SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 07. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

Størrelse: px
Begynne med side:

Download "SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 07. Erling Berge Institutt for sosiologi og statsvitenskap NTNU"

Transkript

1 SOS3003 Anvendt statstsk dataanalyse samfunnsvtenskap Forelesngsnotat 07 Erlng Berge Insttutt for sosolog og statsvtenskap NTNU Erlng Berge 2004 Forelesng VII Logstsk regresjon I Hamlton Kap 7 s Erlng Berge Erlng Berge 2004

2 LOGIT REGRESJON eller LOGISTISK REGRESJON Skal nyttast når avhengg varabel er på nomnalnvå Føreset at Y har verdane 0 eller Modellen av den betnga forventnnga tl Y, E[Y X], nyttar den logstske funksjonen Men Kvfor kan kkje E[Y X] vere en lneær funksjon også her? Erlng Berge Den lneære sannsynsmodellen: LPM Den lneære sannsynsmodellen (LPM) brukt på Y når Y berre kan ta to verdar (0,) føreset at v kan tolke E[Y X] som et sannsyn E[Y X] = b 0 + Σ j b j x j = Pr[Y =] Dette fører tl problem Erlng Berge Erlng Berge

3 Er føresetnadene rette LPM? En føresetnad LPM er at resdualen e stettar krava tl OLS Resdualen er anten e = (b 0 + Σ j b j x j ) eller e = 0 (b 0 + Σ j b j x j ) Dette tyder heteroskedaststet (resdualen varerer med storleken på x-varablane) Det fnst estmerngsmetodar som kan komme rundt dette problemet (2-stegs vekta mnste kvadrats metode tl dømes) Et eksempel på LPM: Erlng Berge OLS regresjon av dkotom avhengg varabel på varabelen år budd byen ANOVA tabell Sum of Squares df Mean Square F Sg. Regresson 3, 3, 3,648,000(a) Resdual 34,48 5,228 Total 37, Dependent Varable: SCHOOLS SHOULD CLOSE (Constant) B,594 Std. Error,059 t 0,47 Sg.,000 YEARS LIVED IN TOWN -,008,002-3,694,000 Regresjonen ser helt OK ut desse tabellane. Erlng Berge Erlng Berge

4 ,00 0,80 SCHOOLS SHOULD CLOSE 0,60 0,40 0,20 Her kjem predkert y under 0 for rmelege verdar av x R Sq Lnear = 0,083 0,00 0,00 20,00 40,00 60,00 80,00 00,00 YEARS LIVED IN WILLIAMSTOWN Sprengsplott med regresjonslnje. Fgur 7. Hamlton Erlng Berge LPM er fel modell V ser eksempelet her at en for rmelege verdar av x-ane kan får en verd av predkert y der E[Y X] > eller E[Y X] < 0, Dette kan en kkje gjere noko med LPM er substanselt sett fel modell Det trengst en modell der en alltd har 0 < E[Y X] < Erlng Berge Erlng Berge

5 Den logstske funksjonen Den generelle logstske funksjonen er Y = α/(+γ*exp[-βx ]) + ε α>0 gr den øvre grensa for Y, dvs v har at 0<Y< α γ fastlegg det horsontale punkt for rask vekst Set en α = og γ = Vl en alltd ha 0 < /(+exp[-βx ]) < Den logstske funksjonen vl for alle verdar av x lggje mellom 0 og Erlng Berge Logstske kurver for ulk β y= y= +exp(-0.5x) +exp(-0.25x) +exp(-0.x) y= Horzontal lne through ( 0, ) Erlng Berge Erlng Berge

6 MODELL () Defnsjonar Sannsynet for at person skal ha verden på varabelen Y skrv v Pr(Y =). Da er Pr(Y ) = - Pr(Y =) Oddsen for at person skal ha verden på varabelen Y, her kalla O, er tlhøvet mellom to sannsyn: O ( y ) ( y = ) ( y ) Pr p = = = Pr = p Erlng Berge 2004 MODELL (2) Defnsjonar: LOGITEN, L, er den naturlege logartmen tl oddsen, O, for person : L = ln(o ) Modellen føreset at L er en lneær funksjon av forklarngsvarablane x j, dvs: L = β 0 + Σ j β j x j, der j=,...,k-, og =,...,n Erlng Berge Erlng Berge

7 MODELL (3) Sett X = (samlnga av alle x j ), da er sannsynet for at Y = for person nr exp( L ) Pr( y = ) = E[ y x] = = + exp + exp( L ) der L K =β + β X 0 j j j= ( L ) Grafen tl dette sambandet er nyttg for tolknga av kva e endrng x tyder Erlng Berge MODELL (4) I modellen Y = E[Y X] + ε er felen enten ε = - E[Y X] med sannsyn E[Y X] (sdan Pr(Y = ) = E[Y X] ), eller felen er ε = - E[Y X] med sannsyn - E[Y X] mao felen har e fordelng kjent som bnomalfordelnga med p = E[Y X] Erlng Berge Erlng Berge

