Logistisk regresjon 2

Størrelse: px
Begynne med side:

Download "Logistisk regresjon 2"

Transkript

1 Logistisk regresjon 2 SPSS Utskrift: Trivariat regresjon a KJONN UTDAAR Constant Variables in the Equation B S.E. Wald df Sig. Exp(B) -,536,3 84,56,000,25,84,08 09,956,000,202 -,469,083 35,7,000,230 a. Variable(s) entered on step : KJONN, UTDAAR. Fortolkning av koeffisienter: Kvinner har mindre sannsynlighet enn menn til å jobbe mer enn 40 timer Utdanning er positivt relatert til arbeidstid, slik at sannsynligheten for å jobbe mer enn 40 time pr uke øker med økende antall år med utdanning Fortolkning av oddsratio [exp (B)]: Kvinners sjanse (odds) for å jobbe mer enn 40 timer er 2.5 % av den tilsvarende oddsen for menn. Alternativt: Kvinners sjanse (odds) for å jobbe mer enn 40 timer er (-.25)*00 = 78.5% lavere enn den tilsvarende oddsen for menn For hvert år med utdanning øker oddsen for å jobbe mer enn 40 timer med (oddsratio - )*00 = 20.2 % Alternativt: for hvert år med utdanning øker oddsen for høy arbeidstid med faktor.202. Altså, oddsen på ethvert nivå av utdanning er.202 ganger så høy som den tilsvarende oddsen på nivået under. Vi har m.a.o. å gjøre med en multiplikativ, kurvelineær sammenheng mellom utdanning or arbeidstid å gjøre Sannsynligheter: Sannsynligheter i tilknytning til kontinuerlige variable kan ofte med fordel fremstilles grafisk

2 Grafisk framstilling I dialogboksen for logistisk regresjon: velg save Predicted Values Probabilities SPSS lagrer nå de sannsynlighetene som modellen predikerer som en egen variabel pre_ eventuelt pre_n hvis man har lagret slike variable tidligere i SPSS. Denne kan nå plottes mot utdanning, og framstilles med kurver for menn og kvinner (Har modellen flere variable, eller ingen dummyvariable, blir det mer komplisert. I så fall må prediksjonene gjøres i regneark og fremstilles grafisk der)

3 Grafisk framstilling 2 Velg Graph line Multiple: Velg pre_ som Variable, kontinuerlig uavhengig variabel som Category Axis, og den dikotome uavhengige variabelen som Define Lines By. I vårt eksempel får vi denne grafen:,8,7,6,5 Mean Predicted probability,4,3,2, 0,0,00,00 3,00 5,00 7,00 9,00 Kjønn Mann Kvinne 2,00 Utdanning i år utover grunnskolenivå

4 Signifikanstest av koeffisienter a KJONN UTDAAR Constant Variables in the Equation B S.E. Wald df Sig. Exp(B) -,536,3 84,56,000,25,84,08 09,956,000,202 -,469,083 35,7,000,230 a. Variable(s) entered on step : KJONN, UTDAAR. Også i logistisk regresjon får vi estimert standardfeil til koeffisientene I logistisk regresjon er det korrekt å bruke z-verdier som kritiske verdier i hypotesetesting. z B SE b Testobservatoren er tilnærmet normalfordelt når utvalget er stort og effekten av variabelen i populasjonen er null slik som antatt under H 0 WALD z 2 B SE b 2 Denne testobservatoren er X 2 -fordelt med df= når utvalget er stort og effekten av variabelen i populasjonen er null slik som antatt under H 0. WALD er et alternativ til z ved to-halet hypotesetesting. Kritisk verdi er 3.84 Tester basert på z og WALD gir samme konklusjon Ved små utvalg er ingen av disse testene pålitelige. Da har vi kun Likelihood Ratio testen å holde oss til

5 Modelltest: Log Likelihood Iteration History a,b,c,d Iteration a. Method: Enter -2 Log Coefficients likelihood Constant KJONN UTDAAR 2834,350 -,77 -,806,9 2739,66 -,42 -,330, ,327 -,467 -,58, ,293 -,469 -,536,84 b. Constant is included in the model. c. Initial -2 Log Likelihood: 30,24 d. Estimation terminated at iteration number 4 because log-likelihood decreased by less than,00 percent. I logistisk regresjon er estimeringsmetoden Maximum likelihood estimering av maksimal sannsynlighet. Gitt det settet av uavhengige variable vi velger ut til analysen, går beregningsmetoden ut på å finne de koeffisienter som gjør det mest sannsynlig å få de observerte y-veridiene 0 -. Dette skjer ved hjelp av en såkalt likelihood funksjon: gjennom prøving og feiling såkalt iterasjoner er målet å komme fram til de koeffisienter som maksimerer logaritmen til denne funksjonen: log likelihood. Av tekniske grunner opererer man med et mål hvor Log Likelihood multipliseres med -2 den såkalte -2LL -2LL tilsvarer SSE i OLS-basert regresjon. Det er altså et mål på feilterm/ residualledd. En god modell er m.a.o. en modell med lav -2LL verdi I første iterasjon estimeres en -2LL for en modell uten variable. I eksempelet ovenfor er denne startverdien beregnet til I de neste iterasjonene estimeres -2LL for den fulle modellen. Som vi ser er den beste tilpasningen med tilhørende konstantledd og koeffisienter for kjønn og utdanning Reduksjonen i log likelihood er ( ) = Dette danner utgangspunkt for ulike tester av modellen

