Oppgaver i naturfag, 9-åringer
|
|
- Beate Askeland
- 9 år siden
- Visninger:
Transkript
1 Oppgver i nturfg, 9-åringer Her er gjengitt e frigitte oppgvene fr TIMSS Oppgvene til 9- åringene er innelt i isse emnene: Biologi Fysikk/kjemi Geofg Emnetilhørighet er ngitt forn hver oppgve. S Hos mennesker lir syn, hørsel, smk og lukt tolket i hjernen ryggmrgen reseptorer huen S Hvis kroppen får mer mt enn en trenger, lir pusten rskere. mister mn vekt. slår hjertet fortere. lir mten lgret som fett. S Hvilken plnte lir yrket til mt? Ris Tokk Orkié Bomull 7
2 S Hvorn kn vsk v henene gjøre t u ikke lir syk? Bkteriene vskes ort. Henene ser penere ut. Huen tørker ikke ut. Henene lir vrmere. S Hv hr mest å si for hvor høy u lir når u lir voksen? Høyen til forelrene ine Høyen til søsknene ine Hårfrgen in Vekten in S Hvor lir et v luft som et menneske puster inn? Den går til hjertet. Den går til mgesekken. Den går til lungene. Den går til leveren. 8
3 S Hvilken el v plnten tr opp MEST vnn? Del A Del B Del C Del D Del A Del B Del C Del D S Hvilket v isse yrene legger IKKE egg? Høne Hun Frosk Skilpe S Like før og etter u løper 60 m måler u pulsen og hvor fort u puster. Hvilke fornringer vil u vente å finne? e Ingen fornring i puls, men sktere pusting Rskere puls, men ingen fornring i pusting Rskere puls og rskere pusting Sktere puls og sktere pusting Ingen fornringer 9
4 S Hv skjer me plnter og fisker i ei elv når en frikk slipper ut store menger me vrmt vnn i elv? S Hvilket yr spiser re plnter? Ktt Hun Løve Knin S Overkjeven 4 4 Unerkjeven De tennene som vi ruker til å tygge mten me, er merket på ilet som og 2 3 og 4 10
5 S Hvilket v isse insektene er riktig plssert smmen me en yngre form v seg selv? Husflue Mygg Gresshoppe Sommerfugl S Bete spiller fotll. Hun lir velig vrm. Nevn én ting som kroppen gjør for å li vkjølt. 11
6 S Hvilken v isse typene plnter vokser normlt i en tropisk regnskog? S Brn vokser og lir høyere og tyngre når e utvikler seg til voksne. Beskriv en nnen fysisk fornring som skjer me rns kropp når e lir voksne. 12
7 S Hvilke v isse er insekter? Bre 1 og 3 Bre 1 og 4 Bre 2 og 4 Bre 3 og 4 S Mennesker trenger å eskytte seg mot for mye sol. Nevn én ting som kn skje me kroppen ersom mn ikke eskytter seg mot sol. S Hvilken gruppe inneholer re ting som lever? Knin, frø, fugl Frø, fugl, vin Vulkn, sterinlys, knin Vin, sterinlys, vulkn 13
8 S Skriv ne to grunner til t menneskekroppen trenger å være ekket v hu. Grunn 1: Grunn 2: S frosk hun menneske sommerfugl fugl hvl Noen v orgnismene vist ovenfor føer unger som hr utviklet seg inne i moren. Anre får unger som klekkes ut v egg utenfor morens kropp. Skriv ne nvnet på e orgnismene som tilhører hver gruppe i tellen neenfor. Føer levene unger Legger egg 14
9 S En plnte hr gule lomster. Hv forklrer est hvorfor lomstene er gule? Sollyset frget lomstene gule. Plntene en stmmer fr, he gule lomster. Det vr velig vrmt e lomstret. Det regnet hver g. S Dyrenes kropp hr vnligvis egenskper som hjelper em til å leve på estemte steer. Se på ilet ovenfor. Dette yret lever i en vrm ørken. Hvilket kjennetegn ve kroppen hjelper yret å li kvitt vrme? En tykk pels En uskete hle Små øyne Store ører 15
10 S Sol Hegre Flyteplnter Fisk Rumpetroll Bilet ovenfor viser en m og noen v orgnismene som lever i og runt mmen. Alle er vhengige v hvernre for å få mt. Hv tror u rumpetrollene får mten sin fr? Sol Fiskene Flyteplntene Hegrene S Er plnter levene eller ikke-levene? (Sett kryss i én rute.) C Levene C Ikke-levene Forklr svret itt. 16
11 S Krl er forkjølet. En uke senere le noen v vennene hns også forkjølet. Nevn to måter hn kn h smittet vennene sine på S sekk me ris lrver ris I en sekk me ris le et funnet lrver. Hv forklrer est hvorn lrvene kom it? De kom fr vnn i sekken. De kom fr luft i sekken. De kom fr selve risen. De kom fr egg som vr lgt er v insekter. 17
12 S Reekk flyttet inn i et nytt hus. Hun ønsket å plnte på forskjellige områer v hgen sin. A. Reekk vet t plnter trenger lys for å vokse. Hvorfor trenger plnter lys for å vokse? B. Plnter trenger også vnn for å vokse. Nevn en nnen ting plnter trenger for t e skl vokse r. (Se også neste oppgve.) S (Bygger på forrige oppgve.) Neenfor er et en tegning v Reekks hus og hge. Hun ønsker å plnte på fire forskjellige områer. (Områe 1, 2, 3 og 4.) Områe 4 Vest Nor Øst Områe 1 Hus Områe 3 Sør Eiketrær Områe 2 Dm Hvilken sie v huset til Reekk vil få mest sol om morgenen? (Sett kryss i én rute.) C C Østsien (Områe 3) Vestsien (Områe 4) Forklr hvorfor. (Se også neste oppgve.) 18