8 Estmerng Metoden brukt for å estmere parametrane modellen heter Maxmum Lkelhood ML-metoden gr oss de parametrane som maksmerer sannsynet (Lkelhood) for å fnne de observasjonane v faktsk har Dette sannsynet skal v kalle L Krteret for å velje regresjonsparametrar er at lkelhooden skal vere størst mogeleg Erlng Berge Maxmum Lkelhood () Lkelhooden er lk produktet av sannsynet for kvar enskld observasjon. For en dkotom varabel der Pr(Y = )=P kan dette skrvast L n = { ( ) ( ) } Y Y P P = Erlng Berge Erlng Berge

9 Maxmum Lkelhood (2) For lettare å kunne maksmere sannsynet L tar en den naturlege logartmen tl L : n ( L) = { y P+ ( y) ( P) } ln ln ln = Den naturlege logartmen tl L kallar v LogLkelhooden, V kan kalle den LL. LLhar e sentral rolle logstsk regresjon. Erlng Berge Logstsk modell staden for LPM Iteraton Step Log Lkelhood 209,22 95,684 95,269 95,267 95,267 Coeffcents Constant Lved n town -,275 0,376 -,034,455 -,04,460 -,04,460 -,04 Dependent: Schools should close Lved n town Constant B -,04,460 S.E.,02,263 Wald,399 3,069 df Sg.,00,080 Exp(B),960,584 Erlng Berge Erlng Berge

10 Fotnotar tl tabellen Step 0: Utgangspunktet er en modell med konstantledd og ngen varablar Iteratv estmerng Estmernga vart avslutta ved terasjon nr 4 sdan parameterestmata endra seg med mndre enn 0,00 Observatoren Wald som SPSS gr oss er lk kvadratet av den t som Hamlton (og STATA) gr. Erlng Berge , ,80000 SCHOOLS SHOULD CLOSE YEARS LIVED IN WILLIAMSTOWN Predcted probablty YEARS LIVED IN WILLIAMSTOWN 0,60000 Fg 7.4 Hamlton 0, ,20000 Den lneære modellen er lagt nn ved sda av den logstske 0, ,00 20,00 40,00 60,00 80,00 00,00 Erlng Berge Erlng Berge

11 TESTING To testar er aktuelle () Sannsynsratetesten Lkelhood rato test Denne kan nyttast analogt med F-testen (2) Wald testen Kvadratrota av denne kan nyttast analogt med t-testen Erlng Berge Tolknng () Sklnaden mellom den lneære modellen og den logstske er stor nærleken av 0 og LPM er lett å tolke: Y = β 0 når x =0, og når x veks med e enng veks Y med β engar Logtmodellen er vanskelegare å tolke. Den er kkje-lneær både høve tl oddsen og sannsynet. Erlng Berge Erlng Berge 2004

12 ODDS og ODDSRATER Logten, L, ( L = β0 + Σj βj xj ) er defnert som den naturlege logartmen tl oddsen. Det tyder at oddsen = O (Y =) = exp(l ) = e L og oddsraten = O (Y = L ) / O (Y = L ) der L og L har ulk verd for en x.j. Erlng Berge Tolknng (2) Når alle x er lk 0 er L = β 0 Det tyder at oddsen for at y = det høvet er exp{β 0 } Dersom en held alle x-ane fast (set de lk en konstant) medan x aukar med vl oddsen for at y = verte multplsert med exp{β } Det tyder at den vl endre seg med 00(exp{β } ) % Sannsynet Pr{y = } vl endre seg med en faktor som er påverka av alle elementa logten Erlng Berge Erlng Berge

13 LOGISTISK REGRESJON: FØRESETNADER Modellen er korrekt spesfsert logten er lneær parametrane alle relevante varablar er med ngen rrelevante er med x-varablane er målt utan fel Observasjonane er uavhengge Ikkje perfekt multkollneartet Ikkje perfekt dskrmnerng Stort nok utval Erlng Berge FØRESETNADER som kkje kan testast Modellen er korrekt spesfsert alle relevante varablar er med x-varablane er målt utan fel Observasjonane er uavhengge To vl teste seg sjølve Ikkje perfekt multkollneartet Ikkje perfekt dskrmnerng Erlng Berge Erlng Berge

14 LOGISTISK REGRESJON Statstske problem kan komme av For lte utval Høg grad av multkollneartet Fører tl store standardfel (uskre estmat) Vert oppdaga og handtert på same måten som OLS regresjon Høg grad av dskrmnerng (eller separasjon) fører tl store standardfel (uskre estmat) Vert oppdaga automatsk av SPSS Erlng Berge Dskrmnerng/ separasjon Problem med dskrmnerng dukkar opp når v for en gtt x-verd får nesten perfekt predksjon av y-verden (nesten alle med en gtt x-verd har same y-verd) I SPSS kan dette g følgjande meldng: Warnngs There s possbly a quas-complete separaton n the data. Ether the maxmum lkelhood estmates do not exst or some parameter estmates are nfnte. The NOMREG procedure contnues despte the above warnng(s). Subsequent results shown are based on the last teraton. Valdty of the model ft s uncertan. Erlng Berge Erlng Berge