6 Pseudo R 2 I tråd med OLS-basert regresjon virker følgende mål fra Hosmer & Lameshow intuitivt fornuftig: PseudoR 2 HL 2LL 2LL full mod ell redusert mod ell For den trivariate modellen får vi: 2 PseudoR HL Fortolkning av Pseudo R 2 : proporsjonal reduksjon i -2LL-statistikken I SPSS fins to andre varianter av Pseudo R 2 : Model Summary -2 Log Cox & Snell Nagelkerke likelihood R Square R Square 2734,293,,76 Problemer med Pseudo R 2 : Kan ikke fortolkes som forklart varians

7 Likelihood Ratio testen (LR-test) Iteration History a,b,c,d Iteration a. Method: Enter -2 Log Coefficients likelihood Constant KJONN UTDAAR 2834,350 -,77 -,806,9 2739,66 -,42 -,330, ,327 -,467 -,58, ,293 -,469 -,536,84 b. Constant is included in the model. c. Initial -2 Log Likelihood: 30,24 d. Estimation terminated at iteration number 4 because log-likelihood decreased by less than,00 percent. Omnibus Tests of Model Coefficients Block Model Chi-square df Sig. 366,947 2, ,947 2, ,947 2,000 Denne testen tester hele modellen opp mot en modell med ingen variable H 0 : ingen av variablene i modellen har effekt Testobservator: (-2LL 0 ) (-2LL ) ~ X 2 -fordelt med df= antall variable i den fulle modellen Testen i SPSS-utskriften tester den trivariate analysen med kjønn og utdanning som uavhengige variable opp mot en modell med ingen variable. I modellen med ingen variable er -2LL = I den trivariate analysen er -2LL = Differansen er Df = 2 siden forskjellen på de to modellene er 2 variable Kritisk verdi: 5.99 Konklusjon: Modellen gir et signifikant forklaringsbidrag i forhold til en modell uten de to variablene

8 Likelihood Ratio testen 2 (LR-Test) Modell (Block ) Modell 2 (Block 2) Uavh variable: Kjønn Iteration History -2 Log Coefficients likelihood Iteration Constant KJONN 2924,337 -,803 -, ,860 -,850 -, ,24 -,85 -, ,06 -,85 -,606 a Method: Enter b Constant is included in the model. c Initial -2 Log Likelihood: 30,24 d Estimation terminated at iteration number 4 because log-likelihood decreased by less than,00 percent. Uavh. Variable: kjønn, utdanning Iteration History -2 Log Coefficients likelihood Iteration Constant KJONNUTDAAR 2834,350 -,77 -,806, ,66 -,42 -,330, ,327 -,467 -,58, ,293 -,469 -,536,84 a Method: Enter b Constant is included in the model. c Initial -2 Log Likelihood: 2846,06 d Estimation terminated at iteration number 4 because log-likelihood decreased by less than,00 percent. Omnibus Tests of Model Coefficients Chisquare df Sig. 255,35,000 Block 255,35,000 Model 255,35,000 Omnibus Tests of Model Coefficients Chisquare df Sig.,82,000 Block,82,000 Model 366,947 2,000 Denne testen tester den trivariate modellen (kjønn, utdanning) opp mot den bivariate modellen (bare kjønn som uavhengig variabel). H 0 : Den nye variabelen vi har inkludert representerer ingen forbedring i forhold til vår tidligere modell med færre variable. I modellen med kun én uavhengig variabel er -2LL = I den trivariate analysen er -2LL = Differansen er.82 Df = siden forskjellen på de to modellene er variabel Kritisk verdi: 3.84 Konklusjon: Den fulle modellen gir et signifikant forklaringsbidrag i forhold til en modell med bare én uavhengig

9 Hosmer & Lameshow Goodness of Fit Test Test fra den trivariate modellen: Hosmer and Lemeshow Test Chi-square df Sig. 7,855 6, Contingency Table for Hosmer and Lemeshow Test Arbeidstidskategorier =,00 Normal (<=40t) Arbeidstidskategorier =,00 Høy (>= 4) Observed Expected Observed Expected Total ,22 6 2, , , , , , , , , , , , , , , Selv om vi har fått signifikante resultater betyr ikke det at vi har en god modell. En modell kan treffe godt i noen områder av dataene og dårlig i andre deler. Framfor alt forutsetter logistisk regresjon at sammenhengene mellom avhengig og uavhengige variable kan beskrives med en logistisk s-kurve. Dette tilsvarer forutsetningen om linearitet i OLS-regresjon. Hosmer & Lameshow-testen går ut på å undersøke akkurat dette: hvorvidt det er et akseptabelt eller for stort avvik mellom predikerte utfall og observerte verdier. Hvis avviket er for stort har vi en dårlig modell, dvs. en analyse som ikke oppfyller nevnte forutsetning. I tabellen ovenfor er materialet delt inn i 8 grupper. I hver av dem sammenliknes observerte og predikerte utfall på avhengig variabel. Generelt ser vi at modellen predikerer bedre for Y=0 enn Y=. Likevel ser avvikene ut til å være beskjedne. H & L gir oss en kjikvadrattest på avvikene: H 0 : Avvikene mellom observerte og predikerte utfall skyldes tilfeldigheter H : Det er et systematisk avvik mellom observerte og predikerte utfall I denne testen ønsker vi egentlig et ikke-signifikant resultat, for i så fall har vi støtte for modellen vår. Den aktuelle testen viser at gitt at H 0 er sann er det 24.9 % sjanse for å få et kjikvadrat på eller høyere. H 0 kan m.a.o. ikke forkastes.

