Oppsummering av digitalteknikkdelen
|
|
- Mikkel Nesse
- 5 år siden
- Visninger:
Transkript
1 Oppsummering av digitalteknikkdelen! Følgende hovedtemaer er gjennomgått! Boolsk Algebra! von Neuman-arkitektur! Oppbygging av CPU! Pipelining! Cache! Virtuelt minne! Interne busser INF
2 Boolsk algebra! Boolsk! Basale! NAND, algebra er sett av regneregler som benyttes for å regne med variable som tar verdiene 0 og 1 operatorer er AND, OR og NOT (alle boolske funksjoner kan uttrykkes med disse) NOR, XOR, XNOR utledes fra AND, OR og NOT! Boolske funksjoner kan uttykkes enten ved en funksjonsforskrift eller en sannhetsverditabell F=ab + bc + ab c a b c F INF
3 Boolsk algebra (forts)! Boolske! Forenklingen funskjoner forenkles slik at de kanimplementeres med færre logiske porter. kan enten gjøres ved å bruke regnereglene, eller Karnaugh-diagram : F = ab + bc + ab c INF
4 Boolsk algebra (forts)! Kretser kan enten være kombinatoriske eller sekvensielle! De sekvensielle kan enten være synkrone eller asynkrone! Kombinatoriske: Uten hukommelse (f.eks ALU)! Sekvensielle: Med hukommelse (f.eks registre og tellere)! Synkrone: Endring i minne skjer synkront med et klokkesignal! Asynkron: Endring i minne skjer uavhengig av klokkesignal! Synkrone sekvensielle kretser modelleres med tilstandsdiagram INF
5 Von Neuman-arkitektur! Enkel modell for organisering av en datamaskin i fem ulike enheter: Input Hukommelse MAR MBR Output Prosesseringsenhet ALU TEMP PC Kontrollenhet IR! Nesten alle dagens CPU er og datamaskiner har denne organiseringen INF
6 Ytelsesforbedring: Pipelining og cache! To viktige teknikker for å øke hastigheten til en CPU er pipelining og cache! Pipelining: Starte eksekvering av en ny instruksjon hver klokkesykel! Cache: Egen type hurtigminne som nesten er like rask som interne registre, men med mye større kapasitet, dog ikke like mye som RAM! Dessuten benyttes også parallell-eksekvering benyttes også der det er mulig, spesielt internt i CPU-hardware (superskalare maskiner)! Men: En av de viktigste årsakene til at maskiner blir raskere er allikevel at transistorene blir mindre, trekker mindre strøm, og kan endre tilstand raskere INF
7 Pipelining! Kan! Med! Forutsetningen sammenlignes med samlebåndsproduksjon:! Isteden for å vente til forrige instruksjon er ferdig eksekvert, setter man i gang neste instruksjon så fort som første steg av forrige instruksjon er ferdig. pipelining øker man antallet instruksjoner som blir ferdig eksekvert per tidsenhet, men: hver instruksjon tar fortsatt like lang tid for at pipelining er at hver enhet som utfører en del av en instruksjon arbeider uavhengig av de andre enhetene i pipelinen INF
8 Pipelining (forts.)! F Uten pipelining Instruksjon 1 Instruksjon 2 Instruksjon 3 D E WB F D E WB F D E WB F D E WB Med pipelining Instruksjon 1 F D F E D F WB E D F Instruksjon 2 WB Instruksjon 3 E WB Instruksjon 4 D E WB Instruksjon 5 Tid (klokke sykler) INF
9 Pipelining (forts.)!! Pipelining! Tilfeller! Hovedårsaken krever at alle stegene hver tar maks en klokkesykel! Spesielt utfordrende for instruksjoner med minneaksess hvor man ikke kan starte en ny instruksjon hver klokkesykel: Stalling til stalling er hasarder av ulike typer:! Ressurshasarder: Mer enn én instruksjon ønsker adgang til samme delte ressurs samtidig! Datahasarder: Benytter en operand/resultat som beregnes av foregående instruksjon! Kontrollhasarder: Må kjenne resultatet fra foregående instruksjon ved betingede hopp INF
10 Cache! Ønsker så mye og rask hukommelse som mulig tilgjengelig for et program under eksekvering, både for instruksjoner og data! Cache-minnet er logisk sett plassert mellom CPUen og RAM! Innholdet i cache vil alltid være et subsett av innholdet i RAM! Siden cache n er mindre en hurtigminnet (RAM) består mesteparten av administrasjonen av cache i å velge ut hvilken del av programmet og hvilke data som skal ligge i cache, og hvilke som må ligge i RAM.! Cache benytter seg av lokalitetsprinsippet:! Instruksjoner/data aksesseres som regel sekvensielt, dvs fra samme område i hukommelsen! Som en konsekvens vil de samme instruksjonene/data også aksesseres nær hverandre i tid INF
11 Cache (forts.)! Cache-kontrolleren må håndetere 4 tilstander av aksess av cache! Read hit! Det skal leses fra hukommelsen og blokken med ordet befinner seg i cache! Data leveres med en gang fra cache n til CPU en! Read miss! Det skal leses fra hukommelsen, men blokken det skal leses fra er ikke i cache! Cache-kontrolleren må bestemme! Hvilken blokk i cache som kan/skal overskrives! Kopiere inn riktig blokk fra RAM til cache! Levere ordet til CPU en! Ved begge read-operasjoner vil innholdet i RAM og innholdet i kopien av blokkene i cache være identiske -> OK INF