15 Dskrmnerng Hamlton tabell 7.5 Odds for svakare krav er 44/202 = 0,28 mellom kvnner utan småbarn Odds for svakare krav er 0/79 = 0 mellom kvnner med småbarn Oddsraten er 0/0,28 = 0 slk at exp{b kvnne }=0 Dette tyder at b kvnne = mnus uendeleg Ikkje svakare krav Svakare krav OK Kvnne utan små barn Kvnne med små barn 79 0 Erlng Berge Logstsk regresjon Dersom føresetnadene er korrekte vl logstsk regresjon g oss normalfordelte, forventnngsrette og varansmnmale estmat av parametrane Erlng Berge Erlng Berge

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 11. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 11. Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statstsk dataanalyse samfunnsvtenskap Forelesngsnotat Erlng Berge Insttutt for sosolog og statsvtenskap NTNU Erlng Berge 2004 Forelesng XI Logstsk regresjon II Hamlton Kap 7 s27-235 Erlng

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statstsk dataanalyse samfunnsvtenskap Forelesngsnotat, vår 2003 Erlng Berge Insttutt for sosolog og statsvtenskap NTNU Vår 2004 Erlng Berge 2004 1 Forelesng IX Robust Regresjon Hamlton

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Vår 2004 Erling Berge 2004 1 Forelesing VII Logistisk regresjon

Detaljer

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0.

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0. UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : Eksamensdag: 7. jun 2013. Td for eksamen: 14.30 18.30. Oppgavesettet er på 8 sder. Vedlegg: Tllatte hjelpemdler: STK2120 LØSNINGSFORSLAG

Detaljer

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt

Detaljer

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte: Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67

Detaljer

TMA4240/4245 Statistikk Eksamen august 2016

TMA4240/4245 Statistikk Eksamen august 2016 Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA44/445 Statstkk Eksamen august 6 Løsnngssksse Oppgave a) Ved kast av to ternnger er det 36 mulge utfall: (, ),..., (6, 6). La Y

Detaljer

Medisinsk statistikk, del II, vår 2008 KLMED Lineær regresjon, Rosner Regresjon?

Medisinsk statistikk, del II, vår 2008 KLMED Lineær regresjon, Rosner Regresjon? Medssk statstkk, del II, vår 008 KLMED 8005 Erk Skogvoll Førsteamauess dr. med. Ehet for Avedt klsk forskg Det medsske fakultet Leær regresjo, Roser..6 Bakgru (.) Modell (.) Estmerg av parametre modelle

Detaljer

Medisinsk statistikk, del II, vår 2009 KLMED 8005

Medisinsk statistikk, del II, vår 2009 KLMED 8005 Medssk statstkk, del II, vår 009 KLMED 8005 Erk Skogvoll Førsteamauess dr. med. Ehet for Avedt klsk forskg Det medsske fakultet Leær regresjo, Roser..6 Bakgru (.) Modell (.) Estmerg av parametre modelle

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS3003 Eksamensoppgåver Gjennomgang våren 2004 Erling Berge Gjennomgang av Oppgåve 2 gitt hausten 2003 Haust 2003 Oppgåve 2 Den avhengige variabelen i den logistiske regresjonsanalysen er freegl, som

Detaljer

ØVINGER 2017 Løsninger til oppgaver

ØVINGER 2017 Løsninger til oppgaver ØVINGER 017 Løsnnger tl oppgaver Øvng 1 7.1. Med utgangspunkt de n 5 observasjonsparene (x 1, y 1 ), (x, y ),..., (x 5, y 5 ) beregner v først mddelverdene x 1 5 Estmert kovarans blr x 3. ȳ 1 5 s XY 1

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS3003 Eksamensoppgåver Gjennomgang våren 2004 Erling Berge Vår 2004 1 Gjennomgang av Oppgåve 3 gitt hausten 2001 Vår 2004 2 Haust 2001 Oppgåve 3 I tabellvedlegget til oppgåve 3 er det estimert 7 ulike

Detaljer

Log Linear Model. . Web Page: 2. (estimating parameter) ก (main effect) interaction effect

Log Linear Model. .   Web Page:   2. (estimating parameter) ก (main effect) interaction effect Log Lnear Model. ก ก Emal: nkom@kku.ac.th Web Page: http://home.kku.ac.th/nkom. ก (fttng models) ก 2. (estmatng parameter) ก ก ก (man effect) nteracton effect Log Lnear Model dfference from logt model

Detaljer

Hvordan får man data og modell til å passe sammen?

Hvordan får man data og modell til å passe sammen? Hvordan får man data og modell tl å passe sammen? Ekstremverd-analyse Målet er å estmere T-års-ekstremen (flommen). T-års-ekstremen er slk at etter T år vl det forventnng være én overskrdelse av T-års-ekstremen.

