i den siste tilbakebetalingen: K K 1 + r r Hvor mye er avdrag ved siste tilbakebetaling / innbetaling / nedbetaling / utbetaling 11 Investeringen forrentes med årlig diskret forretning: K t = K 0 ( 1 + r) t Forrentes med årlig diskret forretning 12 Investeringen forrentes med kontinuerlige forretning: K t = K 0 e rt Forrentes med kontinuerlig forretning 14

15 Kapittel 9 Funksjoner med flere variabler Stasjonærpunktene (1) Partiell deriverer funksjonen med hensyn på x, deretter med hensyn på y. (2) Setter opp likningssett. (3) Løser likningssettet med hensyn på x og y. Maksimums- minimums- og sadelpunkt Formel for maksimums- minimums- og sadelpunkt: AC B 2 Formel for beregning av verdiene som tilhører formelen (AC B 2 ): A = f xx (x 0, y 0 ) B = f xy (x 0, y 0 ) C = f yy (x 0, y 0 ) Avgjøre om punktene vi har funnet er maksimums- minimums- eller sadelpunkt: ð AC B 2 < 0 (Altså mindre enn 0) => Punktene er sadelpunkt. ð AC B 2 > 0 (Altså større enn 0) => Punktene er enten minimums- eller maksimumspunkt: => A < 0 (Punktene er lokalt maksimumspunkt) => A > 0 (Punktene er lokalt minimumspunkt) 15

16 Kapittel 10 Lineær funksjoner Formel for beregning av x, y og z ved bruk av Cramers regel: x =, y =, z = Ligningssystemet med 2 ukjente: a1x + a2y = b1 Determinant A = a a a a Determinant B = a3x + a4y = b2 Formel for beregning determinant A når vi har ligningssett med 2 ukjente: b b Determinant A = a a a a = a1 a4 a2 a3 Formel for beregning determinant B1 når vi har ligningssett med 2 ukjente: B1 = b a b a = b1 a4 a2 b2 Formel for beregning determinant B2 når vi har ligningssett med 2 ukjente: B2 = a b a b = a1 b2 b1 a3 Ligningssystemet med 3 ukjente: a1x + a2y + a3z = b1 a4x + a5y + a6z = b2 Determinant A = a a a a a a Determinant B = a a a b b b a7x + a8y + a9z = b3 16

17 Formel for beregning av determinant A når vi har ligningssett med 3 ukjente 𝑎 Determinant A = ð a1 𝑎 a 2 + a 3 ð a1(a5 a9 a6 a8) a2(a4 a9 a6 a7) + a3(a4 a8 a5 a7) Formel for beregning av determinant B1 når vi har ligningssett med 3 ukjente: B1 = ð b1 𝑎 a2 𝑏 + a3 ð b1(a5 a9 a6 a8) a2(b2 a9 a6 b3) + a3(b2 a8 a5 b3) Formel for beregning av determinant B2 når vi har ligningssett med 3 ukjente: B 2 = ð a1 b1 𝑎 + a 3 ð a1(b2 a9 a6 b3) b1(a4 a9 a6 a7) + a3(a4 b3 b2 a7) Formel for beregning av determinant B3 når vi har ligningssett med 3 ukjente: B 3 = ð a1 𝑎 a2 𝑎 + b1 ð a1(a5 b3 b2 a8) a2(a4 b3 b2 a7) + b1(52 b3 b2 a8) 17

Matematikk for økonomer Del 2

Matematikk for økonomer Del 2 Matematikk for økonomer Del 2 Oppgavedokument Antall oppgaver: 75 svar Antall kapitler: 10 kapitler Antall sider: 15 Sider Forfatter: Studiekvartalets kursholdere Kapittel 1 Derivasjon 1. f (x) = 2x 2

Detaljer

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard EKSAMEN Emnekode: SFB10711 Dato: 2. mars 2018 Hjelpemidler: Godkjent kalkulator og utdelt formelsamling Emnenavn: Metodekurs 1, deleksamen i matematikk Eksamenstid: 4 timer Faglærer: Hans Kristian Bekkevard

Detaljer

MET Matematikk for siviløkonomer

MET Matematikk for siviløkonomer SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 29.05.2019 Kl. 09:00 Innlevering: 29.05.2019 Kl. 14:00 For mer informasjon om formalia,

Detaljer

Emnenavn: Metode 1 matematikk. Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard

Emnenavn: Metode 1 matematikk. Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard EKSAMEN Emnekode: SFB10711 Dato: 21. februar 2017 Hjelpemidler: Godkjent kalkulator og utdelt formelsamling Emnenavn: Metode 1 matematikk Eksamenstid: 4 timer Faglærer: Hans Kristian Bekkevard Om eksamensoppgaven

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag Eksamen i FO99A Matematikk Underveiseksamen Dato. desember 6 Tidspunkt 9. -. Antall oppgaver Vedlegg Tillatte hjelpemidler Ingen Godkjent kalkulator Godkjent formelsamling Oppgave Vi løser likningene ved

Detaljer

EKSAMEN. Emne: Metode 1: Grunnleggende matematikk og statistikk (Deleksamen i matematikk)

EKSAMEN. Emne: Metode 1: Grunnleggende matematikk og statistikk (Deleksamen i matematikk) EKSAMEN Emnekode: SFB10711 Dato: 2.6.2014 Hjelpemidler: Kalkulator Utlevert formelsamling Emne: Metode 1: Grunnleggende matematikk og statistikk (Deleksamen i matematikk) Eksamenstid: kl. 09.00 til kl.

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Emnenavn: Eksamenstid: Faglærer: Hans Kristian Bekkevard. består av 8 sider inklusiv denne forsiden og vedlagt formelsamling.

Emnenavn: Eksamenstid: Faglærer: Hans Kristian Bekkevard. består av 8 sider inklusiv denne forsiden og vedlagt formelsamling. e. Høgskoleni Østfold ). EKSAMEN Emnekode: Emnenavn: SFB10711 Metode 1 matematikk deleksamen Dato: Eksamenstid: 3. juni 2016 4 timer Hjelpemidler: Kalkulator og vedlagt formelsamling Faglærer: Hans Kristian

Detaljer

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker.

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker. Heldagsprøve i matematikk, 1. desember 006 Forkurs for Ingeniørutdanningen ved HiO, 006/07 Antall oppgaver: Antall timer: 5 timer fra klokken 0900 til klokken 100. Hjelpemidler: Kalkulator og Formelsamling

Detaljer

Oppgaveløsninger for "Matematikk for økonomer - kort og godt".

Oppgaveløsninger for Matematikk for økonomer - kort og godt. Oppgaveløsninger for "Matematikk for økonomer - kort og godt". Kapittel 1 Oppgave 1.1 a) (x 2 9x 12)(3 3x) =3x 2 27x 36 3x 3 +27x 2 +36x = 3x 3 +30x 2 +9x 36. b) (2x y) 2 +2(x+y)(x y)+(x+4y) 2 =4x 2 4xy+y

Detaljer

Oppgave 1. e rt = 120e. = 240 e

Oppgave 1. e rt = 120e. = 240 e Løsning MET 803 Matematikk Dato 5. desember 05 kl 0900-00 Oppgave. (a) Dersom vi selger eiendommen etter t år, med t > 0, så er nåverdien av salgssummen med r = 0,0. Da får vi N(t) = V (t)e rt = 0 e e

Detaljer

Matematikk R1 Forslag til besvarelse

Matematikk R1 Forslag til besvarelse Matematikk R1 Forslag til besvarelse NITH 4. mars 014 Oppgave 1 a) Regn ut p x) når px) = x 3 3x + 6x 1. p x) = x 3 ) 3x ) + 6x) 0 = 3x ) 3x) + 6 1 = 6x 6x + 6 b) Regn ut p x) når px) = ax + bx + c. Her

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(

Detaljer

MET Matematikk for siviløkonomer

MET Matematikk for siviløkonomer SENSORVEILEDNING - Fagoppgave MET 1186 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 18.1.19 Kl. 9: Innlevering: 5.1.19 Kl. 1: For mer informasjon om formalia, se eksamensoppgaven.