10 This document was created with Win2PDF available at The unregistered version of Win2PDF is for evaluation or non-commercial use only.

Logistisk regresjon 1

Logistisk regresjon 1 Logistisk regresjon Hovedideen: Binær logistisk regresjon håndterer avhengige, dikotome variable Et hovedmål er å predikere sannsynligheter for å ha verdien på avhengig variabel for bestemte (sosiale)

Detaljer

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I SOS3003 Våren 2006 Anvendt statistisk dataanalyse i samfunnsvitenskap Faglig kontakt

Detaljer

Forelesning 17 Logistisk regresjonsanalyse

Forelesning 17 Logistisk regresjonsanalyse Forelesning 17 Logistisk regresjonsanalyse Logistiske regresjons er den mest brukte regresjonsanalysen når den avhengige variabelen er todelt Metoden kan brukes til å: teste hypoteser om variablers effekt

Detaljer

Fra krysstabell til regresjon

Fra krysstabell til regresjon Fra krysstabell til regresjon La oss si at vi er interessert i å undersøke i hvilken grad arbeidstid er avhengig av utdanning. Vi har ca. 3200 observasjoner (dvs. arbeidstakere som er spurt). For hver

Detaljer

Forelesning 10 Kjikvadrattesten

Forelesning 10 Kjikvadrattesten verdier Forelesning 10 Kjikvadrattesten To typer av statistisk generalisering: Statistisk hypotesetesting Statistiske hypoteser (H 0 og H 1 ) om populasjonen Finner forkastningsområdet for H 0 ut fra en

Detaljer

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I SOS3003 Våren 2006 Anvendt statistisk dataanalyse i samfunnsvitenskap Faglig kontakt

Detaljer

Forelesning 9 Kjikvadrattesten. Kjikvadrattest for bivariate tabeller (klassisk variant) Når kan vi forkaste H 0?

Forelesning 9 Kjikvadrattesten. Kjikvadrattest for bivariate tabeller (klassisk variant) Når kan vi forkaste H 0? Forelesning 9 Kjikvadrattesten Kjikvadrattesten er den mest benyttede metoden for å utføre statistiske generaliseringer fra bivariate tabeller. Kjikvadrattesten brukes til å teste nullhypotesen om at det

Detaljer

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I SVSOS 316 REGRESJONSANALYSE Faglig kontakt under eksamen: Kristen Ringdal Tlf.:

Detaljer

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE SOS 00 ANVENDT STATISTISK DATAANALYSE I SAMFUNNSVITENSKAP Faglig kontakt under eksamen:

Detaljer

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005 SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000

Detaljer

EKSAMENSOPPGAVE I SOS3003:

EKSAMENSOPPGAVE I SOS3003: EKSAMENSOPPGAVE I SOS3003: ANVENDT STATISTISK DATAANALYSE I SAMFUNNSVITENSKAP HØST 2012. Faglig kontakt under eksamen: Albert Andrew Simkus Telefon: 99 53 21 74 Eksamensdato og tidspunkt: 17. desember

Detaljer

Std. Error. ANOVA b. Sum of Squares df Square F Sig. 54048,151 2 27024,075 327,600,000 263063,943 3189 82,491 317112,094 3191.

Std. Error. ANOVA b. Sum of Squares df Square F Sig. 54048,151 2 27024,075 327,600,000 263063,943 3189 82,491 317112,094 3191. Samspill i regresjon Variables Entered/Removed b Variables Variables Entered Removed Method Kjønn,, Enter hjemmebo ende a a. All requested variables entered. Summary Std. Error Adjusted R of the R R Square

Detaljer

Eksamensoppgave i ST3001

Eksamensoppgave i ST3001 Det medisinske fakultet Institutt for kreftforskning og molekylær medisin Eksamensoppgave i ST3001 Onsdag 16. desember 2010, kl. 9.00 13:00 ntall studiepoeng: 7.5 Tillatte hjelpemidler: Kalkulator og alle

Detaljer

SKOLEEKSAMEN 2. november 2007 (4 timer)

SKOLEEKSAMEN 2. november 2007 (4 timer) EKSAMEN I SOS400 KVANTITATIV METODE SKOLEEKSAMEN. november 007 (4 timer Ikke-programmerbar kalkulator er tillatt under eksamen. Ingen andre hjelpemidler er tillatt. Sensuren faller fredag 3. november kl.