13 S (Bygger på forrige oppgve.) Reekk ønsket å plnte forskjellige plnter på e ulike områene. Hun skffet seg iler v e plntene hun likte est, og fnt ut hvor mye sol e trengte. Bilene og informsjonen hun fnt, limte hun inn i en ok. Se neenfor. Krv til lys Krv til lys Bregne Busk Skygge Ettermigssol Rose Snøklokke Sol hele gen Morgensol Rierspore Tomtplnte Hlvskygge Sol hele gen A. Reekk ønsket å h roser uner eiketrærne på områe 1. Venninnen Guro vr ikke enig. Hun s t roser ikke vil vokse r på områe 1. Forklr hvorfor Guro s ette. (Se også neste oppgve.) 19
14 Nor Områe 4 Vest Øst Områe 1 Hus Områe 3 Sør Eiketrær Områe 2 Dm B. Se på informsjonen om plntene i Reekks ok, og tegningen v hgen hennes. Skriv nvnene på e plntene som vil trives est på hvert områe i tellen neenfor. Områe 1 Områe 2 Områe 3 Områe 4 (Se også neste oppgve.) 20
15 S (Bygger på forrige oppgve.) Reekk plntet i hgen sin. Etter noen få måneer oppget hun t et vokste plnter hun ikke he plntet. Hun visste t plntene måtte h vokst frm fr frø. Hun tok noen frø fr én v plntene. Plnten og frøene er vist neenfor. Plnte Frø Hvorn he frøene snnsynligvis kommet inn i hgen hennes? (Se også neste oppgve.) S (Bygger på forrige oppgve.) Reekk l merke til t lene på roseuskene le spist v insekter, som vist på ilet neenfor. insekter Reekk plnl å repe insektene me insektmiel. Venninnen Guro s t hun ikke syntes Reekk skulle ruke insektspry, fori en kunne t livet v nre insekter som er viktige for noen v e lomstrene plntene i hgen. Hvorfor er noen insekter viktige for lomstrene plnter? 21
16 S En sterk mgnet vil skille en lning v klrt glss og grønt glss. ppirkrus og plstkrus. jernspiker og luminiumspiker. sn og slt. S Hvis u kster isse tingene, hvilken v em vil råtne fortest? En glssflske En likkoks En plstflske En epleskrott S På ilet ser u tre like store ting som flyter i et kr me vnn. Ting A Ting B Ting C Hvilken v isse tre tingene veier mest? Ting A Ting B Ting C Alle tre veier like mye. 22
17 S Hv skjer me vnn når et koker? Det fornrer frge. Det lir tyngre. Det går over til vnnmp. Det slutter å ole. S Hvilke v isse tingene til smmen gjør t vi kn se en regnue? Tåke og skyer Regn og snø Skyer og is Solskinn og regn S Når u låser såpeoler, hv tror u er inni olene? Luft Såpe Vnn Ingenting 23
18 S Den smme mursteinen lir lgt på en vekt på tre forskjellige måter Hv v ette er riktig? 1 veier mest. 2 veier mest. 3 veier mest. Alle veier like mye. S En fornyr energikile er en kile som lri tr slutt. Hv er et eksempel på ruk v en slik kile? En kullovn vrmer opp et hus En vinmølle pumper vnn på en går En prfinlmpe lyser opp et rom En il ruker ensin S Åse lurte på hvorfor mnge kjeler og pnner lir lget v koer. Hvilken forklring er riktig? Koer er en go vrmeleer. Koer er lett å smelte. Koer er vnskelig å forme. Koer løses opp i vrmt vnn. 24
19 S Egenskpene til tre mteriler er smmenlignet i tellen neenfor. Ett v mterilene er tre, ett er stein og ett er jern. Egenskp Mterile 1 Mterile 2 Mterile 3 Synker i vnn? J Nei J Brenner lett? Nei J Nei Tiltrekkes v en mgnet? J Nei Nei Bestem e tre mterilene ve å fylle ut neenfor. Tre er mterile nummer: Stein er mterile nummer: Jern er mterile nummer: S En lukket glssflske fylt me vnn le lgt i fryseren over ntt. Om morgenen vr glsset knust. Hvorfor le flsk knust vnnet frøs? 25
20 S Figur 1 S N N S Figur 2 S N S N Figur 3 N S N S Figur 4 N S S N Hvilke v figurene ovenfor viser en situsjon er to mgneter frstøter hvernre? Figurene 1 og 3 Figurene 2 og 3 Figurene 1 og 4 Figurene 1, 2, 3 og 4 26
21 S Figuren ovenfor viser en oks som inneholer et stoff som kn være et fst stoff, en væske eller en gss. Stoffet lir så ttt over i en oks som er fire gnger så stor. Se på figurene neenfor. De viser hvorn stoffet vil se ut når et er i en store oksen. A. Bestem hvilken figur som viser et fst stoff, hvilken som viser en væske, og hvilken som viser en gss. (Skriv orene fst stoff, væske eller gss på linj ve sien v hver figur. Bruk hvert or re én gng.) B. Forklr svrene ine. 27