Detaljer

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00 MASTER I IDRETTSVITESKAP 0/04 Indvduell skrftlg eksamen MAS 40- Statstkk Trsdag 9. oktober 0 kl. 0.00-.00 Hjelpemdler: kalkulator Eksamensoppgaven består av 9 sder nkludert forsden Sensurfrst: 30. oktober

Detaljer

Eksamensoppgave i SØK Statistikk for økonomer

Eksamensoppgave i SØK Statistikk for økonomer Insttutt for samfunnsøkonom Eksamensoppgave SØK004 - Statstkk for økonomer Faglg kontakt under eksamen: Hldegunn E. Stokke, tlf 7359665 Bjarne Strøm, tlf 7359933 Eksamensdato: 0..04 Eksamenstd (fra-tl):

Detaljer

Logistisk regresjon 1

Logistisk regresjon 1 Logistisk regresjon Hovedideen: Binær logistisk regresjon håndterer avhengige, dikotome variable Et hovedmål er å predikere sannsynligheter for å ha verdien på avhengig variabel for bestemte (sosiale)

Detaljer

Notasjoner, gjennomsnitt og kvadratsummer. Enveis ANOVA, modell. Flere enn to grupper. Enveis variansanalyse (One-way ANOVA, fixed effects model)

Notasjoner, gjennomsnitt og kvadratsummer. Enveis ANOVA, modell. Flere enn to grupper. Enveis variansanalyse (One-way ANOVA, fixed effects model) Enves varansanalyse (One-way ANOVA, fxed effects model Reaptulerng av t-testen for uavhengge utvalg fra to grupper, G og G : Observasjoner fra G : Y N(, σ j, j=,,...,n Observasjoner fra G : Y N(, σ, j=,,...,n

Detaljer

SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE

SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE 1 SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE Eksamensdag: 8 desember 1997 Eksamensstad: Dragvoll, paviljong C, rom 201 Tid til eksamen: 6 timar Vekt: 5 for SOS301 og 4 for SOS31/ SOS311 Talet på sider

Detaljer

TMA4300 Mod. stat. metoder

TMA4300 Mod. stat. metoder TMA4300 Mod stat metoder Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag Løsnngsforslag - Eksamen jun 2007 Oppgave Pseudokode for å evaluere θ: Generer uavhengge realsasjoner x,,x

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOISK INSTITUTT Eksamen : ECON35/45 Elementær økonometr Exam: ECON35/45 Introductory econometrcs Eksamensdag: redag 2. ma 25 Sensur kunngjøres: andag 3. jun ate of exam: rday, ay

Detaljer

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså: A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 12. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 12. Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 1 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Erling Berge 004 1 Forelesing XII Logistisk regreson III Hamilton

Detaljer

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00 Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 003 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Vår 004 Erling Berge 004 1 Forelesing XI Logistisk regresjon

Detaljer

Sannsynlighet seier noko om kor truleg det er at ei hending får eit bestemt utfall. Ein matematisk definisjon på sannsynlighet er:

Sannsynlighet seier noko om kor truleg det er at ei hending får eit bestemt utfall. Ein matematisk definisjon på sannsynlighet er: Dette notatet bygger på Append C I Dngamn, og er et forsøk på å gje en kort og enkel nnførng vktge statskske begrep me vl få bruk for GF-GG4. Sannsynlghet seer noko om kor truleg det er at e hendng får

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 08. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 08. Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 08 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Erling Berge 2004 1 Manglande data Forelesing VIII Allison, Paul

Detaljer

STK1110 høsten Lineær regresjon. Svarer til avsnittene i læreboka (med unntak av stoffet om logistisk regresjon)

STK1110 høsten Lineær regresjon. Svarer til avsnittene i læreboka (med unntak av stoffet om logistisk regresjon) TK høste 9 Eksempel.5 (CO og vekst av furutrær Leær regreso varer tl avsttee..4 læreboka (med utak av stoffet om logstsk regreso Ørulf Borga Matematsk sttutt Uverstetet Oslo V vl bestemme sammehege mellom

Detaljer

STK1000 Innføring i anvendt statistikk Eksamensdag: Tirsdag 12. desember 2017

STK1000 Innføring i anvendt statistikk Eksamensdag: Tirsdag 12. desember 2017 Eksamen : STK000 Innførng anvendt statstkk Eksamensdag: Trsdag 2. desember 207 Alle deloppgaver teller lkt vurderngen av besvarelsen. Lkke tl! Dette er et løsnngsforslag. Studenter som har kommet frem

Detaljer

Oversikt 1. forelesning. ECON240 Statistikk og økonometri. Utdanning og lønn. Forskning. Datainnsamling; utdanning og inntekt