Detaljer

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011. 1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset

Detaljer

Oppgave 1. Oppgave 2

Oppgave 1. Oppgave 2 Midtveiseksamen i MET1180 1 - Matematikk for siviløkonomer 12. desember 2018 Oppgavesettet har 15 flervalgsoppgaver. Rett svar gir poeng, galt svar gir svaralternativ (E) gir 0 poeng. Bare ett svar er

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Kalkulus Kapittel 1 Oppgave 1. a) en funksjon b) en funksjon c) ikke en funksjon d) ikke en funksjon Oppgave 2. a) 12,1 b) 4 c)

Detaljer

I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x Y = ax + b:

I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x Y = ax + b: OPPGAVE I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x 7 74 546 y 48 6 45 a) Plott Y ln y mot X ln x i et rettvinklet koordinatsystem. ) Finn en lineær sammenheng mellom

Detaljer

Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005

Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 3, onsdag 3. november 5 Del Oppgave Funksjonen f(x) er

Detaljer

Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 2017 kl 14:30 Antall oppgaver: 8

Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 2017 kl 14:30 Antall oppgaver: 8 Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 017 kl 14:30 Antall oppgaver: 8 1 Deriver følgende funksjoner a) ( x) b) (3 5x) 6 c) x x + 3 d) x ln

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Løsningsforslag matematikk S1 V14

Løsningsforslag matematikk S1 V14 Løsningsforslag matematikk S1 V14 Oppgave 1 Bruker ABC-formelen: ABC-formelen gir x = 2 x = 3 x 2 + 3x 3 = 3 2x x 2 + 5x 6 = 0 x = b ± b 2 4ac 2a lg(x + 2) = 2 lg x lg(x + 2) = lg x 2 10 lg(x+2) lg x2

Detaljer

Kompendium til MATH001 - Forkurs i matematikk

Kompendium til MATH001 - Forkurs i matematikk Kompendium til MATH001 - Forkurs i matematikk Høst 017, NMBU Kine Josefine Aurland-Bredesen, e-post: kine.josefine.aurland-bredesen@nmbu.no f (x) = 1 x Kompendiumet gir en rask gjennomgang av grunnleggende

Detaljer

Repetisjon i Matematikk 1: Derivasjon 2,

Repetisjon i Matematikk 1: Derivasjon 2, Repetisjon i Matematikk 1: Derivasjon 2, 201. 1 Høgskolen i Gjøvik Avdeling TØL Repetisjonsoppgaver MATEMATIKK 1 REA1141 og REA1141F Derivasjon 2, 201. Oppgave 1 Denne oppgaven har forholdsvis enkle derivasjoner,

Detaljer

a) Blir produktet av to vilkårlige oddetall et partall eller et oddetall? Bevis det.

a) Blir produktet av to vilkårlige oddetall et partall eller et oddetall? Bevis det. Prøve i R1 04.1.15 Del 1 Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Husk å begrunne alle svar. Det skal gå klart frem av besvarelsen hvordan du har tenkt. Oppgave

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

Løsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye.

Løsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye. Eksamen i FO929A - Matematikk Dato: 2013 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver teller

Detaljer

TMA4100: Repetisjon før midtsemesterprøven

TMA4100: Repetisjon før midtsemesterprøven TMA4100: Repetisjon før midtsemesterprøven 10.10.09 Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag October 1, 2009 L.S. (NTNU) TMA4100: Oversikt October 1, 2009 1 / 20 Kapittel 1: Funksjoner.

Detaljer

Høgskoleni østfold EKSAMEN. Metode 1 (Deleksamen i matematikk)

Høgskoleni østfold EKSAMEN. Metode 1 (Deleksamen i matematikk) Høgskoleni østfold EKSAMEN Emnekode: SFB10711 Emne: Metode 1 (Deleksamen i matematikk) Dato: 02.12.2013 Eksamenstid: kl 0900 til kl 1300 Hjelpemidler: Kalkulator Utlevert formelsamling Faglærer: Hans Kristian

Detaljer

Handelshøyskolen BI Eksamen i Met Matematikk for økonomer kl til Løsninger

Handelshøyskolen BI Eksamen i Met Matematikk for økonomer kl til Løsninger Handelshøyskolen BI Eksamen i Met 91001 Matematikk for økonomer..1 00 kl 09.00 til 1.00 Løsninger OPPGAVE 0.1 Vi skal derivere disse funksjonene a) b) f( x) 3x 8 + 3x f ( x) x 8 1 + 3 x x 9 + 6x fx ( )

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

Oppsummering matematikkdel ECON 2200

Oppsummering matematikkdel ECON 2200 Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke 7. mai 2008 1 Innledning En rask oppsummering av hele kurset vil ikke kunne dekke alt vi har gjennomgått. Men alt er pensum, selv om det ikke blir

Detaljer

Høyskolen i Buskerud. fx ( ) x x 2 = x 1. c) Løs ulikheten ( x 3) ( x + 1)

