Andre funksjoner som NAND, NOR, XOR og XNOR avledes fra AND, To funksjoner er ekvivalente hvis de for alle input-kombinasjoner gir
|
|
- Patrik Claussen
- 9 år siden
- Visninger:
Transkript
1 2 1 Dgens temer Dgens temer hentes fr kpittel 3 i Computer Orgnistion n Arhiteture Kort repetisjon fr forrige gng Komintorisk logikk Anlyse v kretser Eksempler på yggelokker Forenkling vh. Krnugh-igrm Boolsk lger Brukes for å eskrive funksjoner i igitle kretser Tre grunnleggene funksjoner: AND, OR og NOT Anre funksjoner som NAND, NOR, XOR og XNOR vlees fr AND, OR og NOT En Boolsk funksjon kn eskrives enten vh. Snnhetsveritell eller Funksjonsforskrift To funksjoner er ekvivlente hvis e for lle input-kominsjoner gir smme output Design og nlyse v logiske kretser En komintorisk krets hr ingen hukommelse, vs t output-veriene kun er vhengig v nåværene input-verier. 3 I en sekvensiell krets er output-veriene vhengige v åe nåværene og tiligere input-verier, mo hr en hukommelse. 4 Design er prosessen me å sette smmen minre lokker til større mouler, mens nlyse er å finne ut hv en krets gjør. For å kontrollere t et esign implementerer en ønskee funksjonen må mn teste og nlysere kretsen etter t en er ferig. Som regel ikke mulig å teste fullstenig for lle input-kominsjoner Eksempel: kretsnlyse Steg 1: Sett symoler på utgngen(e) og mellomsignler, vs signler mellom porter: x x 4 1 x 5 x 2 x 6 F x 3
2 6 Steg 2: Utle likningene for mellomsignlene og sett inn inngngssignlene: x 1 = x 2 = x 3 = x 4 = x 5 = x 6 = 5 Steg 3: Utle tilslutt uttrykket for utgngssiglet F ve å sette inn veriene for x 4, x 5 og x 6 som funksjon v inngngssignlene, og F= x 4 + x 5 + x 6 = Kretsesign Vnligvis rukes re NAND eller re NOR-porter for å implementere oolske funksjoner. NAND (NOR) funksjonen er universell: Den kn implementere enhver oolsk funksjon. Bruker følgene regler: e Morgns teorem () = + ( ) = Trenger ofte større yggelokker enn re AND, OR og NOT-porter (eller NAND/NOR) når mn esigner kretser. Mnge mye rukte mouler hr egne nvn: 7 Multiplexer Dekoer Enkoer Aer Lth (1-its minnekrets) Flip-flop (1-its minnekrets) Skiftregister (Fler-its minnekrets) Multiplekser Multiplekseren sener ett v mnge input-signler ut på en output-linje. Hvilken inputlinje som velges estemmes v selet-signlene 8 Antll input-linjer er llti en potens v MUX F S 1 S 0
3 10 9 Selet-linjene er innsignler, og utgngssignlet lik ett v e fire inngngssignlene: S1 S0 F Kn esignes f.eks slik: Demultiplekser Demultiplekseren gjør et motstte v multiplekseren og sener ett inputsignl ut på en v mnge output-linjer. Hvilken outputlinje som velges estemmes v selet-signlene Antll output-linjer er llti en potens v 2 F3 F2 F1 F0 S1 S0 Dekoer En ekoer setter én v 2 n outputlinjer til 1, vhengig v input-verien på n input-linjer (konverterer fr 2-tlls- til 1-tllssystemet) Dekoer F 3 F 2 F 1 F 0 Snnhetsveritellen for en ekoer er som følger 1 0 F3 F2 F1 F Dekoeren kn implementeres slik:
4 14 13 Enkoer En enkoer utfører motstt opersjon v en ekoer og setter 2 n outputsignler som funksjon v verien på n inputsignler 3 2 E1 1 0 E0 Krnughigrm Spesiell snnhetsveri-tell som rukes til å forenkle Boolske funksjoner Tellen tegnes som et rutenett me 2 n ruter for en funksjon me n vrile Lngs siene merkes e ruter hvor hver vriel er 1 (ikke-invertert) og 0 16 (invertert). Eksempel: Krnughigrm for funksjon me 2 vrile og = 0 = 1 = 0 = 1 Krnughigrm for funksjon me 3 vrile = 0 = 1 15 = 0 = 1 = 0 = 0 = 1 Krnughigrm for funksjon me 4 vrile = 0 = 1 = 0 = 0 = 1 = 1 = 0 = 0 = 0 = 1