Oversikt 1. forelesning. ECON240 Statistikk og økonometri. Utdanning og lønn. Forskning. Datainnsamling; utdanning og inntekt Overskt. forelesnng ECON40 Statstkk og økonometr Arld Aakvk, professor Insttutt for økonom Hva er statstkk og økonometr? Hvorfor studerer v fagområdet? Statstkk Metoder, teknkker og verktøy tl å produsere

Detaljer

EKSAMENSOPPGAVE I SØK1004 STATISTIKK FOR ØKONOMER STATISTICS FOR ECONOMISTS

EKSAMENSOPPGAVE I SØK1004 STATISTIKK FOR ØKONOMER STATISTICS FOR ECONOMISTS NTNU Norges teknsk-naturvtenskapelge unverstet Insttutt for samfunnsøkonom EKSAMENSOPPGAVE I SØK004 STATISTIKK FOR ØKONOMER STATISTICS FOR ECONOMISTS Faglg kontakt under eksamen: Hldegunn E Stokke Tlf:

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS3003 Eksamensoppgåver Oppgåve 2 gitt våren 2003 Erling Berge Vår 2004 Erling Berge 1 OPPGAVE 2 Logistisk regresjon (teller 50%) Den avhengige variabelen i analysen er innvenn, som fanger opp om en har

Detaljer

Litt enkel matematikk for SOS3003. Om matematikk. Litt om kva vi treng. Erling Berge

Litt enkel matematikk for SOS3003. Om matematikk. Litt om kva vi treng. Erling Berge Litt enkel matematikk for SOS3003 Erling Berge 31 Aug 2004 Erling Berge 1 Om matematikk Matematikk er ikkje vanskeleg Det er eit språk for logikken. Det er lett å lære å lese Litt vanskelegare å forstå

Detaljer

De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Median og kvartiler for hver gruppe.

De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Median og kvartiler for hver gruppe. STK H-26 Løsnngsforslag Alle deloppgaver teller lkt vurderngen av besvarelsen. Oppgave I et tlfeldg utvalg på normalvektge personer, og overvektge personer, måles konsentrasjonen av 2 ulke protener blodet.

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS3003 Eksamensoppgåver Gjennomgang våren 2004 Erling Berge Gjennomgang av Oppgåve 1 gitt hausten 2003 Haust 2003 Oppgåve 1 Den avhengige variabelen i regresjonsanalysen er en skala (indeks) for tillit

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : STK1000 Innførng anvendt statstkk Eksamensdag: Trsdag 12. desember 2017 Td for eksamen: 14.30 18.30 Oppgavesettet er på 5 sder Tllatte

Detaljer

TMA4265 Stokastiske prosesser

TMA4265 Stokastiske prosesser orges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA4265 Stokastske prosesser Våren 2004 Løsnngsforslag - Øvng 6 Oppgaver fra læreboka 4.56 X n Antallet hvte baller urna Trekk tlf.

Detaljer

MASTER I IDRETTSVITENSKAP 2018/2020. Individuell skriftlig eksamen. STA 400- Statistikk. Mandag 18. mars 2019 kl

MASTER I IDRETTSVITENSKAP 2018/2020. Individuell skriftlig eksamen. STA 400- Statistikk. Mandag 18. mars 2019 kl MASTER I IDRETTSVITENSKAP 2018/2020 Individuell skriftlig eksamen i STA 400- Statistikk Mandag 18. mars 2019 kl. 10.00-12.00 Eksamensoppgaven består av 5 sider inkludert forsiden Sensurfrist: 8.april 2019

Detaljer

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng

Detaljer

Logistisk regresjon 2

Logistisk regresjon 2 Logistisk regresjon 2 SPSS Utskrift: Trivariat regresjon a KJONN UTDAAR Constant Variables in the Equation B S.E. Wald df Sig. Exp(B) -,536,3 84,56,000,25,84,08 09,956,000,202 -,469,083 35,7,000,230 a.

Detaljer

2007/30. Notater. Nina Hagesæther. Notater. Bruk av applikasjonen Struktur. Stabsavdeling/Seksjon for statistiske metoder og standarder

2007/30. Notater. Nina Hagesæther. Notater. Bruk av applikasjonen Struktur. Stabsavdeling/Seksjon for statistiske metoder og standarder 007/30 Notater Nna Hagesæter Notater Bruk av applkasjonen Struktur Stabsavdelng/Seksjon for statstske metoder og standarder Innold 1. Innlednng... 1.1 Hva er Struktur, og va kan applkasjonen brukes tl?...