Høyskolen i Buskerud. fx ( ) x x 2 = x 1. c) Løs ulikheten ( x 3) ( x + 1) Høyskolen i Buskerud Eksamen i matematikk. års grunnutdanning Mandag den. desember 00 OPPGVE. Deriver funksjonene a) f ( ) 5 + -- f ( ) 5 + -- 5 + -- b) f ( ) f ( ) ---------- ----------------------------------------

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

(Noter at studenter som innser at problemet er symmetrisk for x og y og dermed

(Noter at studenter som innser at problemet er symmetrisk for x og y og dermed Oppgave a) f (x) = (3x 2)x og f (x) = 6x 2 b) g (y) = e 3y2 y og g (y) = e 3y2 (6y 2 + ) c) F x(x, y) = (x+y)y ln(x+y) xy (x+y)(ln(x+y)) 2 Det gir, etter en del regning: og F y(x, y) = (x+y)x ln(x+y) xy

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

Høgskoleni østfold EKSAMEN. Faglærer: Hans Kristian Bekkevard

Høgskoleni østfold EKSAMEN. Faglærer: Hans Kristian Bekkevard Høgskoleni østfold EKSAMEN Emnekode: SFB10711 Emne: Metode 1 (Deleksamen i matematikk) Dato: 23.11.15 Eksamenstid: 4 timer, kl. 9.00-13.00 Hjelpemidler: Kalkulator Utlevert formelsamling (4 siste sider

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

Oppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab.

Oppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab. EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : tirsdag 4. desember 2012. Tid : 09.00-13.00. Sted: : Åsgårdvegen 9. Tillatte hjelpemidler : Alle trykte og skrevne.

Detaljer

Høgskolen i Bodø Matematikk for økonomer 16. desember 2000 Løsninger

Høgskolen i Bodø Matematikk for økonomer 16. desember 2000 Løsninger Høgskolen i Bodø Matematikk for økonomer 6. desember 2 Løsninger OPPGAVE. a) Deriver funksjonen f( x) x 8 + 2x 4 + 7x 4 + 7 f ( x) 4x 8 + 4x 2 + + 28x 3 + 28x 3 8x 4 8x 6 b) Deriver funksjonen f( x) 7x

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 8, 2009 KAB (Økonomisk Institutt) Oppsummering May 8, 2009 1 / 22 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

Løsningsforslag Eksamen S2, høsten 2015 Laget av Tommy O. Sist oppdatert: 25. mai 2017

Løsningsforslag Eksamen S2, høsten 2015 Laget av Tommy O. Sist oppdatert: 25. mai 2017 Løsningsforslag Eksamen S2, høsten 215 Laget av Tommy O. Sist oppdatert: 25. mai 217 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere funksjonen f(x) = x 3 + 2x. Formelen vi må bruke er (x n ) =

Detaljer

Prøveeksamen i MAT 1100, H-03 Løsningsforslag

Prøveeksamen i MAT 1100, H-03 Løsningsforslag Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan

Detaljer

Ny og bedre versjon 2018 MAT100. Matematikk. Kompendium 2018, del 2. Per Kristian Rekdal og Bård-Inge Pettersen

Ny og bedre versjon 2018 MAT100. Matematikk. Kompendium 2018, del 2. Per Kristian Rekdal og Bård-Inge Pettersen Ny og bedre versjon 2018 MAT100 Matematikk Kompendium 2018, del 2 Per Kristian Rekdal og Bård-Inge Pettersen Figur 1: Matematikk er viktig. 2 Innhold 1 Grunnleggende emner 6 1.1 Tall og tallsystemer...................................

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 9, 2011 KAB (Økonomisk Institutt) Oppsummering May 9, 2011 1 / 25 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 6, 2010 KAB (Økonomisk Institutt) Oppsummering May 6, 2010 1 / 23 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

Universitetet i Agder Fakultet for teknologi og realfag EKSAMEN

Universitetet i Agder Fakultet for teknologi og realfag EKSAMEN Bokmål Universitetet i Agder Fakultet for teknologi og realfag EKSAMEN Emnekode: MA-5 og MA-38 Emnenavn: Matematikk med anvendelse i økonomi Dato: 2. desember 20 Varighet: 09.00-3.00 Antall sider: 3 +

Detaljer

S2 eksamen våren 2018 løsningsforslag

S2 eksamen våren 2018 løsningsforslag S eksamen våren 08 løsningsforslag DEL Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f x =