Detaljer

EKSAMENSOPPGAVE I SOS3003 ANVENDT STATISTISK DATAANALYSE I SAMFUNNSVITENSKAP VÅR 2008.

EKSAMENSOPPGAVE I SOS3003 ANVENDT STATISTISK DATAANALYSE I SAMFUNNSVITENSKAP VÅR 2008. EKSAMENSOPPGAVE I SOS3003 ANVENDT STATISTISK DATAANALYSE I SAMFUNNSVITENSKAP VÅR 2008. Faglig kontakt under eksamen: Albert Andrew Simkus Telefon: 99 53 21 74 Eksamensdato og tidspunkt: 20. mai 2008 09:00

Detaljer

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005. SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan

Detaljer

Høye skårer indikerer høye nivåer av selvkontroll.

Høye skårer indikerer høye nivåer av selvkontroll. Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2015 Skriftlig skoleeksamen tirsdag 19. mai, 09:00 (4 timer) Resultater publiseres 10. juni Kalkulator

Detaljer

KATEGORISKE DATA- TABELLANALYSE ANALYSE AV. Tron Anders Moger. 3. Mai 2005

KATEGORISKE DATA- TABELLANALYSE ANALYSE AV. Tron Anders Moger. 3. Mai 2005 ANALYSE AV KATEGORISKE DATA- TABELLANALYSE 3. Mai 2005 Tron Anders Moger Forrige gang: Snakket om kontinuerlige data, dvs data som måles på en kontinuerlig skala Hypotesetesting med t-tester evt. ikkeparametriske

Detaljer

Forelesning 13 Regresjonsanalyse

Forelesning 13 Regresjonsanalyse Forelesning 3 Regresjonsanalyse To typer bivariat analyse: Bivariat tabellanalyse: Har enhetenes verdi på den uavhengige variabelen en tendens til å gå sammen med bestemte verdier på den avhengige variabelen?

Detaljer

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014

PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Skriftlig skoleeksamen fredag 2. mai, 09:00 (4 timer). Kalkulator uten grafisk display og tekstlagringsfunksjon

Detaljer

SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE

SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE 1 SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE Eksamensdag: 8 desember 1997 Eksamensstad: Dragvoll, paviljong C, rom 201 Tid til eksamen: 6 timar Vekt: 5 for SOS301 og 4 for SOS31/ SOS311 Talet på sider

Detaljer

International Research Institute of Stavanger AS

International Research Institute of Stavanger AS Innhold 1 INNLEDNING... 5 2 BIVARIAT ANALYSE AV UTVALGTE PROBLEMSTILLINGER... 6 2.1 Kommunestørrelse og antall bygninger barnehagen består av... 6 2.2 Styrers og pedagogisk leders utdanningsnivå ved ulike

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS3003 Eksamensoppgåver Gjennomgang våren 2004 Erling Berge Vår 2004 1 Gjennomgang av Oppgåve 3 gitt hausten 2001 Vår 2004 2 Haust 2001 Oppgåve 3 I tabellvedlegget til oppgåve 3 er det estimert 7 ulike

Detaljer

Kategoriske data, del I: Kategoriske data - del 2 (Rosner, ) Kategoriske data, del II: 2x2 tabell, parede data (Mc Nemar s test)

Kategoriske data, del I: Kategoriske data - del 2 (Rosner, ) Kategoriske data, del II: 2x2 tabell, parede data (Mc Nemar s test) Kategoriske data, del I: Kategoriske data - del (Rosner, 10.3-10.7) 1 januar 009 Stian Lydersen To behandlinger og to utfall. (generelt: variable, verdier). x tabell. Uavhengige observasjoner Sammenheng

Detaljer

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I SVSOS 36 REGRESJONSANALYSE Faglig kontakt under eksamen: Tlf.: 73 59 7 0 Eksamensdato:

Detaljer

10.1 Enkel lineær regresjon Multippel regresjon

10.1 Enkel lineær regresjon Multippel regresjon Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel

Detaljer

regresjonsmodeller multippel logistisk regresjon logistisk regresjon prediksjon vs assosiasjon den logistisk funksjonen (2)

regresjonsmodeller multippel logistisk regresjon logistisk regresjon prediksjon vs assosiasjon den logistisk funksjonen (2) Innføring i medisinsk statistikk del 2 regresjonsmodeller Hvorfor vil man bruke regresjonsmodeller? multippel logistisk regresjon. predikere et utfall (f.eks. sykdom, død, blodtrykk) basert på et sett

Detaljer

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet 1 8-1: Oversikt 2 8-2: Grunnleggende hypotesetesting 3 Section 8-3: Å teste påstander om andeler 4 Section 8-5: Teste en påstand om gjennomsnittet Definisjoner Hypotese En hypotese er en påstand om noe

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

SKOLEEKSAMEN 29. september 2006 (4 timer)

