Forelesning 8 STK3100/4100
|
|
- Margrete Hjelle
- 7 år siden
- Visninger:
Transkript
1 Forelesning STK300/400 Plan for forelesning: 0. oktober 0 Geir Storvik. Lineære blandede modeller. Eksempler - data og modeller 3. lme 4. Indusert korrelasjonsstruktur. Marginale modeller. Estimering - ML og REML 7. Modell seleksjon Eksempel: Vekst av rotter Vekt av 30 rotter målt ukentlig i uker Weight days p. /33 p. 3/33 Lineær regresjon Modell y i = x T i β + ε i, i =,...,n der E[ε i ] = 0 ε,...,ε n uavhengige Var[ε i ] = σ (samme for alle obs) Vanlig lineær modell Respons Y i,j er vekt av rotte i for uke j. Individuelle forskjeller i nivå. Mulig modell: Y i,j = α i + β x j + ε i,j, ε i,j N(0,σ ) der x j er antall dager. Kan estimere α,...,α 30,β,σ ved vanlig lineær regresjon. ε i er Gaussisk Hva hvis noen av disse antagelsene ikke er tilstede? Her: Se på situasjonen med uavhengighet p. /33 p. 4/33
2 Eksempel rotter (forts) 30 rotter utvalg av populasjon. Av interesse hele populasjonen. Alternativ modell Y i,j = α + b i + β x j + ε i,j, ε i,j N(0,σ ) der nå b i N(0,d ). Eksempel på blandet modell Eksempel: Biomangfold i sjøen Antall arter RIKZ målt innenfor 9 områder. observasjoner innen hvert område (ulike sites ) Ønsker å forklare variasjon ved NAP : Høyde ved stasjon i forhold til gj.snittelig høyde Exposure: Index kombinert fra ulike ting (felles for hvert område) Totalt 4 obsevasjoner p. /33 p. 7/33 Indusert korrelasjonsstruktur Boksplott Y i,j =α + b i + β x j + ε i,j Var[Y ij ] =d + σ 0 hvis k i Cov[Y ij,y k,l ] = d hvis k = i,l j 0 hvis k i Cor[Y ij,y k,l ] = d hvis k = i,l j d +σ p. /33 p. /33
3 Regresjon innen område Kombinert modell Y ij = α i + β i NAP ij + ε ij Y ij =α i + β i NAP ij + ε ij β i =η + τexposure i + b i RIKZ$Richness gir Y ij =α i + (η + τexposure i + b i )NAP ij + ε ij =α i + ηnap ij + τexposure i NAP ij + b i NAP ij + ε ij RIKZ$NAP p. 9/33 p. /33 To-trinns analyse > round(beta,3) [] Nivå modell β i = η + τexposure i + b i > exp = RIKZ$Exposure[c(:9)*-4] > fit = lm(beta exp) > summary(fit) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) exp Ulemper to-trinns analyse Oppsummerer data fra hvert område med en parameter (β i ) Analyserer regresjonsparametre, ikke respons Usikkerhet i ˆβ i ikke brukt i -trinn. Endelig modell fornuftig, men ønsker en enhetlig analyse Residual standard error:.9 on 7 degrees of freedom Multiple R-squared: 0.3,Adjusted R-squared: F-statistic:. on and 7 DF, p-value: 0.97 p. 0/33 p. /33
4 Lineære blandede modeller Antar Y i = X i β + Z i b i + ε i Rotte modell Y i =X i β + Z i b i + ε i Fast effekt/parameter: β med forklaringsvariable X i Tilfeldig effekt: b i med forklaringsvariable Z i. Kalles Blandet modell (mixed model) og Y i,j =α + β x j + b i + ε i,j, ε i,j N(0,σ ) p. 3/33 gir β = (α,β) T, b i = b i,σ = σ I,D = d og x x X i = x 3, Z i = x 4 x p. /33 Modell med alle antagelser Y i =X i β + Z i b i + ε i b i N(0,D) ε i N(0,Σ i ) b,..,b N,ε,...,ε N uavhengige Laird & Ware modell formulering Ofte: Forenklede strukturer på D,Σ i D = d I,Σ i = σ I Biomangfold Forenklet modell Y ij =α + b i + β i NAP ij + ε ij gir β = (α,β) T, b i = b i,σ = σ I,D = d og NAP i NAP i X i = NAP i3, Z i = NAP i4 NAP i p. 4/33 p. /33