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 5, 2014 KAB (Økonomisk Institutt) Oppsummering May 5, 2014 1 / 25 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017

Løsningsforslag Eksamen S2, våren 2016 Laget av Tommy Odland Dato: 29. januar 2017 Løsningsforslag Eksamen S, våren 016 Laget av Tommy Odland Dato: 9. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = e x. Den generelle regelen er at (e ax ) = ae ax, i vårt tilfelle

Detaljer

R1 eksamen høsten 2015 løsning

R1 eksamen høsten 2015 løsning R1 eksamen høsten 15 løsning Løsninger laget av Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f

Detaljer

Løsningsforslag til prøveeksamen i MAT1100, H-14 DEL 1

Løsningsforslag til prøveeksamen i MAT1100, H-14 DEL 1 Løsningsforslag til prøveeksamen i MT, H- DEL. ( poeng Hva er den partiellderiverte f y sin(xy cos(xy y sin(xy x sin(xy cos(xy xy sin(xy cos(xy y sin(xy + xy sin(xy når f(x, y = y cos(xy? Riktig svar:

Detaljer

Heldagsprøve R2. Våren Onsdag 6. Mai Løsningsskisser - Versjon Del 1 - Uten hjelpemidler - 3 timer. Oppgave 1.

Heldagsprøve R2. Våren Onsdag 6. Mai Løsningsskisser - Versjon Del 1 - Uten hjelpemidler - 3 timer. Oppgave 1. Heldagsprøve R Våren 015 Onsdag 6. Mai 09.00-14.00 Løsningsskisser - Versjon 1.05.15 Del 1 - Uten hjelpemidler - timer Oppgave 1 Deriver funksjonene: a) fx tanx Kjerneregel: fx tanu, u x f 1 x cos u x

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

Kompendium h-2013. MAT100 Matematikk. Formelsamling. Per Kristian Rekdal

Kompendium h-2013. MAT100 Matematikk. Formelsamling. Per Kristian Rekdal Kompendium h-2013 MAT100 Matematikk Formelsamling Per Kristian Rekdal Forord Dette er formelsamlingen i emnet MAT100 Matematikk ved Høgskolen i Molde, 2013. Formelsamlingen er ment å brukes når man løser

Detaljer

3x ( x. x 1 x a 3 = 1 2 x2. a) Bestem rekkens kvotient og rekkens første ledd.

3x ( x. x 1 x a 3 = 1 2 x2. a) Bestem rekkens kvotient og rekkens første ledd. Oppgave 1 Løs likningen x 2 + x 6 = 0. b) Løs likningen c) Løs ulikheten x 2 + 4x 5 < 0. 3x 2 + 7 x 2 1 ) = 8. d) Løs ulikheten Oppgave 2 x 1 x 2 4 0. Deriver g x) = 3x + ln x) 3. b) Deriver h x) = e x

Detaljer

Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00

Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00 SENSORVEILEDNING MET 803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 9.04.05 Kl. 09:00 Innlevering: 9.04.05 Kl. 4:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave Beregn følgende

Detaljer

Løsningsforslag Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 25. mai 2017

Løsningsforslag Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 25. mai 2017 Løsningsforslag Eksamen S, våren 17 Laget av Tommy O. Sist oppdatert: 5. mai 17 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x /x = x x 1. Den eneste regelen vi trenger her er (kx n )

Detaljer

Løsningsforslag til Obligatorisk innlevering 7

Løsningsforslag til Obligatorisk innlevering 7 Løsningsforslag til Obligatorisk innlevering 7 Oppgave a) Likningen e 2x 6e x + 5 = 0 er en annengradslikning i e x. Siden ( ) ( 5) = 5 og 5 = 6 så faktoriserer annengradsuttrykket som (e x 5)(e x ). Dette

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator Oppgave 1 Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt 09.00-14.00 Antall oppgaver 6 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag a) Likningen

Detaljer

Eksamen REA3022 R1, Våren 2009

Eksamen REA3022 R1, Våren 2009 Eksamen REA0 R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonene ) f x x 4 4 8 f x x x x x ) g x x

Detaljer

KAPITTEL 1 - ALGEBRA. 1. Regnerekkefølger og regneregler. Legg først merke til at: Legg spesielt merke til at :