5 18 17 Forenkling v funksjoner Steg 1: Tegn Krnugh-igrm v riktig størrelse Steg 2: Sett et 1 i e rutene er for hvor funksjonen er 1, og 0 ellers Eksempel: Krnugh-igrm for funksjonen F= + + Forenkling v funksjoner (forts.) Steg 3: Kominér noruter me 1 til så store som mulig rektngler me 1, 2, 4, 8 osv ruter. Ruter me 1 kn got eles v flere rektngler for å få em så store som mulig. Knter/hjørner er noer me nre knter/hjørner Eksempel: F= + + Forenkling v funksjoner (forts.) Steg 4: For hvert rektngel fr steg 3, finn ut hvilke vrile som ikke skifter veri innen rektngelet 19 Steg 5: De vrilene som ikke enrer veri innenfor et rektngel AND es smmen og utgjør et le i en forenklee funksjonen Steg 6: Den forenklee funksjonen estår v lle leene fr steg 5 OR et smmen Eksempel: Forenkle funksjonen F= xyz + x y z + xzw + xy zw 20
6 Merkner til Krnughigrm (1) 21 Krnugh-igrm rukes sjelen for funksjoner me 5 eller mer vrile 22 e = 0 e = 1 Merkner til Krnughigrm (2) Hvor mn plsserer vrielnvnene er et smme, re mn får listet opp lle mulige kominsjoner
! Brukes for å beskrive funksjoner i digitale kretser. ! Tre grunnleggende funksjoner: AND, OR og NOT
Dgens temer Boolsk lger! Brukes for å eskrive funksjoner i igitle kretser! Dgens temer hentes fr kpittel 3 i Computer Orgnistion n Arhiteture! Kort repetisjon fr forrige gng! Komintorisk logikk! Tre grunnleggene
DetaljerDagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and. ! Kort repetisjon fra forrige gang
Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Kort repetisjon fra forrige gang! Kombinatorisk logikk! Analyse av kretser! Eksempler på byggeblokker! Forenkling
DetaljerDagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Kort repetisjon fra forrige gang. Kombinatorisk logikk
Dagens temaer Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture Kort repetisjon fra forrige gang Kombinatorisk logikk Analyse av kretser Eksempler på byggeblokker Forenkling
Detaljer! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før
Dgens temer Enkoder! Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture! Dekoder: En v 2 n output linjer er høy, vhengig v verdien på n inputlinjer! Enkoder/demultiplekser (vslutte fr
DetaljerDagens temaer. Dagens temaer er hentet fra P&P kapittel 3. Motivet for å bruke binær representasjon. Boolsk algebra: Definisjoner og regler
Dagens temaer Dagens temaer er hentet fra P&P kapittel 3 Motivet for å bruke binær representasjon Boolsk algebra: Definisjoner og regler Kombinatorisk logikk Eksempler på byggeblokker 05.09.2003 INF 103
Detaljer2-komplements representasjon. Binær addisjon. 2-komplements representasjon (forts.) Dagens temaer
2 Dgens temer Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture Kort repetisjon 2-komplements form Binær ddisjon/sutrksjon Aritmetisk-logisk enhet (ALU) Sekvensiell logikk RS-ltch 2-komplements
DetaljerRepetisjon digital-teknikk. teknikk,, INF2270
Repetisjon digital-teknikk teknikk,, INF227 Grovt sett kan digital-teknikk-delen fordeles i tre: Boolsk algebra og digitale kretser Arkitektur (Von Neuman, etc.) Ytelse (Pipelineling, cache, hukommelse,
Detaljera 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g.