5 Tilfeldig konstantledd Random intercept modell Y ij =α + b i + x T i β + ε ij Konstantledd (intercept) α + b i N(α,d ). Funksjonen lme - output - Rottedata > summary(fit) Linear mixed-effects model fit by REML Data: d AIC BIC loglik Random effects: Formula: id (Intercept) Residual StdDev: Fixed effects: weight days Value Std.Error DF t-value p-value (Intercept) days Number of Observations: 0 Number of Groups: 30 Her er ˆd = = og ˆσ =.03 = p. 7/33 p. 9/33 Funksjonen lme lme: Lineære blandede modeller Kall vedlig likt lm. Ekstra variabel random som beskjriver tilfeldig variabel (Merk: ε ij er som vanlig direkte spesifisert i modellen) > library(nlme) > names(rats) [] "days" "weight" "id" > fit = lme(weight days,random= id,data=rats) id er her en faktor som angir hvilken rotte en observasjon tilhører random= id betyr at vi modellerer et konstantledd innenfor id, dvs vår b i. Antar direkte (default) Uavhengighet mellom bi -ene bi N(0, d ). Biomangfold > RIKZ$fBeach <- factor(rikz$beach) > Mlme <- lme(richness NAP, random = fbeach,data=rikz) > summary(mlme) Linear mixed-effects model fit by REML Data: RIKZ AIC BIC loglik Random effects: Formula: fbeach (Intercept) Residual StdDev: Fixed effects: Richness NAP Value Std.Error DF t-value p-value (Intercept) NAP Her er ˆd =.944 =. og ˆσ = 3.00 = 9.3. p. /33 p. 0/33
6 Koeffisienter > Mlme <- lme(richness NAP, random = fbeach,data=rikz) > summary(mlme)$coef $fixed (Intercept) NAP $random $random$fbeach (Intercept) ˆbi = E[b i data, estimerte parametre]. Tilpassede verdier Richness NAP 97 Level 0 Level p. /33 p. 3/33 Tilpassede verdier Y i =X i β + Z i b i + ε i To opsjoner for tilpassede verdier: ˆµ i =X iˆβi Nivå 0 µ i =X iˆβi + Z i ˆbi Nivå Mlme <- lme(richness NAP, random = fbeach,data=rikz) F0<-fitted(Mlme,level=0) F<-fitted(Mlme,level=) Tilfeldig konstant- og stigningsledd Random intercept and slope model Biomangfold Y ij =α + b i + (β + b i )NAP i + ε ij Konstantledd (intercept) α + b i N(α,d ). Stigning (slope) β + b i N(β,d ). Kan også ha Cov[b i,b i ] = d = d. Mlme <- lme(richness NAP, random = + NAP fbeach, data = RIKZ) p. /33 p. 4/33
7 R kode Indusert korrelasjonsstruktur > Mlme <- lme(richness +NAP, + random = + NAP fbeach, data = RIKZ) > summary(mlme) Random effects: Formula: + NAP fbeach Structure: General positive-definite, Log-Cholesky parametrization StdDev Corr (Intercept) (Intr) NAP Residual.7079 Fixed effects: Richness NAP Value Std.Error DF t-value p-value (Intercept) e+00 NAP e-04 Correlation: (Intr) NAP -0.9 gir Y i =X i β + Z i b i + ε i b i N(0,D) ε i N(0,Σ i ) Y i N(X i β,v i ) V i =Z i D Z T i + Σ i p. /33 p. 7/33 Tilpassede linjer Indusert korrelasjonsstruktur Y ij =α + b i + (β + b i )NAP i + ε ij RIKZ$Richness Var[Y ij ] =d + NAP ij d + NAP ij d + σ Cov[Y ij,y ik ] =d + (NAP ij + NAP ik ) d + (NAP ij NAP ik ) d + σ RIKZ$NAP p. /33 p. /33