22 S Bilene viser en lyspære kolet til et tteri. Hvilken lyspære vil lyse? S Mnge ting er lget v metll (som kopper, jern og gull). Dette skyles t metller hr mnge nyttige egenskper. A. Nevn én ting som er lget v metll. B. Hvilken egenskp ve metllet gjør et egnet til å lge enne tingen? S Hv v ette vil løse seg opp i vnn? Jern Trefliser Sn Sukker 28
23 S I hvilket v isse tilfellene nnes et et nytt stoff? En spiker ligger ute og ruster. Et glss slippes og lir knust i småiter. En strikk strekkes til en ryker. En lynt spisses. S Skriv ne en forskjell mellom fste stoffer og væsker. S Hv kn få gjenstner til å frstøte hvernre? Tyngekrft Mgnetisme Båe tyngekrft og mgnetisme Verken tyngekrft eller mgnetisme S Hvilket utsgn er snt for lle ting? Alle ting er lnke. Alle ting er hre. Alle ting er ujevne. Alle ting hr msse. 29
24 S To ting er feil me skyggen til mnnen på ilet ovenfor. Skriv ne e to tingene som er feil
25 S Bilet neenfor viser fire like lys som renner. Hvert v em er ekket til v en glsskuppel me ulik størrelse. Hvilket lys vil slukne sist? (Geofg) S Dette ilet viser e tre viktigste lgene v jor. A B C Hvor er et vrmest? Lg A Lg B Lg C Alle tre lgene hr smme tempertur. 31
26 (Geofg) S Se på tegningen Snøekte fjell Fjellvnn Storelv Små ekker Syhvet Vnnet er mest slt i Syhvet Fjellvnnet Storelv De små ekkene (Geofg) S Hv ekker et meste v Jors overflte? Vnn Brt fjell Dyrket mrk Byer og tettsteer (Geofg) S Fossiler v inosurer som leve for millioner v år sien, finnes i hvvnnet. isen på et tjern. trestmmer. stein. 32
27 (Geofg) S Hvert år går jor en gng runt Mrs. Sol. Månen. lle e nre plnetene. (Geofg) S Tron ville unersøke fire steiner for å se hvor hre e er. Hn skrpte hver stein mot et stykke hrt stål i et minutt. Hn lget tegninger v steinene slik som e så ut før og etter t hn skrpte em. Hvilken stein er hrest? Før Etter (Geofg) S Tegn en pil ve Storelv for å vise hvilken retning vnnet renner. Snøekte fjell Fjellvnn Små ekker Storelv Syhvet 33
28 (Geofg) S Bilene viser skyggen v et tre på ulike tier v gen. Skyggen hr forskjellig lenge. Hvilket ile viser skyggen v treet mit på gen (kl.12)? e (Geofg) S Hvilket ile viser BEST hvorn et isfjell flyter i hvet? Hvoverflten Hvoverflten Hvoverflten Hvoverflten (Geofg) S Hvilket v isse yrene legger IKKE egg? Høne Hun Frosk Skilpe 34
29 (Geofg) S På hvilket v isse steene er et vrmest? Jor Mrs Månen Sol (Geofg) S Hvilken gss i luft må vi puste inn for å leve? nitrogen oksygen kronioksi hyrogen e vnnmp (Geofg) S Store menger metller som jern og luminium finner vi i øe trær vnn ein fr yr oljerønner e stein 35
30 (Geofg) S Lise fnt fire steiner v et smme mterilet på en elvere. De he ulik form og størrelse. Hvilken stein hr snnsynligvis litt ført lengst neover elv før en er kommet it? (Geofg) S Skyer Lveste Høyeste på himmelen tempertur tempertur By A nei 10 o C 25 o C By B j 20 o C 30 o C By C nei -10 o C -1 o C By D j -15 o C 5 o C Tellen ovenfor gir informsjon om været i fire yer gjennom et øgn. I hvilken y er et størst sjnse for t et snøe? By A By B By C By D 36
31 (Geofg) S fjell C D ørken B elv A Se på ilet ovenfor. Hvor er et este steet å rive jorruk? Ste A Ste B Ste C Ste D hv (Geofg) S Kine ser t et er fullmåne. Omtrent hvor lng ti vil et gå før neste fullmåne? En uke To uker En måne Et år 37
32 (Geofg) S På en vrm, fuktig g inneholer luft mye vnnmp. Hv skjer me vnnmpen i luft når luft lir velig kl? (Geofg) S Minerler rukes til å lge mnge ting, for eksempel smykker, kritt og etong. Hvor finner vi minerlene som trengs for å lge isse tingene? I luft I trær I ergrter I yrkete plnter (Geofg) S Neenfor er et en tegning v Reekks hus og hge. Hun ønsker å plnte på fire forskjellige områer. (Områe 1, 2, 3 og 4.) Områe 4 Vest Nor Øst Områe 1 Hus Områe 3 Sør Eiketrær Områe 2 Dm Hvilken sie v huset til Reekk vil få mest sol om morgenen? (Sett kryss i én rute.) C C Østsien (Områe 3) Vestsien (Områe 4) Forklr hvorfor. 38
Oppgaver i naturfag, 13-åringer
Oppgver i nturfg, 13-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. Oppgvene til 13- åringene er innelt i isse emnene: Biologi Kjemi Fysikk Geofg Miljølære Emnetilhørighet er ngitt før hver
DetaljerOppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve.