12 Cache (forts.)! Write hit! Det skal skrives til hukommelsen og blokken med lokasjonen det skal skrives til ligger i cache! Data skrives til riktig lokasjon i blokken i cache! Write miss! Det skal skrives til hukommelsen og blokken med lokasjonen det skal skrives til ligger ikke i cache! Cache-kontrolleren må bestemme! Hvilken! Kopiere! Besørge blokk i cache som kan/skal overskrives inn riktig blokk fra RAM til cache skriving til riktig lokasjon i cache! Ved begge write-operasjoner vil innholdet ikke innholdet i RAM og innholdet i kopien av blokkene i cache være identiske -> ikke OK INF
13 Virtuell hukommelse! Virtuelt minne: RAM utvides med plass på harddisken, slik at et program kan adressere et større område som RAM enn det som faktisk er tilgjengelig.! Virtuelt minne kan implementeres enten som paging eller segmentation! Paging: Hukommelsen organisert som en én-dimensjonal array hvor hver adresse i sidetabellen refererer til starten av et minneområde med fast lengde! Segmentation (to-nivå paging): Hukommelsen organisert som en todimensjonal array hvor den logiske adressen består av et blokknummer og en startadresse. Sidetabellen gir overgangen fra logisk til fysisk startadresse, og størrelsen på blokken.! Utplukk av sider som skal kastes: LRU! Samme problematikk ved skriving som ved cache (write-back vs. writethrough) INF
14 Input-output! Programmert! Avbruddstyrt! I/O! Direct! Asynkrone I/O:! Bruker to registre for kommunikasjon med periferenheter I/O:! Periferenheter sier selv fra når noe har skjedd med polling:! Periferhenheten avleses med jevne mellomrom Memory Access (DMA):! CPU ikke involvert i overføring av data mellom perifer-enheter vs synkrone busser! Felles klokkesignal eller ikke INF
15 Pensum for digitalteknikkdelen! Følgende! kapittel! Alle kapitler fra læreboka: 3-6, , 9.9 forelesninger og ukeoppgaver INF
Oppsummering digital-teknikk, teknikk, INF2270
Oppsummering digital-teknikk, teknikk, INF227 Grovt sett kan digital-teknikk-delen fordeles i tre: Boolsk algebra og digitale kretser Arkitektur (Von Neuman, etc.) Ytelse (Pipelineling, cache, hukommelse,
DetaljerDagems temaer. kapittel 4 i Computer Organisation and Architecture. av CPU: von Neuman-modellen. Transfer Language (RTL) om hurtigminne (RAM)
Dagems temaer Fra Kort Organisering Register kapittel 4 i Computer Organisation and Architecture om hurtigminne (RAM) av CPU: von Neuman-modellen Transfer Language (RTL) Instruksjonseksekvering Pipelining
DetaljerDagems temaer INF ! Fra kapittel 4 i Computer Organisation and Architecture. ! Kort om hurtigminne (RAM)
Dagems temaer! ra kapittel 4 i Computer Organisation and Architecture! Kort om hurtigminne (RAM)! Organisering av CPU: von Neuman-modellen! Register Transfer Language (RTL)! Instruksjonseksekvering! Pipelining
Detaljerhvor mye hurtigminne (RAM) CPU en kan nyttiggjøre seg av. mens bit ene betraktet under ett kalles vanligvis et ord.
Oppbygging av RAM Sentrale begreper er adresserbarhet og adresserom Adresserbarhet: Antall bit som prosessoren kan tak samtidig i én operasjon (lese- eller skrive-operasjon). 9.. INF Antall bit som kan
DetaljerDagens temaer. Fra kapittel 4 i Computer Organisation and Architecture. Kort om hurtigminne (RAM) Organisering av CPU: von Neuman-modellen
Dagens temaer Fra kapittel 4 i Computer Organisation and Architecture Kort om hurtigminne (RAM) Organisering av CPU: von Neuman-modellen Register Transfer Language (RTL) Instruksjonseksekvering Pipelining
DetaljerDagens temaer. Mer om cache-hukommelse (kapittel 6.5 i Computer Organisation and Architecture ) RAM ROM. Hukommelsesbusser
Dagens temaer Mer om cache-hukommelse (kapittel 6.5 i Computer Organisation and Architecture ) RAM Typer, bruksområder og oppbygging ROM Typer, bruksområder og oppbygging Hukommelsesbusser 1 Cache (repetisjon)
DetaljerDagens temaer. Cache (repetisjon) Cache (repetisjon) Cache (repetisjon)
Dagens temaer Cache (repetisjon) Mer om cache-hukommelse (kapittel 6.5 i Computer Organisation and Architecture ) Typer, bruksområder og oppbygging ROM Typer, bruksområder og oppbygging Hukommelsesbusser
DetaljerDagens temaer. Kort repetisjon. Mer om cache (1) Mer om cache (2) Read hit. Read miss. Write hit. Hurtig minne. Cache
Dagens temaer Dagens emner er hentet fra Englander kapittel side 338-35 (gammel utgave). Mer om design av cache. Kort repetisjon er en spesiell type rask hukommelse som inneholder et subsett av det som
Detaljer! Sentrale begreper er adresserbarhet og adresserom. ! Adresserbarhet: Antall bit som prosessoren kan tak samtidig i én operasjon
agems temaer Oppbygging av RAM! ra kapittel i Computer Organisation and Architecture! Kort om hurtigminne (RAM)! Organisering av CPU: von Neuman-modellen! Register Transfer Language (RTL)! Instruksjonseksekvering!