Mtemtikk for ungomstrinnet KAPITTEL 4 TALL OG ALGEBRA MER ØVING Oppgve 1 Oppgve 2 Se på uttrykket A = g h. Hv forteller e ulike okstvene? Se på uttrykket O = 2π. Hv står e ulike symolene for? Forklr hv
DetaljerLøsningsforslag til eksamen i INF2270
Løsningsforslg til eksmen i INF2270 Omi Mirmothri (oppgve 1 4) Dg Lngmyhr (oppgve 5 6) 13. juni 2014 Eksmen 2270 V2013 - Fsit 1) Konverter følgene tll til inært. Vis utregning (5%). (43)es 43 / 2 = 21
DetaljerDagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and
Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Enkoder/demultiplekser (avslutte fra forrige gang)! Kort repetisjon 2-komplements form! Binær addisjon/subtraksjon!
DetaljerTall i arbeid Påbygging terminprøve våren 2013
Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer
DetaljerINF1400. Karnaughdiagram
INF4 Karnaughdiagram Hvor er vi Vanskelighetsnivå Binær Porter Karnaugh Kretsdesign Latch og flipflopp Sekvensiell Tilstandsmaskiner Minne Eksamen Tid juleaften Omid Mirmotahari 2 Hva lærte vi forrige
DetaljerOppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve.
Mtemtikk for ungomstrinnet KAPITTEL 5 STATISTIKK OG SANNSYNLIGHET MER ØVING Oppgve 1 Digrmmet neenfor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4?
DetaljerIntegrasjon Skoleprosjekt MAT4010
Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning
DetaljerKapittel 4 Tall og algebra Mer øving
Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en
DetaljerIntegrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016
Integrsjon et supplement til Klkulus Hrl Hnhe-Olsen 14. novemer 2016 Dette nottet er ment som et supplement og elvis lterntiv til eler v kpittel 8 i Tom Linstrøm: Klkulus (åe 3. og 4. utgve). Foruten et
Detaljerx 1, x 2,..., x n. En lineær funksjon i n variable er en funksjon f(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n,
Introduksjon Velkommen til emnet TMA45 Mtemtikk 3, våren 9 Disse nottene inneholder det vi gjennomgår i forelesningene, og utgjør, smmen med lle øvingene, pensum for emnet Læreoken nefles som støttelittertur
DetaljerBARN og DIGITALE MEDIER 2012 Foreldreundersøkelsen, 1-12 år
BARN og DIGITALE MEDIER 2012 Forelreunersøkelsen, 1-12 år Weunersøkelse 1500 forelre me rn i leren 1-12 år Bkgrunnsinformsjon Kjønn Mnn Kvinne Aler (netrekksmeny?) Hr u rn i leren mellom 1-12 år? (FILTER:
DetaljerTall i arbeid Påbygging terminprøve våren 2014
Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15
DetaljerDigital CMOS VDD A Y INF1400 Y=1 A=0 A=1 Y=0. g=0 g=1. nmos. g=0 g=1. pmos. 3. En positiv strøm (strømretning) vil for en nmos transistor
igitl MOS INF4 NGVR ERG efinijon v inære verier:. Logik V. 2. Logik V SS, GN. I. Trnitor om ryter 3. En poitiv trøm (trømretning) vil for en pmos trnitor llti gå fr ource til rin. II. MOS Inverter. nmos
DetaljerITPE2400/DATS2400: Datamaskinarkitektur
ITPE2400/DATS2400: Datamaskinarkitektur Forelesning 6: Mer om kombinatoriske kretser Aritmetikk Sekvensiell logikk Desta H. Hagos / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art
DetaljerMer om algebra. Sti 1 Sti 2 Sti 3 500, 501, 503, 504, 505, 511 513, 514, 515, 516, 517, 519, 520, 521, 525 531, 534, 535, 538
5 Mer om lger Kompetnsemål: Mål for opplæringen er t eleven skl kunne regne me rsjonle og kvrtiske uttrykk me tll og okstver og ruke kvrtsetningene til å fktorisere lgeriske uttrykk løse likninger, ulikheter
DetaljerKapittel 5 Statistikk og sannsynlighet Mer øving
Kpittel 5 Sttistikk og snnsynlighet Mer øving Oppgve 1 Digrmmet nefor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4? Hvor mnge elever er et i klssen?