Mtemtikk for ungomstrinnet KAPITTEL 5 STATISTIKK OG SANNSYNLIGHET MER ØVING Oppgve 1 Digrmmet neenfor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4?
DetaljerTall i arbeid Påbygging terminprøve våren 2014
Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15
DetaljerKapittel 5 Statistikk og sannsynlighet Mer øving
Kpittel 5 Sttistikk og snnsynlighet Mer øving Oppgve 1 Digrmmet nefor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4? Hvor mnge elever er et i klssen?
DetaljerTall i arbeid Påbygging terminprøve våren 2013
Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer
DetaljerOppgaver i matematikk, 9-åringer
Oppgver i mtemtikk, 9-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. For 4. klsse enyttes nå etegnelsen mønstre for et som i 1995 le omtlt som lger. Oppgvene er innelt i isse emnene: Tll Geometri
Detaljer9 Potenser. Logaritmer
9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner
Detaljera 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g.
Mtemtikk for ungomstrinnet KAPITTEL 4 TALL OG ALGEBRA MER ØVING Oppgve 1 Oppgve 2 Se på uttrykket A = g h. Hv forteller e ulike okstvene? Se på uttrykket O = 2π. Hv står e ulike symolene for? Forklr hv
Detaljer... ÅRSPRØVE 2014...
Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl
DetaljerOppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr
KAPITTEL 1 TALL OG TALLREGNING FLERE UTFORDRINGER Oppgve 1 Du hr sifrene A 1 3 5 7 9 og B 2 4 6 8 Ve å ruke tre v sifrene i enten A eller B skl u lge ett tll så nærme 500 som mulig. Du kn re ruke ett siffer
DetaljerOppgave 5 Et rektangel har en omkrets på 24 cm 2. Hva blir arealet? Dersom lengdene på sidene skal ha heltallige svar, hvor mange løsninger får du?
KAPITTEL 3 GEOMETRI Mer øving kpittel 3 I e første oppgvene skl u gjøre om enheter på en lgeriske måten. Det vil si t når u skl gjøre om mellom relenheter skl u gå veien om å gjøre om mellom lengeenheter.
DetaljerLØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302
Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Sie 1 v 6 LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 12. esemer 2006 Oppgve 1 ) Skriv ne efinisjonen på en tutologi. Svr: En tutologi
DetaljerOppgaver i naturfag, 9-åringer
Oppgaver i naturfag, 9-åringer Her er gjengitt de frigitte oppgavene fra TIMSS 95. Oppgavene fra TIMSS 2003 ventes frigitt i løpet av sommeren 2004 og vil bli lagt ut kort tid etter dette. Oppgavene under
DetaljerSTATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET
Mer øving til kpittel 4 STATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET Oppgve 1 Under ser du resulttet v ntll kinoesøk for en klsse de siste to måneder: 1, 3, 5, 4, 2, 7, 1, 1, 4, 5, 3, 3, 4, 0, 1, 3, 6, 5,
DetaljerÅrsprøve 2014 10. trinn Del 2
2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere
DetaljerS1 kapittel 4 Logaritmer Løsninger til oppgavene i boka
Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen
Detaljer1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)
Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5
DetaljerBARN og DIGITALE MEDIER 2012 Foreldreundersøkelsen, 1-12 år
BARN og DIGITALE MEDIER 2012 Forelreunersøkelsen, 1-12 år Weunersøkelse 1500 forelre me rn i leren 1-12 år Bkgrunnsinformsjon Kjønn Mnn Kvinne Aler (netrekksmeny?) Hr u rn i leren mellom 1-12 år? (FILTER:
DetaljerKapittel 5 Verb. 5.4 For å få tak i en engelsk avis. For å finne utenlandske varer. For å treffe venninna si. For å invitere henne med til lunsj.
Kpittel 5 Ver 5.1 For eksempel: Hver dg pleier jeg å sove middg Liker du ikke å dnse? I dg kn jeg ikke hndle mt. Jeg orker ikke å lge slt. Nå må jeg lese norsk. Jeg hr ikke tid til å t ferie. Kn du synge?
DetaljerKapittel 4 Tall og algebra Mer øving
Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en
DetaljerOppgaver i matematikk, 13-åringer
Oppgver i mtemtikk, 13-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. Oppgvene er innelt i isse emnene: Tll Geometri Alger Dtrepresentsjon og snnsynlighet Målinger Proporsjonlitet Emnetilhørighet
DetaljerMer øving til kapittel 1
Mer øving til kpittel 1 KAPITTEL 1 TALL OG TALLREGNING Oppgve 1 Finn svret ve hoeregning. Velg to v oppgvene og forklr hvilken strtegi u hr rukt. 27 + 38 e 160 70 i 130 4 35 + 75 f 19 5 j 6 7,5 58 + 42
DetaljerYF kapittel 8 Rom Løsninger til oppgavene i læreboka
YF kpittel 8 Rom Løsninger til oppgvene i læreok Oppgve 809 Vi skl gå ett hkk mot venstre, og deler derfor med 10. 40 dl = (40 :10) L = 4 L Vi skl gå to hkk mot venstre, og deler derfor med 10 10 = 100.
DetaljerOPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer
OPPLÆRINGSREGION NORD LK06 Finnmrk fylkeskommune Troms fylkeskommune Nordlnd fylkeskommune Nord-Trøndelg fylkeskommune Sør-Trøndelg fylkeskommune Møre og Romsdl fylke Skriftlig eksmen MAT1001 Mtemtikk
DetaljerØvingsforelesning 9: Minimale spenntrær. Daniel Solberg
Øvingsforelesning 9: Minimle spenntrær Dniel Solerg Pln for gen Gjennomgng v øving 8 Minimle spenntrær Kruskl Disjoint Set Forest Prim Noen utvlgte eksmensoppgver 3 Minimle spenntrær Hv er et minimlt spenntre?
Detaljer... JULEPRØVE 9. trinn...
.... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver
Detaljer1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer
Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.
DetaljerFasit. Grunnbok. Kapittel 2. Bokmål
Fsit 9 Grunnbok Kpittel Bokmål Kpittel Lineære funksjoner rette linjer. ƒ(x) = 4x + 5 ƒ() = 3 ƒ(4) = ƒ(6) = 9.6 ƒ(x) = -x b ƒ(x) = x b ƒ(x) = (x + ) 3 ƒ() = ƒ(4) = 8 ƒ(6) = 4 ƒ(x) = x 4 ƒ() = - ƒ(4) =
DetaljerS1 kapittel 6 Derivasjon Løsninger til oppgavene i boka
S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)
DetaljerLøsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.
Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.
DetaljerLøsningsforslag til Obligatorisk oppgave 2
Løsningsforslg til Oligtorisk oppgve INF1800 Logikk og eregnrhet Høsten 008 Alfred Brtterud Oppgve 1 Vi hr lfetet A = {} og språkene L 1 = {s s } L = {s s inneholder minst tre forekomster v } L 3 = {s
DetaljerMer om algebra. Sti 1 Sti 2 Sti 3 500, 501, 503, 504, 505, 511 513, 514, 515, 516, 517, 519, 520, 521, 525 531, 534, 535, 538
5 Mer om lger Kompetnsemål: Mål for opplæringen er t eleven skl kunne regne me rsjonle og kvrtiske uttrykk me tll og okstver og ruke kvrtsetningene til å fktorisere lgeriske uttrykk løse likninger, ulikheter
DetaljerS1 kapittel 1 Algebra Løsninger til oppgavene i læreboka
Løsninger til oppgvene i ok S kpittel Alger Løsninger til oppgvene i læreok. 8 ( ) 5 9. e = = 9 = = 8 5 = = 0 = 0 0 0 = 000 =. e Ashehoug www.lokus.no Sie v Løsninger til oppgvene i ok..5..7 = = + 5 =
DetaljerBasisoppgaver til 2P kap. 1 Tall og algebra
Bsisoppgver til P kp. Tll og lger. Potenser. Nye potenser. Store og små tll. Stnrform. Tllsystemer. Femtllsystemet. Totllsystemet.7 Prosentregning me vekstfktor.8 Renteregning Ashehoug www.lokus.no Ashehoug
DetaljerRegn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 =
10 Divisjon 2 1 Regn i hodet. ) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = 2 Regn i hodet. ) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 3 ) 39 : 3 = b) 56 : 4 = c) 96 : 8 = d) 98 : 7 = 4 Gi svret med
DetaljerNavn: Klasse: Ekstrahefte 2. Brøk
Nvn: Klsse: Ekstrhefte Brøk Brøk Oppg. ) Finn største felles fktor (sff) for teller og nevner ved å fktorisere. Bruk dette til å forkorte røken. 0 6 ) Finn minste felles multiplum (mfm) for nevnerne ved
DetaljerYF kapittel 1 Tall Løsninger til oppgavene i læreboka
YF kpittel 1 Tll Løsninger til oppgvene i læreok Oppgve 10,, 0, 1,, 5,,, 0 Oppgve 10 Tllet 5 står til høyre for tllet på tllinj. Altså er 5>. Tllet 5 står til venstre for tllet 1 på tllinj. Altså er 5
DetaljerTerminprøve Matematikk Påbygging høsten 2014
Terminprøve høsten 2014 Terminprøve Mtemtikk Påygging høsten 2014 DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Regn ut 3 3 3 4 1 3 3 2
Detaljer1 Tallregning og algebra
Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn
Detaljer1 c 6. 1 c 2. b Olav får 1500 kr. Trine får 3000 kr. c 4 Oppgave 39 165,50 kr 6 Oppgave 40 a 0 b 28 c 9 d F.eks. 15 8 e
Fsit Fsit I gng igjen Oppgve 0 Oppgve > < > < Oppgve 9 Oppgve 6 6 Oppgve = < < < Oppgve 6 0 0 0 0 Oppgve 7 6 6 6 Oppgve 0,7 000 Oppgve 9 0,09 700 0,79 7 Oppgve 0 0, 0, 0, 0, Oppgve 0,07 0,7,,7 Oppgve Oppgve
DetaljerDELPRØVE 2 (35 poeng)
DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.
DetaljerMATEMATIKKPRØVE 11. FEBRUAR.
MATEMATIKKPRØVE 11. FEBRUAR. Nvn: Klsse: DELPRØVE 1 uten lommeregner og p (41 poeng) Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver er det en regnerute. Her skl du føre oppgven oversiktlig
Detaljer2 Tallregning og algebra
Tllregning og lger KATEGORI. Regnerekkefølge Oppgve.0 Regn uten digitlt hjelpemiddel. + ( + ) ( ) Oppgve. Regn uten digitlt hjelpemiddel. Oppgve. Regn ut med og uten digitlt hjelpemiddel. + (7 + ) ( 9)
DetaljerEksempeloppgaver 2014 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 19 millirder 9 10 = 19 10 = 1,9 10 0,089 10 = 8,9 10 10 = 8,9 10 Oppgve 6 6 8 Prosentvis
Detaljert-r t_t T 4 Hvorfor arbeider vi? I-l II l- l=i 2 Vokabular 1 Hva er viktig med jobb? Je V Sett kryss og diskuter.