DetaljerDagens tema. Flere teknikker for å øke hastigheten
Dagens tema Flere teknikker for å øke hastigheten Cache-hukommelse del 1 (fra kapittel 6.5 i Computer Organisation and Architecture ) Hvorfor cache Grunnleggende virkemåte Direkte-avbildet cache Cache-arkitekturer
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 14. juni 2007 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 9 sider. Vedlegg: INF1070 og INF2270 Datamaskinarkitektur
DetaljerCache (repetisjon) Cache (repetisjon) Cache (repetisjon) Dagens temaer. CPU Cache RAM. om cache-hukommelse (kapittel 6.5 i Computer Organisation
Dagens temaer Mer om cache-hukommelse (kapittel 6.5 i Computer Organisation and Architecture ) bruksområder og oppbygging ROM bruksområder og oppbygging Hukommelsesbusser Typer, Typer, Cache (repetisjon)
Detaljerbruksområder og oppbygging om cache-hukommelse (kapittel 6.5 i Computer Organisation Dagens temaer and Architecture ) ROM RAM
1 Dagens temaer Mer om cache-hukommelse (kapittel 6.5 i Computer Organisation and Architecture ) RAM Typer, bruksområder og oppbygging ROM Typer, bruksområder og oppbygging 2 Cache (repetisjon) Formål:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF103 Fra brukergrensesnitt til maskinvare Eksamensdag: 11. desember 2003 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.
DetaljerDagens temaer. Dagens emner er hentet fra Englander kapittel 11 (side ) Repetisjon av viktige emner i CPU-design.
Dagens temaer Dagens emner er hentet fra Englander kapittel 11 (side 327-344 ) Repetisjon av viktige emner i CPU-design. Flere teknikker for å øke hastigheten Cache 03.10.03 INF 103 1 Hvordan øke hastigheten
DetaljerDagens tema. Mer om cache-hukommelse Kapittel 6.5 i Computer Organisation and Architecture ) RAM. Typer, bruksområder og oppbygging 2008 ROM
Dagens tema Mer om cache-hukommelse Kapittel 6.5 i Computer Organisation and Architecture ) RAM ROM Typer, bruksområder og oppbygging Typer, bruksområder og oppbygging Virtuell hukommelse (kapittel 9.9
DetaljerOppgave 2 Maskinkode (vekt 12%)
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 47 Program- og maskinvare Eksamensdag: 29. mai 2 Tid for eksamen: 9. 5. Oppgavesettet er på 8 sider. Vedlegg: Ingen Tillatte
DetaljerIN1020. Datamaskinarkitektur
IN1020 Datamaskinarkitektur Hovedpunkter Von Neumann Arkitektur BUS Pipeline Hazarder Intel Core i7 Omid Mirmotahari 4 Von Neumann Arkitektur John von Neumann publiserte i 1945 en model for datamaskin
DetaljerIntel Core i7. Omid Mirmotahari 4
INF2270 Pipeline Hovedpunkter Oppsummering av én-sykel implementasjon Forbedring av én-sykel designet Introduksjon til pipelining Oppbygning av datapath med pipelining Intel Core i7 Omid Mirmotahari 4
DetaljerIN1020. Minnehierarki
IN1020 Minnehierarki Hovedpunkter Bakgrunn Kort repetisjon Motivasjon Teknikker for hastighetsøkning Multiprosessor Økt klokkehastighet Raskere disker Økt hurtigminne Bruksområder Lagringskapasitet Aksesstider
Detaljerkan adressere et større område som RAM enn det som faktisk er tilgjengelig. Siden data kan plasseres i RAM og/eller på harddisken brukes begrepet
Dagens temaer Virtuell hukommelse (kapittel 9.9 i læreboken) Input-Output Virtuell hukommelse Ofte trenger et program/prosess mer RAM enn det som er tilgjengelig fysisk Et program deler RAM med andre programmer
DetaljerDagens temaer. tema er hentet fra kapittel 4.3 og 4.4 om pipelining. til neste ukes forelesning (hvis tid) INF ! Mikrokode. !
agens temaer! agens! Mer tema er hentet fra kapittel 4.3 og 4.4 om pipelining! Ytelse! Hasarder! Mikrokode! Hard-wired! Mikroprogrammert! RISC! Introduksjon og CISC! ordeler og ulemper til neste ukes forelesning
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 15. juni 2006 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 7 sider. Vedlegg: INF1070 Datamaskinarkitektur Ingen
DetaljerDagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and
Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Enkoder/demultiplekser (avslutte fra forrige gang)! Kort repetisjon 2-komplements form! Binær addisjon/subtraksjon!