SKOLEEKSAMEN 29. september 2006 (4 timer) EKSAMEN I SOS400 KVANTITATIV METODE SKOLEEKSAMEN 9. september 006 (4 timer) Ikke-programmerbar kalkulator er tillatt under eksamen. Ingen andre hjelpemidler er tillatt. Sensuren faller fredag 0. oktober

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

NTNU, Norges teknisk-naturvitenskapelige universitet

NTNU, Norges teknisk-naturvitenskapelige universitet NTNU, Norges teknisk-naturvitenskapelige universitet EXAMINATION QUESTIONS FOR/ EKSAMENSOPPGÅVE I / EKSAMENSOPPGAVE I SVSOS3003 ANVENDT STATISTISK DATAANALYSE I SAMFUNNSVITENSKAP Contact during examinations/

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS3003 Eksamensoppgåver Gjennomgang våren 2004 Erling Berge Gjennomgang av Oppgåve 2 gitt hausten 2003 Haust 2003 Oppgåve 2 Den avhengige variabelen i den logistiske regresjonsanalysen er freegl, som

Detaljer

NTNU, Norges teknisk-naturvitenskapelige universitet

NTNU, Norges teknisk-naturvitenskapelige universitet NTNU /NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY Eksamensoppgåver/Eksamensoppgaver/Examination question NTNU, Norges teknisk-naturvitenskapelige universitet EXAMINATION QUESTIONS FOR / EKSAMENSOPPGÅVE

Detaljer

SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 VÅREN 2007

SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 VÅREN 2007 SENSORVEILEDNING FOR DEN KVANTITATIVE DELEN AV EKSAMENSOPPGAVEN I SOS1002 VÅREN 2007 Oppgave 1 Nedenfor ser du en forenklet tabell basert på informasjon fra den norske delen av European Social Survey 2004.

Detaljer

Multippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p.

Multippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Multippel regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Det er fortsatt en responsvariabel y. Måten dette gjøre på er nokså

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet

Detaljer

Fakultet for informasjonsteknologi, Institutt for matematiske fag EKSAMEN I EMNE ST2202 ANVENDT STATISTIKK

Fakultet for informasjonsteknologi, Institutt for matematiske fag EKSAMEN I EMNE ST2202 ANVENDT STATISTIKK Side av 9 NTNU Noregs teknisk-naturvitskaplege universitet Fakultet for informasonsteknologi, matematikk og elektroteknikk Institutt for matematiske fag Bokmål Faglig kontakt under eksamen Bo Lindqvist

Detaljer

Til bruk i metodeundervisningen ved Høyskolen i Oslo

Til bruk i metodeundervisningen ved Høyskolen i Oslo MINIMANUAL FOR SPSS Til bruk i metodeundervisningen ved Høyskolen i Oslo Denne minimanualen viser hvordan analyser i metodeundervisningen på masternivå (master i sosialt arbeid, master i familiebehandling

Detaljer

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I SVSOS 36 REGRESJONSANALYSE Faglig kontakt under eksamen: Kristen Ringdal Tlf.:

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00 MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden

Detaljer

Lineære modeller i praksis

Lineære modeller i praksis Lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y én eller flere uavhengige variabler:

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Vår 2004 Erling Berge 2004 1 Forelesing VII Logistisk regresjon

Detaljer

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt

Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt SOS1120 Kvantitativ metode Forelesningsnotater 10. forelesning høsten 2005 Per Arne Tufte Sammenlikninger av gjennomsnitt Sammenlikner gjennomsnittet på avhengig variabel for ulike grupper av enheter Kan

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder

Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Martin Rasmussen Tlf.: 73 59 19 60 Eksamensdato: 12.12.13 Eksamenstid

Detaljer

STK juni 2016

STK juni 2016 Løsningsforslag til eksamen i STK220 3 juni 206 Oppgave a N i er binomisk fordelt og EN i np i, der n 204 Hvis H 0 er sann, er forventningen lik E i n 204/6 34 for i, 2,, 6 6 Hvis H 0 er sann er χ 2 6

Detaljer

INSTITUTT FOR SOSIOLOGI OG SAMFUNNSGEOGRAFI EKSAMEN I SOSIOLOGI (MASTER) SOS KVANTITATIV METODE. SKOLEEKSAMEN 11. mai 2005 (4 timer)

INSTITUTT FOR SOSIOLOGI OG SAMFUNNSGEOGRAFI EKSAMEN I SOSIOLOGI (MASTER) SOS KVANTITATIV METODE. SKOLEEKSAMEN 11. mai 2005 (4 timer) EKSAMEN I SOSIOLOGI (MASTER) SOS400 - KVANTITATIV METODE SKOLEEKSAMEN 11. mai 005 (4 timer) Tillatt hjelpemiddel: Ikke-programmerbar kalkulator. Oppgavesettet består av 6 sider inkludert denne. Kandidaten

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 003 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Vår 004 Erling Berge 004 1 Forelesing XI Logistisk regresjon

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002 SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002 Generell informasjon Dette er den siste eksamensoppgaven under overgangsordningen mellom gammelt og nytt pensum i SVSOS107. Eksamensoppgaven