Hvorfor reider vi? 1 Hv er viktig med jo? Sett kryss og diskuter. For meg er det viktig à treffe mennesker! Ti 3 Er Det er lnn som er viktisstl Jeg symes det er viktig á fà ruke evnene mine. Det er viktig
DetaljerFag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012
Loklt gittt eksmen Eksmen Fg: Mtemtikk 1T-Y for yrkesfg for elever og privtisterr Fgkode: MAT1006 Eksmensdto: 16. jnur 2012 Antll sider i oppgven: 7 inklusiv forside og opplysningsside Del 1: oppgve 1-5
DetaljerBrøkregning og likninger med teskje
Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere
DetaljerKapittel 2 Mer om tall og tallregning Mer øving
Kpittel Mer om tll og tllregning Mer øving Oppgve Plsser isse tllene på ei tllinje:,, 9,, Skriv røkene i stigene rekkefølge. Skriv lle tllene som esimltll Oppgve Skriv en røk og fortell hv som er teller,
Detaljer1P kapittel 3 Funksjoner
Løsninger til oppgvene i ok 1P kpittel 3 Funksjoner Løsninger til oppgvene i ok 3.1 Origo hr koordintene (0, 0). Vi finner koordintene til punktene ved å lese v punktets verdi på x-ksen og y-ksen. A =
DetaljerTerminprøve Matematikk for 1P 1NA høsten 2014
Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker
Detaljer3.7 Pythagoras på mange måter
Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen
DetaljerEneboerspillet. Håvard Johnsbråten
Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte
Detaljer... JULEPRØVE
Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres
Detaljer5: Algebra. Oppgaver Innhold Dato
5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet
Detaljer6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper
Brøk I dette kpitlet lærer elevene om røk som del v en helhet, der helheten kn være en mengde, en lengde eller en figur, og de skl lære om røk som del v en mengde. De skl lære å finne delen når det hele
DetaljerMer øving til kapittel 3
Mer øving til kpittel 3 KAPITTEL 3 FUNKSJONER Oppgve 1 Tegn et koordintsystem og merk v punktene (1, 5) d (3, 2) ( 2, 3) e ( 3, 5) (4, 0) f (0, 4) Oppgve 2 Hvilke koordintpr hr de ulike punktene i koordintsystemet?
DetaljerPer W Nieuwejaar Rederisjef Strønen Einar einarst@imr.no Sørensen Ørjan
Hvforskningsinstituttet Ref.i: Dok.i: KS&SMS.5.3-01 D00805 Teknisk toktleer rpport Skjem Versjon: 1.09 Opprettet: 06.06.2012 Skrevet v: KRR Gokjent v: PWN Gjeler fr: 30.10.2012 Hensikten me utfylling v
Detaljer1T kapittel 2 Likninger
Løsninger til oppgvene i ok T kpittel Likninger Løsninger til oppgvene i ok. 6+ 8 6 8 + 5 5 5 6 VS 6 8 HS 6 ( 6) + 8 6 + 8 8 Sien VS HS når 6, er 6 en løsning på likningen. ( + ) 6 + 6 6 VS HS ( + ) 5
DetaljerMer øving til kapittel 2
Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem
Detaljerx 1, x 2,..., x n. En lineær funksjon i n variable er en funksjon f(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n,
Introduksjon Velkommen til emnet TMA45 Mtemtikk 3, våren 9 Disse nottene inneholder det vi gjennomgår i forelesningene, og utgjør, smmen med lle øvingene, pensum for emnet Læreoken nefles som støttelittertur
DetaljerIntegrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016
Integrsjon et supplement til Klkulus Hrl Hnhe-Olsen 14. novemer 2016 Dette nottet er ment som et supplement og elvis lterntiv til eler v kpittel 8 i Tom Linstrøm: Klkulus (åe 3. og 4. utgve). Foruten et
DetaljerS1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka
S1 kpittel 8 Eksmenstrening Løsninger til oppgvene i læreok E1 995 995 5 + 5 (995 5) (995 + 5) + 5 990 1000 + 5 990 000 + 5 990 05 E E (61+ 9) 51 49) (51+ 49) 61 9 (61 9) 51 49 ( 100 100 11 1997 00 199
Detaljer1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka
1T kpittel 3 Funksjoner Løsninger til oppgvene i læreok Oppgve 3.1 Origo er skjæringspunktet mellom førsteksen og ndreksen. Koordintene til origo er ltså (0, 0). Førstekoordinten til punktet A er 15, og
DetaljerAndre funksjoner som NAND, NOR, XOR og XNOR avledes fra AND, To funksjoner er ekvivalente hvis de for alle input-kombinasjoner gir
2 1 Dgens temer Dgens temer hentes fr kpittel 3 i Computer Orgnistion n Arhiteture Kort repetisjon fr forrige gng Komintorisk logikk Anlyse v kretser Eksempler på yggelokker Forenkling vh. Krnugh-igrm
DetaljerYF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka
YF kpittel 10 Eksmenstrening Løsninger til oppgvene i læreok Uten hjelpemidler Oppgve E1 5 + 5 + 6 11 5 + 4 (5 + ) 5 + 4 7 10 6 + 8 d + ( + 1) 5 + 4 5 + 16 5 + 10 5 4 + 4 4 + 8 1 + + + + + + + + 49 49
DetaljerDel 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2
Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten
DetaljerR1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka
Løsninger til oppgvene i ok R1 kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Kpitteltest Del 1 Uten hjelpemidler Oppgve 1 De fem lppene kn ordnes i rekkefølge på 5! = 15 = forskjellige måter. Vi kn
DetaljerALTERNATIV GRUNNBOK BOKMÅL
Anne Rsch-Hlvorsen Oddvr Asen Illustrtør: Bjørn Eidsvik 7B NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 2011 Mterilet i denne publiksjonen er omfttet v åndsverklovens bestemmelser. Uten særskilt
DetaljerFaktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.
Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.
DetaljerKapittel 10 Setningsledd
Kpittel 10 Setningsledd 10.1 Kn de hjelpe oss? J, dem kn vi lltid stole på. Bestemor hns or i Spni. Henne esøker hn hver vinter. I dg inviterte mnnen som or i noleiligheten meg på kffe. De unge i yen krever
DetaljerFag: Matematikk 1P for yrkesfag. Eksamensdato: sommerskolen
Loklt gitt eksmen 2011 Eksmen Fg: Mtemtikk 1P for yrkesfg Fgkode: MAT1001 Eksmensdto: sommerskolen Del 1: oppgve 1 6 Del 2: oppgve 7 11 Antll sider til smmen i del 1 og 2 inkl. forside: 10 Del 3: oppgve
DetaljerSem 1 ECON 1410 Halvor Teslo
Løsningsforslg til seminr i ECON : Internsjonl økonomi.seminruke V ) Den økonomien vi her står ovenfor produserer re to goder, tø og vin. Altså vil lterntivkostnden for den ene vren nødvendigvis måles
DetaljerMatematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon
Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross
DetaljerInnledning. Kategori Regnerekkefølge. 1.2 Bokstavregning og parenteser
Innledning Ktegori. Regnerekkefølge Oppgve.0 Regn uten lommeregner. b) ( ) d) ( ) Oppgve. Regn uten lommeregner. b) d) Oppgve. Regn ut med og uten lommeregner. b) ( ) d) ( 9) Oppgve. Regn ut med lommeregner.
DetaljerE K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET
E K S A M E N UTDANNINGSDIREKTORATET Mtemtikk 3MX Elevr/Elever Privtistr/Privtister AA654/AA656 8. desember 004 Vidregånde kurs II / Videregående kurs II Studieretning for llmenne, økonomiske og dministrtive
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Melk: 2 14,95 2 15 30 Potet: 2,5 8,95 2,5 9 22,5 Ost: 0,5 89,95 0,5 90 45 Skinke: 0, 2 199
Detaljer2P kapittel 2 Funksjoner
Løsninger til oppgvene i ok P kpittel Funksjoner Løsninger til oppgvene i ok.1 D f = [ 1, 6,5] V = [ 1,4] f V f. D f Vnnstnden kl. 16 er gitt i punktet A på figuren. Vnnstnden vr c. 190 cm. Aschehoug www.lokus.no
DetaljerLokalt gitt eksamen 2010. Fag: Matematikk 1P for yrkesfag. Eksamensdato: 18. august
Loklt gitt eksmen 2010 Eksmen Fg: Mtemtikk 1P for yrkesfg Fgkode: MAT1001 Eksmensdto: 18. ugust Del 1: oppgve 1 4 Del 2: oppgve 5 10 Antll sider til smmen i del 1 og 2 inkl. forside: 10 Del 3: oppgve 11
DetaljerPraktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen
Loklt gitt eksmen 2013 Prktiske opplysninger til rektor Fg: MATEMATIKK 1TY for yrkesfg Fgkode: MAT1006 Eksmensdto: 30.5.2013 Antll foreredelsesdger: Ingen Forhold som skolen må være oppmerksom på: Eksmenen
DetaljerKompetansemål: Sti 1 Sti 2 Sti 3 2.1 Enheter for lengde og areal 2.2 Målenøyaktighet 200, 201, 202, 206, 208 209, 211, 212, 213, 215
2 Geometri Kompetnsemål: Mål for opplæringen er t eleven skl kunne ruke formlikhet og Pytgors setning til eregninger og i prktisk reid løse prktiske prolemer knyttet til lengde, vinkel, rel og volum ruke
DetaljerHistorien om universets tilblivelse
Historien om universets tilblivelse i den første skoleuka fortalte vi historien om universets tilblivelse og for elevene i gruppe 1. Her er historien Verden ble skapt for lenge, lenge siden. Og det var
DetaljerDEL 1 Uten hjelpemidler
Eksmen høsten 013 Løsninger Eksmen høsten 013 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 150 sider Vi finner først hvor mnge
DetaljerEksamen høsten 2015 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 30 Vekstfktoren er 1 1 0,30 0, 70. 100 N GV N V G 80 800 V 400 0,70 7 Vren kostet 400 kr
DetaljerYF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka
YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med 10. 14 cm 14 10 mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med 10
DetaljerTillegg til kapittel 2 Grunntall 10
8.09.0 Kvrtsetningene Tillegg til kpittel Grunntll 0 Ne læringsmål i reviert lærepln 0 Mål for et u skl lære: kunne ruke kvrtsetningene til å multiplisere to prentesuttrkk kunne fktorisere ve å ruke kvrtsetningene