KAPITTEL 1 - ALGEBRA. 1. Regnerekkefølger og regneregler. Legg først merke til at: Legg spesielt merke til at : KAPITTEL - ALGEBRA. Regnerekkefølger og regneregler Legg først merke til at: 2( ) = 2 ( ) = 6, ab = a b = b a = ba og a a = a 2 Legg spesielt merke til at : a 2 = a a, ( a) 2 = ( a) ( a) = a 2 og ( a)

Detaljer

Fasit til utvalgte oppgaver MAT1110, uka 11/5-15/5

Fasit til utvalgte oppgaver MAT1110, uka 11/5-15/5 Fasit til utvalgte oppgaver MAT0, uka /5-5/5 Øyvind Ryan (oyvindry@i.uio.no May, 009 Oppgave 5.0.a Ser at f(x, y = (, 3, og g(x, y = (x, y. g(x, y = 0 hvis og bare hvis x = y = 0, og dette er ikke kompatibelt

Detaljer

Eksamen i MAT1100 H14: Løsningsforslag

Eksamen i MAT1100 H14: Løsningsforslag Eksamen i MAT H4: Løsningsforslag Oppgave. ( poeng) Dersom f(x, y) x sin(xy ), er f y lik: A) sin(xy ) + xy cos(xy ) B) x cos(xy ) C) x y cos(xy ) D) sin(xy ) + x y cos(xy ) E) cos(xy ) Riktig svar: C):

Detaljer

Nicolai Kristen Solheim

Nicolai Kristen Solheim Oppgave 1. 1a) 1, 0, 2, sin 5 4cos sin 54cos sin 8 sin cos cos 54cos 8 sin cos 5cos 4cos 8sin cos 5cos 4cos Dersom vi plotter grafen for vil vi se hvor vokser og avtar. 1 Fra grafen for ser vi følgende

Detaljer

MAT100. Matematikk FORMELSAMLING Per Kristian Rekdal

MAT100. Matematikk FORMELSAMLING Per Kristian Rekdal MAT100 Matematikk FORMELSAMLING 2017 Per Kristian Rekdal Figur 1: Matematikk er viktig. 2 Forord Dette er formelsamlingen i emnet MAT100 Matematikk ved Høgskolen i Molde, 2017. Formelsamlingen er ment

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.

Detaljer

Institutt for Samfunnsøkonomi. Utlevering: Kl. 09:00 Innlevering: Kl. 14:00

Institutt for Samfunnsøkonomi. Utlevering: Kl. 09:00 Innlevering: Kl. 14:00 SENSORVEILEDNING MET 11803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 17.12.2014 Kl. 09:00 Innlevering: 17.12.2014 Kl. 14:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave 1 Finn

Detaljer

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER INNHOLD ALGEBRA OG FUNKSJONER... PARENTESER... USYNLIGE PARENTESER... USYNLIGE MULTIPLIKASJONSTEGN... DE TI GRUNNLEGGENDE ALGEBRAISKE LOVENE... REGNEUTTRYKK INNSATT FOR VARIABLER... 3 SETTE OPP FORMLER...

Detaljer

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017 Løsningsforslag Eksamen S, høsten 016 Laget av Tommy Odland Dato: 7. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 3 5x, og vi kommer til å få bruk for reglene (ax n ) = anx

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

Kompendium H MAT100 Matematikk. Del 2 av 2. Per Kristian Rekdal

Kompendium H MAT100 Matematikk. Del 2 av 2. Per Kristian Rekdal Kompendium H-2016 MAT100 Matematikk Del 2 av 2 Per Kristian Rekdal Figur 1: Matematikk er viktig. 2 Innhold 1 Grunnleggende emner 19 1.1 Tall og tallsystemer................................... 20 1.2 Algebraiske

Detaljer

Matematikk for økonomi og samfunnsfag

Matematikk for økonomi og samfunnsfag Harald Bjørnestad Ulf Henning Olsson Svein Søyland Frank Tolcsiner Matematikk for økonomi og samfunnsfag 9. utgave Innhold Forord... 11 Kapittel 1 Grunnleggende emner 1.1 Tall og tallsystemer... 13 1.2

Detaljer

Oppfriskningskurs Sommer 2019

Oppfriskningskurs Sommer 2019 Oppfriskningskurs Sommer 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Oppgave 9 fra Øving 2 a) Er funksjonen f(x) = en-til-en? Hvorfor/hvorfor ikke? { 1 x hvis 0 x