DetaljerBasisoppgaver til 2P kap. 1 Tall og algebra
Bsisoppgver til P kp. Tll og lger. Potenser. Nye potenser. Store og små tll. Stnrform. Tllsystemer. Femtllsystemet. Totllsystemet.7 Prosentregning me vekstfktor.8 Renteregning Ashehoug www.lokus.no Ashehoug
DetaljerHva gikk vi gjennom forrige uke? Omid Mirmotahari 3
Boolsk Algebra Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3 Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter
DetaljerLøsningsforslag til Obligatorisk oppgave 2
Løsningsforslg til Oligtorisk oppgve INF1800 Logikk og eregnrhet Høsten 008 Alfred Brtterud Oppgve 1 Vi hr lfetet A = {} og språkene L 1 = {s s } L = {s s inneholder minst tre forekomster v } L 3 = {s
DetaljerLøsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.
Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.
DetaljerOppsummering av digitalteknikkdelen
Oppsummering av digitalteknikkdelen! Følgende hovedtemaer er gjennomgått! Boolsk Algebra! von Neuman-arkitektur! Oppbygging av CPU! Pipelining! Cache! Virtuelt minne! Interne busser 09.05. INF 1070 1 Boolsk
DetaljerLØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302
Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Sie 1 v 6 LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 12. esemer 2006 Oppgve 1 ) Skriv ne efinisjonen på en tutologi. Svr: En tutologi
DetaljerDatamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur
Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur Lærebok: Computer organization and architecture/w. Stallings. Avsatt ca 24 timers tid til forelesning. Lærestoffet bygger på begrepsapparat
DetaljerINF2270. Boolsk Algebra og kombinatorisk logikk
INF227 Boolsk Algebra og kombinatorisk logikk Hovedpunkter Boolsk Algebra og DeMorgans Teorem Forkortning av uttrykk ved regneregler Utlesing av sannhetsverdi-tabell; Max og Min-termer Forkortning av uttrykk
DetaljerOppgaver i matematikk, 9-åringer
Oppgver i mtemtikk, 9-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. For 4. klsse enyttes nå etegnelsen mønstre for et som i 1995 le omtlt som lger. Oppgvene er innelt i isse emnene: Tll Geometri
DetaljerDagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form
Dagens tema Dagens temaer hentes fra kapittel 3 i læreboken Repetisjon, design av digitale kretser Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works
DetaljerDagens temaer. Sekvensiell logikk: Kretser med minne. D-flipflop: Forbedring av RS-latch
Dagens temaer Sekvensiell logikk: Kretser med minne RS-latch: Enkleste minnekrets D-flipflop: Forbedring av RS-latch Presentasjon av obligatorisk oppgave (se også oppgaveteksten på hjemmesiden). 9.9.3
Detaljer1 Tallregning og algebra
Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn
Detaljer... ÅRSPRØVE 2014...
Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl
DetaljerNotater: INF2080. Veronika Heimsbakk veronahe@student.matnat.uio.no. 14. oktober 2014. 1 Intro 3
Notter: INF2080 Veronik Heimskk veronhe@student.mtnt.uio.no 14. oktoer 2014 Innhold 1 Intro 3 2 Terminologi 3 2.1 Mengder.............................. 3 2.2 Boolsk logikk........................... 3
DetaljerOppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr
KAPITTEL 1 TALL OG TALLREGNING FLERE UTFORDRINGER Oppgve 1 Du hr sifrene A 1 3 5 7 9 og B 2 4 6 8 Ve å ruke tre v sifrene i enten A eller B skl u lge ett tll så nærme 500 som mulig. Du kn re ruke ett siffer
DetaljerIN1020. Logiske porter om forenkling til ALU
IN2 Logiske porter om forenkling til ALU Hovedpunkter Utlesing av sannhetsverdi-tabell; Max og Min-termer Forenkling av uttrykk med Karnaugh diagram Portimplementasjon Kretsanalyse Adder og subtraktor
DetaljerOppgaver i matematikk, 13-åringer
Oppgver i mtemtikk, 13-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. Oppgvene er innelt i isse emnene: Tll Geometri Alger Dtrepresentsjon og snnsynlighet Målinger Proporsjonlitet Emnetilhørighet
DetaljerEneboerspillet. Håvard Johnsbråten
Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte
DetaljerFerdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter
Boolsk Algebra Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter Generelle kompetansemål:
Detaljer1T kapittel 1 Algebra Løsninger til oppgavene i læreboka
T kpittel Alger Løsninger til oppgvene i læreok Oppgve. 0 8 ( 0) + 0 + ( 0) 0 8 Oppgve. 7 ( ) + + ( ) 7 Oppgve. ( ) + Oppgve. 0 ( ) 0 ( 0) ( ) 0 ( 0) : ( ) 0 : ( ) Oppgve. ( ) ( ) ( ) (,) ( ) (,) 9 Oppgve.
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Vrisjonsredden er differnsen mellom største og minste verdi. Største verdi vr 20 poeng. Minste
DetaljerDagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er
Dagens temaer Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture Sekvensiell logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre INF2270 1/19
DetaljerForelesning 3. Karnaughdiagram
Forelesning 3 Karnaughdiagram Hovedpunkter Karnaughdiagram Diagram med 2-4 variable Don t care tilstander Alternativ utlesning (leser ut ere) XOR implementasjon NAND implementasjon ved DeMorgan 2 Bakgrunn,
DetaljerDagens temaer. temaer hentes fra kapittel 3 i Computer Organisation. av sekvensielle kretser. and Architecture. Tilstandsdiagram.
Dagens temaer 1 Dagens Sekvensiell temaer hentes fra kapittel 3 i Computer Organisation and Architecture logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre Sekvensiell
Detaljer5: Algebra. Oppgaver Innhold Dato
5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet
DetaljerTFE4101 Krets- og Digitalteknikk Vår 2016
Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekomuniksjon TFE4101 Krets- og Digitlteknikk Vår 2016 Løsningsforslg Øving 4 1 Oppgve 1 R 1 = 10 R 2 = 8 V = 600 V R 3 = 40
Detaljer3.7 Pythagoras på mange måter
Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen
DetaljerTDT4160 Datamaskiner Grunnkurs 2008. Gunnar Tufte
1 TDT4160 Datamaskiner Grunnkurs 2008 Gunnar Tufte 2 I dag Kva er inni 8051, P4 og UltraSparc Digital logic level (start kapitel 3) VIKTIG MELDING Alle som har brukt NTNU-passord for AoC pålogging må skifte
Detaljer, ~', -~ lalle trykte og skrevne hjelpemidler. I Kalkulator som ikke kan kommunisere med andre.
i G h øgskolen i oslo Emne: Datamaskinarkitektur Emnekode:lOl23 Faglig veileder: Lars Kristiansen. Gruppe(r):, ~', -~ Dato:. - - ~ U..) Eksamenstid: Eksamensoppgaven består av: ntall sider (inkl. I forsiden):
DetaljerEn mengde andre typer som DVD, CD, FPGA, Flash, (E)PROM etc. (Kommer. Hukommelse finnes i mange varianter avhengig av hva de skal brukes til:
2 Dagens temaer Dagens 4 Sekvensiell temaer hentes fra kapittel 3 i Computer Organisation and Architecture Design Flip-flop er av sekvensielle kretser Tellere Tilstandsdiagram og registre Sekvensiell Hvis
DetaljerTRANSISTOR SOM BRYTER anvendt i enkle logiske CMOS
el : Grunnleggene igitl CMO NGVR ERG I. Innhol. pmo trnitor TRNITOR OM RTER nvent i enkle logike CMO porter. erie- og prllellkoling v nno- og pmo trnitorer. Inverter, NN, NOR og generelle porter. Komple-
DetaljerTR ansistor som bryter anvendt i enkle logiske CMOS porter.