Detaljer1 Tall og variabler. Oppgave Regn ut uten lommeregner. Oppgave Sett inn symbolet eller i de tomme rutene. a) 9 N b) π Q c) 3 R
Tll og vribler. TALL OG TALLREGNING Oppgve.0 Sett inn smbolet eller i de tomme rutene. ) N π Q R Oppgve. Sett inn smbolet eller i de tomme rutene. { } { π } ), 0,,,,,,, Oppgve. Skriv disse mengdene på
DetaljerMicrosoft PowerPoint MER ENN KULEPUNKTER
Mirosoft PowerPoint MER ENN KULEPUNKTER INNHOLDSFORTEGNELSE: Opprette en ny presentsjon: «Ml» vs. «tomt skll» Bilder: Sette inn ilder fr Google ildesøk. Bilder: Sette inn llerede lgrede ilder. Bilder:
Detaljer2 Symboler i matematikken
2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,
DetaljerOppgave N2.1. Kontantstrømmer
1 Orientering: Oppgvenummereringen leses slik: N står for nettsiden, første siffer står for kpittelnummer og ndre for oppgvenummer. Oppgve N2.1. Kontntstrømmer En edrift vurderer å investere 38 millioner
DetaljerEffektivitet og fordeling
Effektivitet og fordeling Vi skl svre på spørsmål som dette: Hv etyr det t noe er smfunnsøkonomisk effektivt? Er det forskjell på smfunnsøkonomisk og edriftsøkonomisk effektivitet? Er det en motsetning
DetaljerEVALUERINGS- RAPPORT NOTAT SAMMENDRAG X X Helge Hugdahl 18
EVALUERINGS- RAPPORT GJELDER 16. Nsjonle seminr om Hydrogeologi og Miljøgeokjemi GÅR TIL Jn Crmer Rolf Tore Ottesen VP-møtet BEHANDLING X X NOTAT UTTALELSE ORIENTERING X ETTER AVTALE PROSJEKT DATO SAKSBEARBEIDER/FORFATTER
DetaljerFasit. Oppgavebok. Kapittel 3. Bokmål
Fsit Oppgveok Kpittel Bokmål KAPITTEL Brøk. og d og. c og c og e og f 0 og 0.. c d c e. d f 0. = c d e f. > c < e < > d > f < g h. kg. c 00 e d f. teskjeer.,,, 0,. = og = =.. c d 0. c c d.0 c d e f 0.
DetaljerPåbygging kapittel 6 Sannsynlighet Løsninger til oppgavene i læreboka
Påygging kpittel 6 Snnsynlighet Løsninger til oppgvene i læreok Oppgve 6.1 (Vi nøyer oss me å lge én tell, hvor vi også fører inn svrene fr oppgve og.) Antll kst 50 100 500 1000 5000 10 000 Antll enere
Detaljer1T kapittel 1 Algebra Løsninger til oppgavene i læreboka
T kpittel Alger Løsninger til oppgvene i læreok Oppgve. 0 8 ( 0) + 0 + ( 0) 0 8 Oppgve. 7 ( ) + + ( ) 7 Oppgve. ( ) + Oppgve. 0 ( ) 0 ( 0) ( ) 0 ( 0) : ( ) 0 : ( ) Oppgve. ( ) ( ) ( ) (,) ( ) (,) 9 Oppgve.
DetaljerMATERIALLÆRE for INGENIØRER
LØSNINGSFORSLAG! EKSAMEN EMNENAVN: MATERIALLÆRE for INGENIØRER EMNENUMMER: TEK2011 EKSAMENSDATO: 14. desember 2017 TID: 3 timer: KL 09.00 - KL 12.00 EMNEANSVARLIG: Henning Johnsen ANTALL SIDER UTLEVERT:
DetaljerLøsningsforslag til eksamen i INF2270
Løsningsforslg til eksmen i INF2270 Omi Mirmothri (oppgve 1 4) Dg Lngmyhr (oppgve 5 6) 13. juni 2014 Eksmen 2270 V2013 - Fsit 1) Konverter følgene tll til inært. Vis utregning (5%). (43)es 43 / 2 = 21
DetaljerNøtterøy videregående skole
Til elever og forestte Borgheim, 1. ugust 2018 Viktig info om vlg v mtemtikkfg for elever på vg1 studiespesilisering I vg1 får elevene vlget mellom to ulike mtemtikkfg. Mtemtikk 1T (teoretisk) og Mtemtikk
DetaljerE K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 13. desember HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID:
Høgskolen i Gjøvik Avdeling for Teknologi E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 13. desember 1999 KLASSE: 98HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID: 09.00-14.00
DetaljerR1 kapittel 7 Sannsynlighet
Løsninger til oppgvene i ok R kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Oppgve 7. Hvis A hr inntruffet, ltså t den første kul er lå, så er det tre røde og én lå kule igjen i esken når vi skl trekke
DetaljerADVARSEL viser en potensielt farlig situasjon som kan føre til dødsfall eller alvorlige personskader hvis den ikke unngås.
Hurtigstrtguie Strt her DCP-7055 / DCP-7057 DCP-7060D / DCP-7065DN Les Sikkerhet og juriisk informsjon-heftet før u setter opp mskinen in. Les eretter enne Hurtigstrtguien for korrekt oppsett og instllsjon.
Detaljer