8 Intrakorrelasjon og effektiv sample størrelse Enkel situasjon: Y i = (Y i,...,y in ), E[Y ij ] =µ, Var[Y ij ] = σ, Cov[Y ij,y ik ] = ρσ ˆµ =Ȳ Var[Ȳ ] = n [ n j= Var[Y ij ] + k j Cov[Y ij,y ik ]] = + n(n )ρσ ] = σ [ + (n )ρ] n [nσ n Varians økt med + (n )ρ. Design effekt Eksempel: n =, ˆρ = 0.4 gir + (n )ρ =.9. Effektiv sample størrelse: N effective = N n design effekt = 9.9 =.4 p. 9/33 REML REML = Restricted maximum likelihood Modell (vanlig lineær regresjon): Y i = X i β + ε i, ε i N(0,σ ) Ide: Transformere data slik at β forsvinner. A er en n (n p) matrise slik at A T X = 0. Gir A T Y i =A T X i β + A T ε i N(0,σ A T A) Estimer σ ved ML basert på A T Y i. p. 3/33 Estimering Vanlig: ML estimering. REML og blandede modeller Modell gir ˆµ = ȳ og Y i uif N(µ,σ ) kombinert Y i N(X i β,v i ), V i = Z i D Z T i + Σ i ˆσ = n Foretrekker ofte n (y i ȳ) Forventningsskjev i= ˆσ = n n (y i ȳ) Forventningsrett i= Forventningsskjevhet i ML-estimat: Tar ikke hensyn til usikkerhet i µ p. 30/33 Y N(Xβ,V) Definer A slik at A T X = 0. Gir A T Y N(0,A T VA) Estimer parametre i V ved ML estimering basert på A T Y. Merk: Resultat ikke avhengig av hvordan vi spesifiserer A. Gir forventningsrette estimater! p. 3/33
9 Eksempel RIKZ$fExp<-RIKZ$Exposure RIKZ$fExp[RIKZ$fExp==]<-0 RIKZ$fExp<-factor(RIKZ$fExp,levels=c(0,)) M0.ML <- lme(richness NAP, data = RIKZ, random = fbeach, method = "ML") M0.REML <-lme(richness NAP, data = RIKZ, random = fbeach, method = "REML") M.ML <- lme(richness NAP+fExp, data = RIKZ, random = fbeach, method = "ML") M.REML <- lme(richness NAP+fExp, data = RIKZ, random = fbeach, method = "REML") p. 33/33
Forelesning 9 STK3100/4100
p. 1/3 Forelesning 9 STK3100/4100 Plan for forelesning: 18. oktober 2012 Geir Storvik 1. Lineære blandede modeller 2. Marginale modeller 3. Estimering - ML og REML 4. Modell seleksjon p. 2/3 Modell med
DetaljerForelesning 9 STK3100/4100
Forelesning 9 STK3100/4100 Plan for forelesning: 17. oktober 2011 Geir Storvik 1. Lineære blandede modeller 2. Marginale modeller 3. Estimering - ML og REML 4. Modell seleksjon p. 1 Modell med alle antagelser
DetaljerForelesning 11 STK3100/4100
Forelesning STK300/400 Plan for forelesning: 3. oktober 20 Geir Storvik. Generaliserte lineære blandede modeller Eksempler R-kode - generell formulering av modell Tillater innbygging av avhengigheter mellom
DetaljerForelesning 11 STK3100/4100
Forelesning 11 STK3100/4100 Plan for forelesning: 1. november 2012 Geir Storvik 1. Generaliserte lineære blandede modeller Eksempler R-kode GLMM - generell formulering av modell Likelihood og estimering
DetaljerIntroduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller
Introduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller p. 1/34 Introduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller STK3100/4100-23. august 2011 Geir Storvik (Oppdatert
Detaljer7. november 2011 Geir Storvik
Forelesning 13 STK3100/4100 Plan for forelesning: 7. november 2011 Geir Storvik Generaliserte lineære blandede modeller 1. Sammenlikning ulike estimeringsmetoder 2. Tolkning parametre 3. Inferens Konfidensintervaller
DetaljerTilleggsoppgaver for STK1110 Høst 2015
Tilleggsoppgaver for STK0 Høst 205 Geir Storvik 22. november 205 Tilleggsoppgave Anta X,..., X n N(µ, σ) der σ er kjent. Vi ønsker å teste H 0 : µ = µ 0 mot H a : µ µ 0 (a) Formuler hypotesene som H 0
DetaljerMOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:
MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,
DetaljerPrøveeksamen i STK3100/4100 høsten 2011.