Detaljer! Ytelsen til I/O- systemer avhenger av flere faktorer: ! De to viktigste parametrene for ytelse til I/O er:
Dagens temaer! Ulike kategorier input/output! Programmert! Avbruddstyrt! med polling.! Direct Memory Access (DMA)! Asynkrone vs synkrone busser! Med! Fordi! -enheter menes de enheter og mekanismer som
DetaljerDagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and. ! Kort repetisjon fra forrige gang
Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Kort repetisjon fra forrige gang! Kombinatorisk logikk! Analyse av kretser! Eksempler på byggeblokker! Forenkling
DetaljerSeksjon 1. INF2270-V16 Forside. Eksamen INF2270. Dato 1. juni 2016 Tid Alle trykte og skrevne hjelpemidler, og en kalkulator, er tillatt.
Seksjon 1 INF2270-V16 Forside Eksamen INF2270 Dato 1. juni 2016 Tid 14.30-18.30 Alle trykte og skrevne hjelpemidler, og en kalkulator, er tillatt. Dette oppgavesettet består av 14 oppgaver som kan løses
DetaljerRepetisjon digital-teknikk. teknikk,, INF2270
Repetisjon digital-teknikk teknikk,, INF227 Grovt sett kan digital-teknikk-delen fordeles i tre: Boolsk algebra og digitale kretser Arkitektur (Von Neuman, etc.) Ytelse (Pipelineling, cache, hukommelse,
DetaljerMaskinvaredelen av INF 103: oversikt og innhold (1)
Maskinvaredelen av INF 3: oversikt og innhold () Boolsk algebra: Regning med og, og AND, OR og NOT Analyse og design av logiske kretser: AND, OR og NOT som byggeblokker Hukommelse og sekvensiell logikk:
DetaljerEksamen INF2270 våren 2018
Generell informasjon Eksamen INF2270 våren 2018 Dette oppgavesettet består av 14 oppgaver som kan løses uavhengig av hverandre. Dersom du synes noe i oppgaveteksten er uklart, må du gjøre dine egne forutsetninger;
DetaljerDagens temaer. Sekvensiell logikk: Kretser med minne. D-flipflop: Forbedring av RS-latch
Dagens temaer Sekvensiell logikk: Kretser med minne RS-latch: Enkleste minnekrets D-flipflop: Forbedring av RS-latch Presentasjon av obligatorisk oppgave (se også oppgaveteksten på hjemmesiden). 9.9.3
DetaljerGenerell informasjon
Introduksjon Oppgave Tittel Oppgavetype Generell informasjon Dokument 1.1 Kompendiet Langsvar Arkitektur Oppgave Tittel Oppgavetype 2.1 Pipeline Flervalg (flere svar) 2.2 Boolsk Algebra Flervalg (flere
DetaljerNotater: INF2270. Veronika Heimsbakk 10. juni 2014
Notater: INF2270 Veronika Heimsbakk veronahe@student.matnat.uio.no 10. juni 2014 Innhold 1 Binære tall og tallsystemer 3 1.1 Tallsystemer............................ 3 1.2 Konvertering...........................
DetaljerDagens temaer. Dagens temaer er hentet fra P&P kapittel 3. Motivet for å bruke binær representasjon. Boolsk algebra: Definisjoner og regler
Dagens temaer Dagens temaer er hentet fra P&P kapittel 3 Motivet for å bruke binær representasjon Boolsk algebra: Definisjoner og regler Kombinatorisk logikk Eksempler på byggeblokker 05.09.2003 INF 103
DetaljerINF2270. Minnehierarki
INF2270 Minnehierarki Hovedpunkter Bakgrunn Kort repetisjon Motivasjon Teknikker for hastighetsøkning Multiprosessor Økt klokkehastighet Raskere disker Økt hurtigminne Bruksområder Lagringskapasitet Aksesstider
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF2270 Datamaskinarkitektur Eksamensdag: 11. juni 2009 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 10 sider. Vedlegg: Ingen
DetaljerInnhold. Oppgave 1 Oversettelse (vekt 15%)
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 147 Program- og maskinvare Eksamensdag: 29. mai 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 10 sider. Vedlegg: Tillatte
Detaljertema er hentet fra kapittel 4.3 og 4.4 om pipelining Mikroprogrammert Dagens temaer Hard-wired Mikrokode Hasarder Ytelse
Dagens temaer 1 Dagens Mer tema er hentet fra kapittel 4.3 og 4.4 om pipelining Ytelse Pipelining Hasarder i Pentium-arkitekturen Mikrokode Hard-wired RISC Mikroprogrammert og CISC Fordeler og ulemper
DetaljerIntel Core i7. Omid Mirmotahari 4
INF2270 Pipeline Hovedpunkter Oppsummering av én-sykel implementasjon Forbedring av én-sykel designet Introduksjon til pipelining Oppbygning av datapath med pipelining Intel Core i7 Omid Mirmotahari 4
Detaljerhukommelse (kapittel 9.9 i læreboken) Dagens temaer Input-Output INF 1070
1 Dagens temaer Virtuell hukommelse (kapittel 9.9 i læreboken) Input-Output Virtuell hukommelse 2 Ofte trenger et program/prosess mer RAM enn det som er tilgjengelig fysisk i maskinen Et program deler
DetaljerDagens temaer. Virtuell hukommelse. Sidetabell. Virtuell hukommelse (forts.)