Detaljer

Løsningskisse for oppgaver til uke 15 ( april)

Løsningskisse for oppgaver til uke 15 ( april) HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene

Detaljer

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2 MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.27 (11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal finne konfidensintervall

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1 ECON 213 EKSAMEN 26 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å vee lke mye, Kommentarer og tallsvar er skrevet nn mellom , Oppgave 1 I en by med 1 stemmeberettgete nnbyggere

Detaljer

STK desember 2007

STK desember 2007 Løsnngsfrslag tl eksamen STK0 5. desember 2007 Oppgave a V antar at slaktevektene tl kalkunene fra Vrgna er bserverte verder av stkastske varabler X, X 2, X, X 4 sm er uavhengge g Nµ, σ 2 -frdelte, g at

Detaljer

FRAMLEGG TIL LØYSING AV EKSAMENOPPGÅVER I SOS301/ SOS311 8 DES 1997

FRAMLEGG TIL LØYSING AV EKSAMENOPPGÅVER I SOS301/ SOS311 8 DES 1997 1 EKSAMENSOPPGÅVER Haust 1997 FRAMLEGG TIL LØYSING Erling Berge Norges Teknisk Naturvitskapelege Universitet «Bruksanvisning» Når ein går igang med å løyse oppgåver må ein ha i minnet at oppgåvene ofte

Detaljer

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL Norman & Orvedal, kap. 1-5 Bævre & Vsle Generell lkevekt En lten, åpen økonom Nærngsstruktur Skjermet versus konkurranseutsatt vrksomhet Handel og komparatve fortrnn

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. ECON: EKSAMEN 6 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt

Detaljer

Alle deloppgaver teller likt i vurderingen av besvarelsen.

Alle deloppgaver teller likt i vurderingen av besvarelsen. STK H-26 Løsnngsforslag Alle deloppgaver teller lkt vurderngen av besvarelsen. Oppgave a) De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Medan og kvartler for

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvndt statistisk dataanalys i samfunnsvitnskap Forlsingsnotat, vår 2003 Erling Brg Institutt for sosiologi og statsvitnskap NTNU Vår 2004 Erling Brg 2004 Forlsing X Logistisk rgrsjon II Hamilton

Detaljer

Alternerende rekker og absolutt konvergens

Alternerende rekker og absolutt konvergens Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

Oppgave 1 Det er oppgitt i oppgaveteksten at estimatoren er forventningsrett, så vi vet allerede at E(ˆµ) = µ. Variansen til ˆµ er 2 2 ( )

Oppgave 1 Det er oppgitt i oppgaveteksten at estimatoren er forventningsrett, så vi vet allerede at E(ˆµ) = µ. Variansen til ˆµ er 2 2 ( ) Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg Løsgssksse Oppgave Det er oppgtt oppgavetekste at estmatore er forvetgsrett, så v vet allerede at Eˆµ µ. Varase tl ˆµ er τ Varˆµ

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS33 Eksamensoppgåver Oppgåve 2 gitt hausten 2 Erling Berge Erling Berge Haust 2 OPPGÅVE 2I tabellvedlegget til oppgåve 2 er det estimert 6 modellar av eiga inntekt (E.inntekt). a) Ta utgangspunkt i modell

Detaljer

MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ

MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.25 (11.27, 11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal nne

Detaljer

EKSAMENSOPPGAVE I IDRSA1004 Samfunnsvitenskapelig forskningsmetode og analyse

EKSAMENSOPPGAVE I IDRSA1004 Samfunnsvitenskapelig forskningsmetode og analyse NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I IDRSA1004 Samfunnsvitenskapelig forskningsmetode og analyse Faglig kontakt under

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA440 Statstkk Høst 06 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg 0 Løsgssksse Oppgave a Estmatore for avstade a er gjeomsttet av uavhegge detsk fordelte målger, x; a,

Detaljer

Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n.

Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n. Løsgsforslag ST20/ST620 205, kotuasjoseksame. a Rmelghetsfuksjoe blr Logartme Derverer Løser lgge Løsge er SME: L = 2 e l L = 2 l X X. X + l X. l L = 2 + 2 X = 2. ˆ = 2 X. X. b Her ka ma beytte trasformasjosformele,

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Vår 2004 Erling Berge 2004 1 Kritikk av regresjon I Forelesing

Detaljer

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall.

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall. Løsgsforslag Eksame Statstkk Nov 00 Oppgave a) Det fs 8 mulge kombasjoer. Dsse fes ved å utelate ett og ett tall. Atall utvalg av størrelse 7 blat m er ( m 7 ). b) Prs Atall Rekker 3 kr. ( 7 ) 3 kr....

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet

Detaljer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer Sde: av 7 orsk akkredterng Dok.d.: VII..5 A Dok. 5: Angvelse av måleuskkerhet ved kalbrernger Utarbedet av: Saeed Behdad Godkjent av: ICL Versjon:.00 Mandatory/Krav Gjelder fra: 09.05.008 Sdenr: av 7 A

Detaljer

Forelesning 17 Logistisk regresjonsanalyse

Forelesning 17 Logistisk regresjonsanalyse Forelesning 17 Logistisk regresjonsanalyse Logistiske regresjons er den mest brukte regresjonsanalysen når den avhengige variabelen er todelt Metoden kan brukes til å: teste hypoteser om variablers effekt

Detaljer

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet Auksjoner og mljø: Prvat nformasjon og kollektve goder Erk Romstad Handelshøyskolen Auksjoner for endra forvaltnng Habtatvern for bologsk mangfold Styresmaktene lyser ut spesfserte forvaltnngskontrakter