Prøveeksamen i STK3100/4100 høsten 2011. Oppgave 1 (a) Angi tetthet/punktsannsynlighet for eksponensielle klasser med og uten sprednings(dispersjons)ledd. Nevn alle fordelingsklassene du kjenner som kan
DetaljerForelesning 7 STK3100/4100
Forelesning 7 STK3100/4100 p. 1/2 Forelesning 7 STK3100/4100 8. november 2012 Geir Storvik Plan for forelesning: 1. Kontinuerlige positive responser 2. Gamma regresjon 3. Invers Gaussisk regresjon Forelesning
DetaljerForelesning 3 STK3100
Eks. Fødselsvekt mot svangerskapslengde og kjønn Forelesning 3 STK3100 8. september 2008 S. O. Samuelsen Plan for forelesning: 1. Generelt om lineære modeller 2. Variansanalyse - Kategoriske kovariater
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Mandag 1. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet
DetaljerAnvendt medisinsk statistikk, vår Repeterte målinger, del II
Anvendt medisinsk statistikk, vår 009 Repeterte målinger, del II Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin 1. amanuensis, Enhet for anvendt klinisk forskning (med bidrag fra Harald
DetaljerMOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2
MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.27 (11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal finne konfidensintervall
DetaljerForelesning 7 STK3100/4100
Gamma regresjon Forelesning 7 STK3100/4100 26. september 2008 Geir Storvik Plan for forelesning: 1. Kontinuerlige positive responser 2. Gamma regresjon 3. Invers Gaussisk regresjon Modell: Har y Gamma(µ,ν),
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet
DetaljerKapittel 6 - modell seleksjon og regularisering
Kapittel 6 - modell seleksjon og regularisering Geir Storvik 21. februar 2017 1/22 Lineær regresjon med mange forklaringsvariable Lineær modell: Y = β 0 + β 1 x 1 + + β p x p + ε Data: {(x 1, y 1 ),...,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2100 - FASIT Eksamensdag: Torsdag 15. juni 2017. Tid for eksamen: 09.00 13.00. Oppgavesettet er på 5 sider. Vedlegg: Tillatte
DetaljerEksamensoppgave i TMA4267 Lineære statistiske modeller
Institutt for matematiske fag Eksamensoppgave i TMA4267 Lineære statistiske modeller Faglig kontakt under eksamen: Mette Langaas Tlf: 988 47 649 Eksamensdato: 22. mai 2014 Eksamenstid (fra til): 09.00-13.00
DetaljerForelesning 7 STK3100
( % - -! " stimering: MK = ML Forelesning 7 STK3100 1 oktober 2007 S O Samuelsen Plan for forelesning: 1 Generelt om lineære modeller 2 Variansanalyse - Kategoriske kovariater 3 Koding av kategoriske kovariater
DetaljerST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon
ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Kap. 13: Lineær korrelasjons-
DetaljerForelesning 10 STK3100
Momenter i multinomisk fordeling Forelesning 0 STK300 3. november 2008 S. O. Samuelsen Plan for forelesning:. Multinomisk fordeling 2. Multinomisk regresjon - ikke-ordnede kategorier 3. Multinomisk regresjon
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet
DetaljerSTK2100. Obligatorisk oppgave 1 av 2
14. februar 2018 Innleveringsfrist STK2100 Obligatorisk oppgave 1 av 2 Torsdag 1. mars 2018, klokken 14:30 gjennom Devilry (https:devilry.ifi.uio.no). Praktiske instruksjoner Første side av din innlevering
DetaljerIntroduksjon til Generaliserte Lineære Modeller (GLM)
Introduksjon til Generaliserte Lineære Modeller (GLM) p. 1/25 Introduksjon til Generaliserte Lineære Modeller (GLM) STK3100-23. august 2010 Sven Ove Samuelsen/Anders Rygh Swensen Plan for første forelesning:
DetaljerMOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ
MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.25 (11.27, 11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal nne
DetaljerGenerelle lineære modeller i praksis
Generelle lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y en eller flere uavhengige
DetaljerLøsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y
Statistiske metoder 1 høsten 004. Løsningsforslag Oppgave 1: a) Begge normalplottene gir punkter som ligger omtrent på ei rett linje så antagelsen om normalfordeling ser ut til å holde. Konfidensintervall
DetaljerPrøveeksamen STK vår 2017