el : Grunnleene iitl CMO NGVR ERG I. Innhol TR nitor om ryter nvent i enkle loike CMO porter. erie- o prllellkolin v nno- o pmo trnitorer. Inverter, NN. NOR o enerelle porter. Komplementær CMO me opptrekk
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Vrisjonsredden er differnsen mellom største og minste verdi. Største verdi vr 20 poeng. Minste
DetaljerS1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka
S1 kpittel 8 Eksmenstrening Løsninger til oppgvene i læreok E1 995 995 5 + 5 (995 5) (995 + 5) + 5 990 1000 + 5 990 000 + 5 990 05 E E (61+ 9) 51 49) (51+ 49) 61 9 (61 9) 51 49 ( 100 100 11 1997 00 199
Detaljer1 Mandag 1. mars 2010
Mndg. mrs Fundmentlteoremet sier t integrsjon og derivsjon er motstte opersjoner. Vi hr de siste ukene sett hvordn vi på ulike måter kn derivere funksjoner i flere vrible. Nå er turen kommet til den motstte
DetaljerRAPPORT LAB 3 TERNING
TFE4110 Digitalteknikk med kretsteknikk RAPPORT LAB 3 TERNING av June Kieu Van Thi Bui Valerij Fredriksen Labgruppe 201 Lab utført 09.03.2012 Rapport levert: 16.04.2012 FAKULTET FOR INFORMASJONSTEKNOLOGI,
DetaljerYF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka
YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med 10. 14 cm 14 10 mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med 10
Detaljer6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper
Brøk I dette kpitlet lærer elevene om røk som del v en helhet, der helheten kn være en mengde, en lengde eller en figur, og de skl lære om røk som del v en mengde. De skl lære å finne delen når det hele
DetaljerLøsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006)
Løsningsforslag i digitalteknikkoppgaver INF2270 uke 5 (29/1-4/2 2006) Oppgave 1) Bør kunne løses rett fram, likevel: a) E = abcd + a'bc + acd + bcd: cd 00 01 11 10 ab 00 01 1 1 11 1 10 1 De variablene
DetaljerOppgave 5 Et rektangel har en omkrets på 24 cm 2. Hva blir arealet? Dersom lengdene på sidene skal ha heltallige svar, hvor mange løsninger får du?
KAPITTEL 3 GEOMETRI Mer øving kpittel 3 I e første oppgvene skl u gjøre om enheter på en lgeriske måten. Det vil si t når u skl gjøre om mellom relenheter skl u gå veien om å gjøre om mellom lengeenheter.
DetaljerDagens tema. Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er. Tellere og registre
Dagens tema Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture Sekvensiell logikk Flip-flop er Tellere og registre Design av sekvensielle kretser (Tilstandsdiagram) 1/19 Sekvensiell
DetaljerTFE4101 Krets- og Digitalteknikk Høst 2016
Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon TFE40 Krets- og Digitalteknikk Høst 206 Løsningsforslag Øving 6 Teknologi-mapping a) Siden funksjonen T er på
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: MAT1140 Strukturer og rgumenter Eksmensdg: Mndg 22. jnur 2018 Tid for eksmen: 09:00 13:00 Oppgvesettet er på 7 sider. Vedlegg: Ingen
DetaljerINF1400 Kap 02 Boolsk Algebra og Logiske Porter
INF4 Kap 2 Boolsk Algebra og Logiske Porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)
Detaljer... JULEPRØVE 9. trinn...
.... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver
Detaljer1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)
Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5
DetaljerLøsningsforslag til eksamen i INF2270
Løsningsforslag til eksamen i INF227 Oppgave 9 Omid Mirmotahari Oppgave 6 Dag Langmyhr. juni 24 Eksamen INF227 Sensorveiledning Oppgave 2 Kretsforenkling Hva er funksjonsuttrykket for Output gitt av A
DetaljerKombinatorisk og synkron logikk. Kapittel 4
Kombinatorisk og synkron logikk Kapittel 4 Eksempel; FIFO First-In-First-Out Eksempelet i boka er en noe redusert fifo (mangler empty flag, full flag osv.), men har de viktigste elementene Denne FIFOen
DetaljerSem 1 ECON 1410 Halvor Teslo
Løsningsforslg til seminr i ECON : Internsjonl økonomi.seminruke V ) Den økonomien vi her står ovenfor produserer re to goder, tø og vin. Altså vil lterntivkostnden for den ene vren nødvendigvis måles
DetaljerForelesning 2. Boolsk algebra og logiske porter
Forelesning 2 Boolsk algebra og logiske porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)
DetaljerTRANSISTOR SOM BRYTER anvendt i enkle logiske CMOS
el : Grunnleggene igitl CMO. Innhol. 2. Trnitor om ryter. Kpittel.3 ie 8. 3. CMO inverter. Kpittel.4. ie 9. 4. NN port. Kpittel.4.2 ie 9. 5. Komintorik logikk. Kpittel.4.3 ie 9 -. 6. NOR port. Kpittel.4.4
Detaljer2 Symboler i matematikken
2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,
Detaljer4 kombinatorisk logikk, løsning
4 kombinatorisk logikk, løsning 1) Legg sammen følgende binærtall uten å konvertere til desimaltall: a. 1101 + 1001 = 10110 b. 0011 + 1111 = 10010 c. 11010101 + 001011 = 11100000 d. 1110100 + 0001011 =
DetaljerPer W Nieuwejaar Rederisjef Strønen Einar einarst@imr.no Sørensen Ørjan
Hvforskningsinstituttet Ref.i: Dok.i: KS&SMS.5.3-01 D00805 Teknisk toktleer rpport Skjem Versjon: 1.09 Opprettet: 06.06.2012 Skrevet v: KRR Gokjent v: PWN Gjeler fr: 30.10.2012 Hensikten me utfylling v
DetaljerIntegralregning. Mål. for opplæringen er at eleven skal kunne
8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene
DetaljerS1 kapittel 4 Logaritmer Løsninger til oppgavene i boka
Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen
DetaljerMer øving til kapittel 3
Mer øving til kpittel 3 KAPITTEL 3 FUNKSJONER Oppgve 1 Tegn et koordintsystem og merk v punktene (1, 5) d (3, 2) ( 2, 3) e ( 3, 5) (4, 0) f (0, 4) Oppgve 2 Hvilke koordintpr hr de ulike punktene i koordintsystemet?
Detaljer... JULEPRØVE
Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres
DetaljerS1 kapittel 1 Algebra Løsninger til oppgavene i læreboka
Løsninger til oppgvene i ok S kpittel Alger Løsninger til oppgvene i læreok. 8 ( ) 5 9. e = = 9 = = 8 5 = = 0 = 0 0 0 = 000 =. e Ashehoug www.lokus.no Sie v Løsninger til oppgvene i ok..5..7 = = + 5 =
DetaljerLitt av matematikken bak solur
Anne Bruvold Revidert mrs 005 Bkgrunn Min interesse for solur le vekket d jeg i 000 skulle holde et lite foredrg om kjeglesnitt og under foreredelsen v dette kom over rtikler som kolet kjeglesnitt med
DetaljerDigitalstyring sammendrag
Digitalstyring sammendrag Boolsk algebra A + A = 1 AA = 0 A + A = A AA = A A + 0 = A A 1 = A A + 1 = 1 A 0 = 0 (A ) = A A + B = B + A AB = BA A + (B + C) = (A + B) + C A(BC) = (AB)C A(B + C) = AB + AC