Dagens temaer Virtuell hukommelse Virtuell hukommelse (kapittel 9.9 i læreboken) Pentium-arkitekturen i mer detalj Ofte trenger et program/prosess mer RAM enn det som er tilgjengelig fysisk i maskinen
DetaljerDagens temaer. Virtuell hukommelse (kapittel 9.9 i læreboken) Pentium-arkitekturen i mer detalj INF 1070
Dagens temaer Virtuell hukommelse (kapittel 9.9 i læreboken) Pentium-arkitekturen i mer detalj 25.04. INF 070 Virtuell hukommelse Ofte trenger et program/prosess mer RAM enn det som er tilgjengelig fysisk
DetaljerDagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er
Dagens temaer Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture Sekvensiell logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre INF2270 1/19
DetaljerDagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form
Dagens tema Dagens temaer hentes fra kapittel 3 i læreboken Repetisjon, design av digitale kretser Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works
DetaljerDagens tema. Dagens tema er hentet fra kapittel 4.3 og 4.4. Mer om pipelining Ytelse Hasarder. Pipelining i Pentium-arkitekturen
Dagens tema Dagens tema er hentet fra kapittel 4.3 og 4.4 Mer om pipelining Ytelse Hasarder Pipelining i Pentium-arkitekturen Mikrokode Hard-wired Mikroprogrammert RISC og CISC Fordeler og ulemper 1/41
DetaljerDagens temaer. Dagens emner er hentet fra Englander kapittel 10 (side ) Mer om adresseringsmodi. RISC og CISC-prosessorer.
agens temaer agens emner er hentet fra nglander kapittel 10 (side 279-318 ) Mer om adresseringsmodi RISC og CISC-prosessorer Pipelining Skalare og superskalare prosessorer 26.09.03 IN 103 1 Mer om adresseringsmodi
DetaljerInnhold. Virtuelt minne. Paging i mer detalj. Felles rammeverk for hukommelseshierarki. 02.04.2001 Hukommelseshierarki-2 1
Innhold Virtuelt minne Paging i mer detalj Felles rammeverk for hukommelseshierarki 02.04.200 Hukommelseshierarki-2 Virtuelt minne Lagringskapasiteten i RAM må deles mellom flere ulike prosesser: ûoperativsystemet
DetaljerDagens temaer. temaer hentes fra kapittel 3 i Computer Organisation. av sekvensielle kretser. and Architecture. Tilstandsdiagram.
Dagens temaer 1 Dagens Sekvensiell temaer hentes fra kapittel 3 i Computer Organisation and Architecture logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre Sekvensiell
DetaljerDagens temaer. Mer om adresseringsmodi. Indeksert adressering med offset og auto-inkrement eller dekrement. Register-indirekte adressering
agens temaer Mer om adresseringsmodi LC-2 har fem adresseringmodi : Umiddelbar, Register, irekte, Indirekte og Base+Offset. agens emner er hentet fra nglander kapittel 10 (side 279-318 ) Mer om adresseringsmodi
DetaljerDagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Kort repetisjon fra forrige gang. Kombinatorisk logikk
Dagens temaer Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture Kort repetisjon fra forrige gang Kombinatorisk logikk Analyse av kretser Eksempler på byggeblokker Forenkling
DetaljerEn mengde andre typer som DVD, CD, FPGA, Flash, (E)PROM etc. (Kommer. Hukommelse finnes i mange varianter avhengig av hva de skal brukes til:
2 Dagens temaer Dagens 4 Sekvensiell temaer hentes fra kapittel 3 i Computer Organisation and Architecture Design Flip-flop er av sekvensielle kretser Tellere Tilstandsdiagram og registre Sekvensiell Hvis
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF103 Fra brukergrensesnitt til maskinvare Eksamensdag: 16. desember 2002 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.