Detaljer

MET Matematikk for siviløkonomer

MET Matematikk for siviløkonomer SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 18.1.017 Kl. 14:00 Innlevering: 18.1.017 Kl. 19:00 For mer informasjon om formalia,

Detaljer

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11 Fasit til utvalgte oppgaver MAT uka 5/-9/ Øyvind Ryan oyvindry@ifi.uio.no) November Oppgave 9.. Vi skriver 5x 5 x )x ) A x B x og ser at vi må løse likningene Ax ) Bx ) x )x ) A B 5 A B 5. A B)x A B x

Detaljer

Oppgaver om derivasjon

Oppgaver om derivasjon Oppgaver om derivasjon Oppgave 1 Gitt funksjonen g(x) = x 3 6x 48x + 13 a) Finn g (x). b) Bruk den deriverte til å finne x-koordinaten til topp/bunn-punktene til grafen. Finn også de tilhørende y-koordinatene,

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

Eksamen S2 va ren 2015 løsning

Eksamen S2 va ren 2015 løsning Eksamen S va ren 05 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (5 poeng) Deriver funksjonene. a) x f x e x f x e e x b) gx x x x x x

Detaljer

Hva man må kunne i kapittel 2 - Algebra

Hva man må kunne i kapittel 2 - Algebra Hva man må kunne i kapittel 2 - Algebra Teknikker og type-eksempler Faktorisering Se også eget notat om faktorisering på nettsidene mine. Faktorisering brukes til å: Finne fellesnevner i rasjonale uttrykk.

Detaljer

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto Faktor -en eksamensavis utgitt av Pareto Eksamen høst 005 SØK 00- Innføring i matematikk for økonomer Besvarelse nr : OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

Deleksamen i MAT111 - Grunnkurs i Matematikk I

Deleksamen i MAT111 - Grunnkurs i Matematikk I Bergen, oktober. 2004. Løsningsforslag til Deleksamen i MAT - Grunnkurs i Matematikk I Mandag. oktober 2004, kl. 09-2. Oppgave Beregn grensen f.eks. ved hjelp av l Hôpitals regel. lim x ln x x Vi ser at

Detaljer

EKSAMEN. V3: Tall og algebra, funksjoner 2 ( trinn)

EKSAMEN. V3: Tall og algebra, funksjoner 2 ( trinn) EKSAMEN Emnekode: LSV3MAT Emne: V3: Tall og algebra, funksjoner (5.-0. trinn) Dato: 3. desember 08 Eksamenstid: kl. 09.00 til kl. 5.00 Hjelpemidler: Kalkulator uten grafisk vindu Vedlagt formelark Faglærere:

Detaljer

Formelsamling H MAT100 Matematikk. Per Kristian Rekdal

Formelsamling H MAT100 Matematikk. Per Kristian Rekdal Formelsamling H-2016 MAT100 Matematikk Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT100 Matematikk ved Høgskolen i Molde, 2016. Formelsamlingen er ment å brukes når man løser innleveringsoppgavene

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår 7 Kapittel 7.3: Rasjonale funksjoner og delbrøkoppspaltning 7.3:3 Bruk polynomdivisjon for

Detaljer

Eksamen REA3022 R1, Våren 2013

Eksamen REA3022 R1, Våren 2013 Eksamen REA30 R1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Formlene for arealet A av en sirkel og volumet

Detaljer

ECON2200: Oppgaver til for plenumsregninger

ECON2200: Oppgaver til for plenumsregninger University of Oslo / Department of Economics / Nils Framstad 9. mars 2011 ECON2200: Oppgaver til for plenumsregninger Revisjoner 9. mars 2011: Nye oppgavesett til 15. og 22. mars. Har benyttet sjansen

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

Løsningsforslag til eksamen i MAT 1100 H07

Løsningsforslag til eksamen i MAT 1100 H07 Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver

Detaljer

Løsningsforslag midtveiseksamen Mat 1100

Løsningsforslag midtveiseksamen Mat 1100 Løsningsforslag midtveiseksamen Mat 00 Høsten 202 Oppgave : Riktig svaralternativ er C Vi får r = 2 2 +( 2 3) 2 = 4+4 3= 6 = 4. Videre ser vi (tegn figur) at argumentet til z vil være 60 mer enn 80, dvs.

Detaljer

Eksamen S2 va ren 2016 løsning

Eksamen S2 va ren 2016 løsning Eksamen S va ren 016 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene x a) f x e f x e b) gx x x 3 x 4 1 x

Detaljer