Detaljer

Univariate tabeller. Bivariat tabellanalyse. Forelesning 8 Tabellanalyse. Formålet med bivariat analyse:

Univariate tabeller. Bivariat tabellanalyse. Forelesning 8 Tabellanalyse. Formålet med bivariat analyse: Forelesning 8 Tabellanalyse Tabellanalyse er en godt egnet presentasjonsform hvis: variablene har et fåtall naturlige kategorier For eksempel kjønn, Eu-syn variablene er delt inn i kategorier For eksempel

Detaljer

EKSAMENSOPPGAVE I IDRSA1004 Samfunnsvitenskapelig forskningsmetode og analyse

EKSAMENSOPPGAVE I IDRSA1004 Samfunnsvitenskapelig forskningsmetode og analyse NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I IDRSA1004 Samfunnsvitenskapelig forskningsmetode og analyse Faglig kontakt under

Detaljer

Forelesning 18 SOS1002

Forelesning 18 SOS1002 Forelesning 8 SOS002 Bruk av regresjonsmodeller til å predikere verdier? Hvordan kan vi predikere timelønn ut fra denne lineære regresjonsmodellen? B SEB Beta t Sig. t Kvinner(kvinne=, mann=0) -4,0 0,96-0,23-4,66

Detaljer

Hvorfor har forskjellen. i t-testen på nå blitt redusert til ?

Hvorfor har forskjellen. i t-testen på nå blitt redusert til ? Forelesning 16 Tolkning av regresjonsmodeller Eksamensoppgave i SVSOS17 18. mai 21 1 Oppgave 1a Tabell 1 viser et SPSS-utskrift av en t-test for to uavhengige utvalg, og er basert på data fra en spørreundersøkelse

Detaljer

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk Eksamensdag: Torsdag 2. desember 2010. Tid for eksamen: 09.00 13.00. Oppgavesettet er på

Detaljer

Løsningsforslag øving 9, ST1301

Løsningsforslag øving 9, ST1301 Løsningsforslag øving 9, ST1301 Oppgave 1 Regresjon. Estimering av arvbarhet. a) Legg inn din egen høyde, din mors høyde, din fars høyde, og ditt kjønn via linken på fagets hjemmeside 1. Last så ned dataene

Detaljer

Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger

Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger Fordelinger, mer om sentralmål og variasjonsmål Tron Anders Moger 20. april 2005 1 Forrige gang: Så på et eksempel med data over medisinerstudenter Lærte hvordan man skulle få oversikt over dataene ved

Detaljer

3.A IKKE-STASJONARITET

3.A IKKE-STASJONARITET Norwegian Business School 3.A IKKE-STASJONARITET BST 1612 ANVENDT MAKROØKONOMI MODUL 5 Foreleser: Drago Bergholt E-post: Drago.Bergholt@bi.no 11. november 2011 OVERSIKT - Ikke-stasjonære tidsserier - Trendstasjonaritet

Detaljer

Oppgaver til Studentveiledning 3 MET 3431 Statistikk

Oppgaver til Studentveiledning 3 MET 3431 Statistikk Oppgaver til Studentveiledning 3 MET 3431 Statistikk 24. april 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 01/06/2011: Oppgave 1-7. Eksamensoppgaven fra 06/2011

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

Er det enklere å anslå timelønna hvis vi vet utdanningslengden? Forelesning 14 Regresjonsanalyse

Er det enklere å anslå timelønna hvis vi vet utdanningslengden? Forelesning 14 Regresjonsanalyse Forelesning 4 Regresjonsanalyse To typer bivariat analyse: Bivariat tabellanalyse: Har enhetenes verdi på den uavhengige variabelen en tendens til å gå sammen med bestemte verdier på den avhengige variabelen?

Detaljer

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Faglig kontakt under

Detaljer

PSYC 3101 KVANTITATIV METODE II Eksamen høst 2008

PSYC 3101 KVANTITATIV METODE II Eksamen høst 2008 Eksamen 7. november kl. 0900 200 Sensur: 8.2. kl. 4 Alle oppgavene skal besvares. PSYC 30 KVANTITATIV METODE II Eksamen høst 2008 OPPGAVE Vurdering av personlige egenskaper Et selskap som driver en nettside

Detaljer

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde 1 E DAG PÅ HELSESTASJOE Lises klassevenninnner Lise er veldig liten Hva gjør at du sier at hun er liten? Du har en hypotese om vanlig høyde Du har en hypotese om vanlig høyde Du sammenligner Lises høyde

Detaljer

Skoleeksamen i SOS Kvantitativ metode

Skoleeksamen i SOS Kvantitativ metode Eksamensinformasjon Skoleeksamen i SOS1120 - Kvantitativ metode 2. juni 2016 (4 timer) Informasjonskriv for deg som svarer på vanlig PC og ikke i Inspera: Hjelpemidler Ordbok Alle pensumbøker (inkl. kompendiet

Detaljer

Logistisk regresjon. Regresjonsmodeller. Prediksjon versus assosiasjon. En epidemiologisk problemstilling. Et multivariabelt problem

Logistisk regresjon. Regresjonsmodeller. Prediksjon versus assosiasjon. En epidemiologisk problemstilling. Et multivariabelt problem Innføring i medisinsk statistikk del 2 Logistisk regresjon Hvorfor brukes logistisk regresjon? Multippel logistisk regresjon (Rosner, 2000; kap. 3.7 og 2006 presentasjon av Tom Ivar Lund Nilsen). Av samme

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12.