DetaljerInnhold. Introduksjon til parallelle datamaskiner. Ulike typer parallelle arkitekturer. Prinsipper for synkronisering av felles hukommelse
Innhold Introduksjon til parallelle datamaskiner. Ulike typer parallelle arkitekturer Prinsipper for synkronisering av felles hukommelse Multiprosessorer koblet sammen av én buss 02.05 2001 Parallelle
DetaljerInnhold. Oversikt over hukommelseshierakiet. Ulike typer minne. Innledning til cache. Konstruksjon av cache. 26.03.2001 Hukommelseshierarki-1 1
Innhold Oversikt over hukommelseshierakiet Ulike typer minne Innledning til cache Konstruksjon av cache 26.03.2001 Hukommelseshierarki-1 1 Hukommelseshierarki Ønsker ubegrenset mye minne som er like raskt
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF103 Fra brukergrensesnitt til maskinvare Eksamensdag: 15. desember 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.
DetaljerINF2270. Datamaskin Arkitektur
INF2270 Datamaskin Arkitektur Hovedpunkter Von Neumann Arkitektur ALU Minne SRAM DRAM RAM Terminologi RAM Signaler Register Register overføringsspråk Von Neumann Arkitektur John von Neumann publiserte
DetaljerDagens temaer. Dagens temaer hentes fra kapittel 3 i læreboken. Oppbygging av flip-flop er og latcher. Kort om 2-komplements form
Dagens temaer Dagens temaer hentes fra kapittel 3 i læreboken Oppbygging av flip-flop er og latcher Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works
DetaljerINF2270. Datamaskin Arkitektur
INF2270 Datamaskin Arkitektur Hovedpunkter Von Neumann Arkitektur ALU Minne SRAM DRAM RAM Terminologi RAM Signaler Register Register overføringsspråk Von Neumann Arkitektur John von Neumann publiserte
DetaljerDatamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur
Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur Lærebok: Computer organization and architecture/w. Stallings. Avsatt ca 24 timers tid til forelesning. Lærestoffet bygger på begrepsapparat
DetaljerDagens tema. Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er. Tellere og registre
Dagens tema Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture Sekvensiell logikk Flip-flop er Tellere og registre Design av sekvensielle kretser (Tilstandsdiagram) 1/19 Sekvensiell
DetaljerDagens temaer. Praktisk anvendelse: Satellittkommunikasjon. eksempler på bruk av assembler/c/arkitektur teknikker for å øke hastigheten
Dagens temaer Praktisk anvendelse: Satellittkommunikasjon! Praktiske! Flere! Cachehukommelse eksempler på bruk av assembler/c/arkitektur teknikker for å øke hastigheten del (fra kapittel 6.5 i Computer
DetaljerDagens temaer. eksempler på bruk av assembler/c/arkitektur teknikker for å øke hastigheten. Organisation and Architecture )
Dagens temaer! Praktiske! Flere! Cache-hukommelse eksempler på bruk av assembler/c/arkitektur teknikker for å øke hastigheten del 1 (fra kapittel 6.5 i Computer Organisation and Architecture )! Hvorfor
DetaljerForelesning Instruksjonstyper Kap 5.5
TDT4160 Datamaskiner Grunnkurs Forelesning 22.11 Instruksjonstyper Kap 5.5 Dagens tema Instruksjonstyper (5.5) Datatransport Datamanipulering Betingede hoppinstruksjoner Prosedyrekall Løkker I/O Eksempler
DetaljerHukommelseshierarki. 16/3 cache 7.1 7.2. 23/3 virtuell hukommelse 7.3 7.5. in 147, våren 1999 hukommelseshierarki 1
Hukommelseshierarki når tema pensum 16/3 cache 7.1 7.2 23/3 virtuell hukommelse 7.3 7.5 in 147, våren 1999 hukommelseshierarki 1 Tema for denne forelesningen: en enkel hukommelsesmodell hukommelseshierarki
DetaljerDigital representasjon
Digital representasjon Nesten alt elektrisk utstyr i dag inneholder digital elektronikk: PC er, mobiltelefoner, MP3-spillere, DVD/CD-spillere, biler, kjøleskap, TV, fotoapparater, osv osv. Hva betyr digital?
DetaljerINF1400. Karnaughdiagram
INF4 Karnaughdiagram Hvor er vi Vanskelighetsnivå Binær Porter Karnaugh Kretsdesign Latch og flipflopp Sekvensiell Tilstandsmaskiner Minne Eksamen Tid juleaften Omid Mirmotahari 2 Hva lærte vi forrige
DetaljerINF2270. Input / Output (I/O)
INF2270 Input / Output (I/O) Hovedpunkter Innledning til Input / Output Ulike typer I/O I/O internt i datamaskinen I/O eksternt Omid Mirmotahari 3 Input / Output En datamaskin kommuniserer med omverdenen
DetaljerTDT4160 Datamaskiner Grunnkurs 2008. Gunnar Tufte
1 TDT4160 Datamaskiner Grunnkurs 2008 Gunnar Tufte 2 I dag Kva er inni 8051, P4 og UltraSparc Digital logic level (start kapitel 3) VIKTIG MELDING Alle som har brukt NTNU-passord for AoC pålogging må skifte
Detaljer4/5 store parallelle maskiner /4 felles hukommelse in 147, våren 1999 parallelle datamaskiner 1. når tema pensum.