Detaljer

Veiledning til obligatorisk oppgave i ECON 3610/4610 høsten N. Vi skal bestemme den fordeling av denne gitte arbeidsstyrken som

Veiledning til obligatorisk oppgave i ECON 3610/4610 høsten N. Vi skal bestemme den fordeling av denne gitte arbeidsstyrken som Jon sle; oktober 07 Ogave a. elednng tl oblgatorsk ogave ECO 60/60 høsten 07 har nå at samlet arbedskraftmengde er gtt lk, slk at ressurskravet er. skal bestemme den fordelng av denne gtte arbedsstyrken

Detaljer

Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesg 3 MET359 Økoometr ved Davd Kreberg Vår 0 Dverse oppgaver Oppgave. E vestor samler følgede formasjo om markedsavkastge og avkastge på det som ser ut tl å være et attraktvt aksjefod År Aksjefodets

Detaljer

regresjonsmodeller multippel logistisk regresjon logistisk regresjon prediksjon vs assosiasjon den logistisk funksjonen (2)

regresjonsmodeller multippel logistisk regresjon logistisk regresjon prediksjon vs assosiasjon den logistisk funksjonen (2) Innføring i medisinsk statistikk del 2 regresjonsmodeller Hvorfor vil man bruke regresjonsmodeller? multippel logistisk regresjon. predikere et utfall (f.eks. sykdom, død, blodtrykk) basert på et sett

Detaljer

TMA4245 Statistikk Eksamen august 2014

TMA4245 Statistikk Eksamen august 2014 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Y 5 PY > 53) PY 53) P ) 53 5 Φ5) 933 668 Vekte av e fylt flaske, X + Y, er e leærkombasjo av uavhegge ormalfordelte

Detaljer

Masteroppgave i statistikk. GAMLSS-modeller i bilforsikring. Hallvard Røyrane-Løtvedt Kandidatnr. 160657

Masteroppgave i statistikk. GAMLSS-modeller i bilforsikring. Hallvard Røyrane-Løtvedt Kandidatnr. 160657 Masteroppgave statstkk GAMLSS-modeller blforskrng Hallvard Røyrane-Løtvedt Kanddatnr. 160657 UNIVERSITETET I BERGEN MATEMATISK INSTITUTT Veleder: Hans Julus Skaug 1. Jun 2012 1 GAMLSS-modeller blforskrng

Detaljer

Spørsmål. 21 april Vår Krav til semesteroppgåva

Spørsmål. 21 april Vår Krav til semesteroppgåva Spørsmål 2 april 2004 Vår 2004 Krav til semesteroppgåva Spørsmål:. er det et krav om at vi skal ha en dummykodet variabel med i oppgaven? Svar: Det er eit krav at det skal vere med ein nominalskalavariabel

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18). Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer

Detaljer

Ref.: Fall SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 05

Ref.:  Fall SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 05 SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 05 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Fall 2004 Erling Berge 2004 1 Forelesing V Kritikk av regresjon

Detaljer

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka: MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Vår 2004 Erling Berge 2004 1 Forelesing III Multivariat

Detaljer

Anvendt medisinsk statistikk, vår Repeterte målinger, del II

Anvendt medisinsk statistikk, vår Repeterte målinger, del II Anvendt medisinsk statistikk, vår 009 Repeterte målinger, del II Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin 1. amanuensis, Enhet for anvendt klinisk forskning (med bidrag fra Harald

Detaljer

Forelesning 8 STK3100/4100

Forelesning 8 STK3100/4100 Forelesning STK300/400 Plan for forelesning: 0. oktober 0 Geir Storvik. Lineære blandede modeller. Eksempler - data og modeller 3. lme 4. Indusert korrelasjonsstruktur. Marginale modeller. Estimering -

Detaljer

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet Investerng under uskkerhet Rsko og avkastnng Høy rsko Lav rsko Presserng av rskobegreet Realnvesterng Fnansnvesterng Rsko for enkeltaksjer og ortefølje-sammenheng Fnansnvesterng Realnvesterng John-Erk

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON13 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 11.8.16 Sensur kunngjøres senest: 6.8.16 Td for eksamen: kl. 9: 1: Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

TMA4245 Statistikk Eksamen 21. mai 2013

TMA4245 Statistikk Eksamen 21. mai 2013 TMA445 Statstkk Eksame ma 03 Korrgert 0 ju 03 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave Et plott av sasylghetstetthee er gtt fgur Vdere har v og PX = Φ = 08849

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS33 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 23 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Vår 24 Erling Berge 24 1 Forelesing VI Kritikk av regresjon

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Hvlke problemer? Metoden ble formalsert av Rchard Bellmann (RAND Corporaton) på -tallet. Har ngen tng med programmerng å gøre. Dynamsk er et ord som kan aldr brukes negatvt. Skal v

Detaljer

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk.