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12. MASTR I IDRTTSVITNSKAP 2014/2016 Utsatt individuell skriftlig eksamen i STA 400- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator ksamensoppgaven består av 10 sider inkludert

Detaljer

NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap SENSORVEILEDNING I SOS1002 SAMFUNNSVITENSKAPELIG FORSKNINGSMETODE Eksamensdato: 30. november 2009 Eksamenstid:

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 03. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 03. Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 03 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Haust 2004 Erling Berge 2004 1 Forelesing III Multivariat regresjon

Detaljer

Lese og presentere statistikk i medisinske forskningsartikler

Lese og presentere statistikk i medisinske forskningsartikler Lese og presentere statistikk i medisinske forskningsartikler Denne forelesingen vil bl.a. handle litt om: Hva sier egentlig de forskjellige tallene? (Og hva sier de ikke?) Hvordan kritisk vurdere de statistiske

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317. Statistikk og kvantitative forskningsmetoder. Psykologisk institutt

Eksamensoppgave i PSY2017/PSYPRO4317. Statistikk og kvantitative forskningsmetoder. Psykologisk institutt 1 Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Christian Klöckner Tlf.: 73 59 19 60 Eksamensdato: 29.05.2015 Eksamenstid

Detaljer

Multippel lineær regresjon

Multippel lineær regresjon Regresjon Multippel lineær regresjon Inger Johanne Bakken Enhet for anvendt klinisk forskning, NTNU Og Avdeling for forebyggende helsearbeid, SINTEF Tilpasse en funksjon til ett sett observasjoner Minst

Detaljer

Spørsmål. 21 april Vår Krav til semesteroppgåva

Spørsmål. 21 april Vår Krav til semesteroppgåva Spørsmål 2 april 2004 Vår 2004 Krav til semesteroppgåva Spørsmål:. er det et krav om at vi skal ha en dummykodet variabel med i oppgaven? Svar: Det er eit krav at det skal vere med ein nominalskalavariabel

Detaljer

Detaljerte forklaringer av begreper og metoder.

Detaljerte forklaringer av begreper og metoder. Appendiks til Ingar Holme, Serena Tonstad. Risikofaktorer og dødelighet oppfølging av Oslo-undersøkelsen fra 1972-73. Tidsskr Nor Legeforen 2011; 131: 456 60. Dette appendikset er et tillegg til artikkelen

Detaljer

EKSAMENSOPPGAVE FOR SOS3003: ANVENDT STATISTISK DATAANALYSE

EKSAMENSOPPGAVE FOR SOS3003: ANVENDT STATISTISK DATAANALYSE NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE FOR SOS3003: ANVENDT STATISTISK DATAANALYSE Vår 2012 Faglig kontakt under eksamen:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet

Detaljer

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag

Detaljer

Generelle lineære modeller i praksis

Generelle lineære modeller i praksis Generelle lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y en eller flere uavhengige

Detaljer

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap

NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE SOS3003 Faglig kontakt under eksamen: Albert Andrew Simkus Telefon: 99 53 21 74

Detaljer

Analyse med uavhengige variabler på nominal- /ordinalnivå

Analyse med uavhengige variabler på nominal- /ordinalnivå Analyse med uavhengige varialer på nominal- /ordinalnivå Hvordan rue varialer på nominalnivå (eventuelt ordinalnivå) som har flere enn to verdier i en regresjonsanalyse? Svar: omoder til dummyvarialer

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Kapittel 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to

Detaljer

Arbeidsnotat nr. 8-2000. Per Arne Tufte

Arbeidsnotat nr. 8-2000. Per Arne Tufte Arbeidsnotat nr. 8-2000 Per Arne Tufte En intuitiv innføring i logistisk regresjon SIFO 2000 Prosjektnotat nr. 8-2000 STATENS INSTITUTT FOR FORBRUKSFORSKNING Sandakerveien 24 C, Bygg B Postboks 4682 Nydalen

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

Eksamensoppgave i PSY2017/PSYPRO4317. Statistikk og kvantitative forskningsmetoder. Målform/språk: Bokmål Antall sider: 10. Psykologisk institutt

Eksamensoppgave i PSY2017/PSYPRO4317. Statistikk og kvantitative forskningsmetoder. Målform/språk: Bokmål Antall sider: 10. Psykologisk institutt 1 Psykologisk institutt Eksamensoppgave i PSY2017/PSYPRO4317 Statistikk og kvantitative forskningsmetoder Faglig kontakt under eksamen: Christian Klöckner Tlf.: 73 59 19 60 Eksamensdato:11.12.014 Eksamenstid

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 25. NOVEMBER 2003 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ

Detaljer

EKSAMEN I SOS1120 KVANTITATIV METODE 5. MAI 2004 (6 timer)

EKSAMEN I SOS1120 KVANTITATIV METODE 5. MAI 2004 (6 timer) EKSAMEN I SOS1120 KVANTITATIV METODE 5. MAI 2004 (6 timer) Bruk av ikke-programmerbar kalkulator er tillatt under eksamen. Utover det er ingen hjelpemidler tillatt. Sensur faller fredag 28. mai kl. 14.00,

Detaljer

UTDRAG FRA SENSORVEILEDNINGEN FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2001

UTDRAG FRA SENSORVEILEDNINGEN FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2001 UTDRAG FRA SENSORVEILEDNINGEN FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2001 Generell informasjon Vi er for tiden inne i en overgangsordning mellom gammelt og nytt pensum i SVSOS107. Denne eksamensoppgaven

Detaljer

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2003

SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2003 SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 003 Oppgave 1 Tabell 1 gjengir data fra en spørreundersøkelse blant personer mellom 17 og 66 år i et sannsynlighetsutvalg fra SSB sitt sentrale personregister.

Detaljer

Kort innføring i SPSS

Kort innføring i SPSS Kort innføring i SPSS Oppstart og datasett Gjør følgende for å starte opp SPSS og få fram European Social Survey: Finn Min datamaskin Finn SV-info på Luna Velg ISS Velg SOS1002. Dobbeltklikk deretter på

Detaljer

Løsningsforslag Til Statlab 5

Løsningsforslag Til Statlab 5 Løsningsforslag Til Statlab 5 Jimmy Paul September 6, 007 Oppgave 8.1 Vi skal se på ukentlige forbruk av søtsaker blant barn i et visst område. En pilotstudie gir at standardavviket til det ukentige forbruket

Detaljer

Eksamensoppgave i PSY3100 Forskningsmetode - kvantitativ

Eksamensoppgave i PSY3100 Forskningsmetode - kvantitativ Psykologisk institutt Eksamensoppgave i PSY3100 Forskningsmetode - kvantitativ Faglig kontakt under eksamen: Odin Hjemdal Tlf.: Psykologisk institutt 73 59 19 60 Eksamensdato: 23.5.2013 Eksamenstid (fra-til):

Detaljer

Fra administrasjonen: Riitta Hellman (ikke ved sak 04/6/5) Grethe Strand-Pedersen (ikke ved sak 04/6/5), referent

Fra administrasjonen: Riitta Hellman (ikke ved sak 04/6/5) Grethe Strand-Pedersen (ikke ved sak 04/6/5), referent STYREPROTOKOLL Revidert Protokoll fra styremøte 6/2004 den 18. oktober 2004 kl. 10. 30 15.45 Møtet ble ledet av styreleder Ingeborg Astrid Kleppe. Til stede: Fra styret: Ingeborg Astrid Kleppe, styreleder

Detaljer

EKSAMENSOPPGÅVE I SVSOS316 REGRESJONSANALYSE

EKSAMENSOPPGÅVE I SVSOS316 REGRESJONSANALYSE NORGES TEKNISK NATURVITSKAPELEGE UNIVERSITET 1 NTNU, TRONDHEIM Norges teknisk-naturvitenskapelige universitet EKSAMENSOPPGÅVE I SVSOS316 REGRESJONSANALYSE Eksamensdag: 22 mai 2000 Eksamensstad: Dragvoll,

Detaljer

Eksamensoppgave i PSY3100 forskningsmetoder kvantitativ

Eksamensoppgave i PSY3100 forskningsmetoder kvantitativ Institutt for psykologi Eksamensoppgave i PSY3100 forskningsmetoder kvantitativ Faglig kontakt under eksamen: Odin Hjemdal Tlf.: 73 59 19 60 Eksamensdato: 15. mai 2017 Eksamenstid: 09:00-13:00 Hjelpemiddelkode/Tillatte

Detaljer

Eksamensoppgave i PSY3100 Forskningsmetode kvantitativ

Eksamensoppgave i PSY3100 Forskningsmetode kvantitativ Psykologisk institutt Eksamensoppgave i PSY3100 Forskningsmetode kvantitativ Faglig kontakt under eksamen: Christian Klöckner Tlf.: 73 59 19 60 Eksamensdato: 8. desember 2016 Eksamenstid: 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Eksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget

Eksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget FA K U L T E T FO R NA T U R V I T E N S K A P O G TE K N O L O G I EKSAMENSOPPGAVE Eksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget

Detaljer

EKSAMEN I PSY3100 FORSKNINGSMETODE KVANTITATIV HØSTEN 2012

EKSAMEN I PSY3100 FORSKNINGSMETODE KVANTITATIV HØSTEN 2012 NTNU Fakultet for samfunnsvitenskap og teknologiledelse Psykologisk institutt EKSAMEN I PSY3100 FORSKNINGSMETODE KVANTITATIV HØSTEN 2012 DATO: 12.12.12 Studiepoeng: 7,5 Sidetall bokmål 4 Tillatte hjelpemidler:

Detaljer