Parallellitet når tema pensum 27/4 felles hukommelse 9.2 9.3 4/5 store parallelle maskiner 9.4 9.6 in 147, våren 1999 parallelle datamaskiner 1 Tema for denne forelesningen: kraftigere enn én prosessor
DetaljerDagens temaer. Intern hukommelse (1) Maskinvaredelen av INF 103: oversikt og innhold (2) Maskinvaredelen av INF 103: oversikt og innhold (1)
Maskvaredelen av INF 3: oversikt og nhold () Boolsk algebra: Regng med og, og AND, OR og NOT Analyse og design av logiske kretser: AND, OR og NOT som byggeblokker Hukommelse og sekvensiell logikk: Konstruksjon
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 13. juni 2013 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: INF2270 Datamaskinarkitektur
DetaljerLøsningsforslag til eksamen i INF2270
Løsningsforslag til eksamen i INF227 Oppgave 9 Omid Mirmotahari Oppgave 6 Dag Langmyhr. juni 24 Eksamen INF227 Sensorveiledning Oppgave 2 Kretsforenkling Hva er funksjonsuttrykket for Output gitt av A
DetaljerLøsningsforslag INF1400 H04
Løsningsforslag INF1400 H04 Oppgave 1 Sannhetstabell og forenkling av Boolske uttrykk (vekt 18%) I figuren til høyre er det vist en sannhetstabell med 4 variable A, B, C og D. Finn et forenklet Boolsk
DetaljerINF2270. Input / Output (I/O)
INF2270 Input / Output (I/O) Hovedpunkter Innledning til Input / Output Ulike typer I/O I/O internt i datamaskinen I/O eksternt Omid Mirmotahari 3 Input / Output En datamaskin kommuniserer med omverdenen
DetaljerPraktisk anvendelse: Satellittkommunikasjon
Dagens temaer Praktiske Flere Cache-hukommelse eksempler på bruk av assembler/c/arkitektur teknikker for å øke hastigheten del (fra kapittel 6.5 i Computer Organisation and Architecture ) cache virkemåte
DetaljerINF1400 Kap4rest Kombinatorisk Logikk
INF4 Kap4rest Kombinatorisk Logikk Hovedpunkter Komparator Dekoder/enkoder MUX/DEMUX Kombinert adder/subtraktor ALU FIFO Stack En minimal RISC - CPU Komparator Komparator sammenligner to tall A og B 3
DetaljerTDT4160 Datamaskiner Grunnkurs 2008. Gunnar Tufte
1 TDT4160 Datamaskiner Grunnkurs 2008 Gunnar Tufte 2 Auka yting 3 Auka yting CPU 4 Parallellitet Essensielt for å øke ytelse To typer: 1) Instruksjonsnivåparallellitet Fleire instruksjonar utføres samtidig
DetaljerForelesning 5. Diverse komponenter/større system
Forelesning 5 Diverse komponenter/større system Hovedpunkter Komparator Dekoder/enkoder MUX/DEMUX Kombinert adder/subtraktor ALU En minimal RISC - CPU 2 Komparator Komparator sammenligner to 4 bits tall
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Eksamensdag: Fredag 3. desember Tid for eksamen: kl. 14:30-18:30 (4 timer). Oppgavesettet er på side(r) 7 sider
DetaljerEksamensoppgave i TDT4258 Energieffektive datamaskinsystemer
Institutt for datateknikk og informasjonsvitenskap Eksamensoppgave i TDT4258 Energieffektive datamaskinsystemer Faglig kontakt under eksamen: Asbjørn Djupdal Tlf.: 909 39452 Eksamensdato: 29. mai 2013
DetaljerTDT4258 Eksamen vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 8 TDT4258 Eksamen vår 2013 Løsningsforslag Oppgave 1 Flervalgsoppgave (16 poeng) Du får 2 poeng
Detaljer! Repetisjon: ! Forutsetinger: ! Ideelt sett gir en k-trinns pipeline en faktor k i hastighetsøkning. ! Benyttes derimot ekte pipelining, behøves
agens temaer er om pipeling! agens! er tema er hentet fra kapittel 4.3 og 4.4 om pipelining! Ytelse! Hasarder! ikrokode! RISC! Introdksjon! Hard-wired! ikroprogrammert og CISC! ordeler og lemper til neste
DetaljerTDT4160 AUGUST, 2008, 09:00 13:00
Norwegian University of Science and Technology Faculty of Information Technology, Mathematics and Electrical Engineering The Department of Computer and Information Science TDT4160 DATAMASKINER GRUNNKURS
DetaljerInternminnet. Håkon Tolsby Håkon Tolsby
Internminnet Håkon Tolsby 26.09.2017 Håkon Tolsby 1 Innhold: Internminnet RAM DRAM - SDRAM - DDR (2, 3, 4, 5) ROM Cache-minne 26.09.2017 Håkon Tolsby 2 Internminnet Minnebrikkene som finnes på hovedkortet.