DetaljerLøsningsforslag til regneøving 6. a) Bruk boolsk algebra til å forkorte følgende uttrykk [1] Fjerner 0 uttrykk, og får: [4]
Løsningsforslag til regneøving 6 TFE4 Digitalteknikk med kretsteknikk Løsningsforslag til regneøving 6 vårsemester 28 Utlevert: tirsdag 29. april 28 Oppgave : a) Bruk boolsk algebra til å forkorte følgende
Detaljer1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1
TMA4 Høst 6 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 5 5..6 Vi er gitt summen og ønsker å skrive den på formen m k=5 k +, f(i). i= Strtpunktene er henholdsvis
DetaljerMicrosoft PowerPoint MER ENN KULEPUNKTER
Mirosoft PowerPoint MER ENN KULEPUNKTER INNHOLDSFORTEGNELSE: Opprette en ny presentsjon: «Ml» vs. «tomt skll» Bilder: Sette inn ilder fr Google ildesøk. Bilder: Sette inn llerede lgrede ilder. Bilder:
DetaljerKapittel 2 Mer om tall og tallregning Mer øving
Kpittel Mer om tll og tllregning Mer øving Oppgve Plsser isse tllene på ei tllinje:,, 9,, Skriv røkene i stigene rekkefølge. Skriv lle tllene som esimltll Oppgve Skriv en røk og fortell hv som er teller,
DetaljerØvingsforelesning 9: Minimale spenntrær. Daniel Solberg
Øvingsforelesning 9: Minimle spenntrær Dniel Solerg Pln for gen Gjennomgng v øving 8 Minimle spenntrær Kruskl Disjoint Set Forest Prim Noen utvlgte eksmensoppgver 3 Minimle spenntrær Hv er et minimlt spenntre?
Detaljer1 c 6. 1 c 2. b Olav får 1500 kr. Trine får 3000 kr. c 4 Oppgave 39 165,50 kr 6 Oppgave 40 a 0 b 28 c 9 d F.eks. 15 8 e
Fsit Fsit I gng igjen Oppgve 0 Oppgve > < > < Oppgve 9 Oppgve 6 6 Oppgve = < < < Oppgve 6 0 0 0 0 Oppgve 7 6 6 6 Oppgve 0,7 000 Oppgve 9 0,09 700 0,79 7 Oppgve 0 0, 0, 0, 0, Oppgve 0,07 0,7,,7 Oppgve Oppgve
DetaljerFasit. Oppgavebok. Kapittel 2. Bokmål
Fsit Oppgveok Kpittel 2 Bokmål Kpittel 2 Treknteregning 2.1 75 c 50 e 50 70 d 80 f 53 2.2 B og D er rettvinklet A og C er likeeint 2.3 8,9 m 2.4 J Nei c J 2.5 10,4 cm 6,4 cm c 8,9 cm 2.6 ---- 2.7 115 m
DetaljerFaktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.
Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.
DetaljerDel 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2
Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten
DetaljerEksempeloppgaver 2014 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 19 millirder 9 10 = 19 10 = 1,9 10 0,089 10 = 8,9 10 10 = 8,9 10 Oppgve 6 6 8 Prosentvis
DetaljerÅrsprøve 2014 10. trinn Del 2
2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO et matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 igital teknologi Eksamensdag: 3. desember 2008 Tid for eksamen: 14:30 17:30 Oppgavesettet er på 5 sider Vedlegg: 1 Tillatte
Detaljer9 Potenser. Logaritmer
9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner
DetaljerDagens temaer. Dagens temaer hentes fra kapittel 3 i læreboken. Oppbygging av flip-flop er og latcher. Kort om 2-komplements form
Dagens temaer Dagens temaer hentes fra kapittel 3 i læreboken Oppbygging av flip-flop er og latcher Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works
DetaljerDigital representasjon
Digital representasjon Nesten alt elektrisk utstyr i dag inneholder digital elektronikk: PC er, mobiltelefoner, MP3-spillere, DVD/CD-spillere, biler, kjøleskap, TV, fotoapparater, osv osv. Hva betyr digital?
DetaljerKapittel 3. Potensregning
Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller
Detaljer