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk. ECON 0 Forbruker, bedrft og marked Forelesnngsnotater 09.0.07 Nls-Henrk von der Fehr FORBRUK OG SPARING Innlednng I denne delen skal v anvende det generelle modellapparatet for konsumentens tlpasnng tl

Detaljer

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011 Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp

Detaljer

Anvendelser. Kapittel 12. Minste kvadraters metode

Anvendelser. Kapittel 12. Minste kvadraters metode Kapttel Anvendelser I dette kaptlet skal v se på forskjellge anvendelser av teknkke v har utvklet løpet av de sste ukene Avsnttene og eksemplene v skal se på er derfor forholdsvs uavhengge Mnste kvadraters

Detaljer

som vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,,

som vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,, HG Eco30 07 9/3-07 Supplemet tl forelesg uke 0 (6 mars) (Det jeg kke rakk å ta på forelesg) Termolog (estmerg) Data (kokrete tall), x, x, er ervasjoer av stokastske varable, X, X, De statstske modelle

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9

Detaljer

n n i=1 x2 i n x2 n i=1 Y i og x = 1 n i=1 (x i x)y i = 5942 og n T = i=1 (x i x) 2 t n 2

n n i=1 x2 i n x2 n i=1 Y i og x = 1 n i=1 (x i x)y i = 5942 og n T = i=1 (x i x) 2 t n 2 TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 12, blokk II Denne øvingen består av oppgaver om enkel lineær regresjon. De handler

Detaljer

STK juni 2016

STK juni 2016 Løsningsforslag til eksamen i STK220 3 juni 206 Oppgave a N i er binomisk fordelt og EN i np i, der n 204 Hvis H 0 er sann, er forventningen lik E i n 204/6 34 for i, 2,, 6 6 Hvis H 0 er sann er χ 2 6

Detaljer

SNF-rapport nr. 23/05

SNF-rapport nr. 23/05 Sykefravær offentlg og prvat sektor av Margt Auestad SNF-prosjekt nr. 4370 Endrng arbedsforhold Norge Prosjektet er fnansert av Norges forsknngsråd SAMFUNNS- OG NÆRINGSLIVSFORSKNING AS BERGEN, OKTOBER

Detaljer

Seleksjon og uttak av alderspensjon fra Folketrygden

Seleksjon og uttak av alderspensjon fra Folketrygden ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.

Detaljer

Eksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget

Eksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget FA K U L T E T FO R NA T U R V I T E N S K A P O G TE K N O L O G I EKSAMENSOPPGAVE Eksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget

Detaljer

Notater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir)

Notater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir) 2009/48 Notater Bjørn Gabrelsen, Magnar Lllegård, Bert Otnes, Brth Sundby, Dag Abrahamsen, Pål Strand (Hdr) Notater Indvdbasert statstkk for pleeog omsorgstjenesten kommunene (IPLOS) Foreløpge resultater

Detaljer

Notat 1: Grunnleggende statistikk og introduksjon til økonometri

Notat 1: Grunnleggende statistikk og introduksjon til økonometri Notat : Gruleggede statstkk og troduksjo tl økoometr Gruleggede statstkk Populasjo vs. utvalg Statstsk feres gjør bruk av formasjoe et utvalg tl å trekke koklusjoer (el. slutger) om populasjoe som utvalget

Detaljer

Audun Langørgen Alternative metoder for beregning av kostnadsnøkler for utgiftsutjevning mellom kommuner

Audun Langørgen Alternative metoder for beregning av kostnadsnøkler for utgiftsutjevning mellom kommuner Rapporter 23/2011 Audun Langørgen Alternatve metoder for beregnng av kostnadsnøkler for utgftsutjevnng mellom kommuner Statstsk sentralbyrå Statstcs Norway Oslo Kongsvnger Rapporter I denne seren publseres

Detaljer

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk Yushu.@hh.o Forelesg 5 og 6 Itroduksjo tl Bayesask statstkk 1. Itroduksjo Fortsatt atar v har stokastsk varabel X (X ka være stokastsk varabel vektor) kommer fra e fordelg med parametere ( ka være parameter

Detaljer

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE SOS 00 ANVENDT STATISTISK DATAANALYSE I SAMFUNNSVITENSKAP Faglig kontakt under eksamen:

Detaljer

1 + γ 2 X i + V i (2)

1 + γ 2 X i + V i (2) Seminaroppgave 8 8.1 I en studie av sammenhengen mellom gjennomsnittlig inntekt og utgifter til offentlig skoledrift for ulike amerikanske stater i 1979 estimeres modellen; Y i = β 0 + β 1 X i + β 2 Xi

Detaljer

Forelesning 19 og 20 Regresjon og korrelasjons (II)

Forelesning 19 og 20 Regresjon og korrelasjons (II) STAT111 Statstkk Metoder Yushu.L@ub.o Forelesg 19 og 0 Regresjo og korrelasjos (II) 1. Kofdestervall (CI) og predksjostervall (PI) I uka 14, brukte v leær regresjo for å fage leær sammehege mellom Y og

Detaljer