DetaljerAVSLUTTENDE EKSAMEN I. TDT4160 Datamaskiner Grunnkurs. Torsdag 29. November 2007 Kl. 09.00 13.00
Side 1 av 11 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE EKSAMEN
DetaljerLøsningsforslag til eksamen i INF2270
Løsningsforslag til eksamen i INF2270 Philipp Häfliger (oppgave 1, 2 og 3) Dag Langmyhr (oppgave 4 og 5) 10. juni 2010 1 1 Boolsk Algebra Det fins 5 forskjellige funksjoner blant disse Boolske uttrykene.
Detaljer4 kombinatorisk logikk, løsning
4 kombinatorisk logikk, løsning 1) Legg sammen følgende binærtall uten å konvertere til desimaltall: a. 1101 + 1001 = 10110 b. 0011 + 1111 = 10010 c. 11010101 + 001011 = 11100000 d. 1110100 + 0001011 =
DetaljerHvorfor lære om maskinvare*?
Litt om maskinvare Hvorfor lære om maskinvare*? Hovedoppgaven til et OS er å styre maskinvare Må ha grunnleggende kjennskap til maskinvare for å forstå hvordan OS fungerer Skal bare se på grunnleggende
DetaljerLøsningsforslag til eksamen i INF2270
Løsningsforslag til eksamen i INF2270 Omid Mirmotahari (oppgave 1 4) Dag Langmyhr (oppgave 5 6) 14. juni 2012 Eksamen inf2270 V12 - fasit 1) (5%) Forkort følgende uttrykk med karnaugh diagram zw xy 00
DetaljerForelesning 7. Tilstandsmaskin
Forelesning 7 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D flip-flop basert tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre
DetaljerDatamaskinens oppbygning
Datamaskinens oppbygning Håkon Tolsby 18.09.2014 Håkon Tolsby 1 Innhold Hovedenheten Hovedkort Prosessor CISC og RISC 18.09.2014 Håkon Tolsby 2 Datamaskinens bestanddeler Hovedenhet Skjerm Tastatur Mus
DetaljerMinnehåndtering i operativsystemer
Minnehåndtering i operativsystemer Minnehåndtering? Minne er en begrenset ressurs i datamaskinen Tilgjengelig minne må fordeles til prosessene som OS-et håndterer, på en korrekt og rettferdig måte Minnet
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 14. juni 2011 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 12 sider. Vedlegg: Tillatte hjelpemidler: INF2270
DetaljerMAX MIN RESET. 7 Data Inn Data Ut. Load
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 240 çç Digital Systemkonstruksjon Eksamensdag: 6. desember 2000 Tid for eksamen: 9.00 ç 15.00 Oppgavesettet er p 5 sider. Vedlegg:
DetaljerProsessoren. Bakgrunnen Innhold LMC. Assemblerkode Oppsummering instruksjonene [Englander kap 6] Hva inneholder den? Hvordan utføres instruksjonene?
Prosessoren Bakgrunnen Innhold LMC Hva inneholder den? Hvordan utføres instruksjonene? Assemblerkode Oppsummering instruksjonene [Englander kap 6] Lagdelingen av en datamaskin Internett Lokalnett (LAN)
DetaljerTildeling av minne til prosesser
Tildeling av minne til prosesser Tildeling av minne til en prosess Når en ny prosess opprettes har den et krav til hvor mye minne som skal reserveres for prosessen Memory Management System (MMS) i OS må
DetaljerFakultet for informasjonsteknologi, Oppgave 1 Flervalgsspørsmål ( multiple choice ) 15 %
Side 1 av 10 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap Løsningsforslag til
DetaljerEksamensoppgave i TDT4258 Energieffektive Datamaskinsystemer
Institutt for Datateknikk og Informasjonsvitenskap Eksamensoppgave i TDT4258 Energieffektive Datamaskinsystemer Faglig kontakt under eksamen: Magnus Jahre Tlf.: 952 22 309 Eksamensdato: 19. Mai 2014 Eksamenstid
DetaljerTDT4160 Datamaskiner Grunnkurs 2011. Gunnar Tufte
1 TDT4160 Datamaskiner Grunnkurs 2011 Gunnar Tufte 2 Kapittel 3: Digital logic level 3 Nivå 0: Digtalekretsar Fundamentale komponentar AND, OR, NOT,NAND, NOR XOR porter D-vipper for lagring av ett bit
DetaljerTDT4160 Datamaskiner Grunnkurs 2011. Gunnar Tufte
1 TDT4160 Datamaskiner Grunnkurs 2011 Gunnar Tufte 2 Lager 2.1 2.2 Hard disc Tape storage RAM Module Optical disc Register bank Core memory 3 Ein-prosessor maskin 4 Lager og prosessor overordna Tape Optical
Detaljer