Prøveeksamen STK2100 - vår 2017 Geir Storvik Vår 2017 Oppgave 1 Anta en lineær regresjonsmodell p Y i = β 0 + β j x ij + ε i, j=1 ε i uif N(0, σ 2 ) Vi kan skrive denne modellen på vektor/matrise-form:
DetaljerEKSAMENSOPPGAVE. B154 «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004 Dato: 29.september 2016 Klokkeslett: 09 13 Sted: Tillatte hjelpemidler: B154 «Tabeller og formler i statistikk» av Kvaløy og
DetaljerLøsningsforslag eksamen 27. februar 2004
MOT30 Statistiske metoder Løsningsforslag eksamen 7 februar 004 Oppgave a) Y ij = µ i + ε ij, der ε ij uavh N(0, σ ) der µ i er forventa kopperinnhold for legering i og ε ij er feilleddet (tilfeldig variasjon)
DetaljerUNIVERSITETET I OSLO
Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk Eksamensdag: Mandag 3. desember 2018. Tid for eksamen: 14.30 18.30. Oppgavesettet er på
DetaljerEksamensoppgave i TMA4267 Lineære statistiske modeller
Institutt for matematiske fag Eksamensoppgave i TMA4267 Lineære statistiske modeller Faglig kontakt under eksamen: Mette Langaas Tlf: 988 47 649 Eksamensdato: 4. juni 2016 Eksamenstid (fra til): 09.00
Detaljer10.1 Enkel lineær regresjon Multippel regresjon
Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel
Detaljervekt. vol bruk
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: 10. desember 2010. Tid for eksamen: 14.30 18.30. Oppgavesettet er
DetaljerPrøveeksamen STK2100 (fasit) - vår 2018
Prøveeksamen STK2100 (fasit) - vår 2018 Geir Storvik Vår 2018 Oppgave 1 (a) Vi har at E = Y Ŷ =Xβ + ε X(XT X) 1 X T (Xβ + ε) =[I X(X T X) 1 X T ]ε Dette gir direkte at E[E] = 0. Vi får at kovariansmatrisen
DetaljerLøsningsforslag STK1110-h11: Andre obligatoriske oppgave.
Løsningsforslag STK1110-h11: Andre obligatoriske oppgave. Oppgave 1 a) Legg merke til at X er gamma-fordelt med formparameter 1 og skalaparameter λ. Da er E[X] = 1/λ. Små verdier av X tyder derfor på at
DetaljerEKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Tirsdag 26. september 2017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»
DetaljerIntroduksjon Lineære blanda modellar Generaliserte lineære blanda modellar Analyser av modellar Eit randproblem Oppsummering. Blanda modellar i R
Blanda modellar i R Jorunn Slagstad Universitetet i Bergen 20. desember 2006 1 Introduksjon 2 Lineære blanda modellar 3 Generaliserte lineære blanda modellar 4 Analyser av modellar 5 Eit randproblem 6
DetaljerEksamensoppgave i TMA4267 Lineære statistiske modeller
Institutt for matematiske fag Eksamensoppgave i TMA4267 Lineære statistiske modeller Faglig kontakt under eksamen: Tlf: Eksamensdato: August 2014 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte hjelpemidler:
DetaljerEksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget
FA K U L T E T FO R NA T U R V I T E N S K A P O G TE K N O L O G I EKSAMENSOPPGAVE Eksamen i: STA-1002 Statistikk og sannsynlighet 2 Dato: Fredag 31. mai 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget
DetaljerOppsummering av STK2120. Geir Storvik
Oppsummering av STK2120 Geir Storvik Vår 2011 Hovedtemaer Generelle inferensmetoder Spesielle modeller/metoder Bruk av R Vil ikke bli testet på kommandoer, men må forstå generelle utskrifter Generelle
DetaljerOppgave N(0, 1) under H 0. S t n 3
MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr 9 (s 1) Oppgave 1 Modell: Y i β 0 + β 1 x i + β 2 x 2 i + ε i der ε 1,, ε n uif N(0, σ 2 ) e) Y Xβ + ε der Y Y 1 Y n, X 1 x 1 x 2 1
DetaljerStatistikk og havressurser
Statistikk og havressurser STK2120-16. april 2012 Geir Storvik April 16, 2012 Fiskeri i Norge Norges havområder er mer enn seks ganger større enn våre landområder, og har noen av verdens rikeste fiskebanker.
DetaljerEKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag 14. desember 2006 Tid: 09:0013:00
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist, tlf. 975 89 418 EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER
DetaljerEKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Kontakt under eksamen: Ingelin Steinsland (92 66 30 96) EKSAMEN I TMA4315 GENERALISERTE LINEÆRE MODELLER Tirsdag
DetaljerEKSAMEN I TMA4255 ANVENDT STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Mette Langaas (988 47 649) BOKMÅL EKSAMEN I TMA4255 ANVENDT STATISTIKK Fredag 25.
DetaljerStatistikk og havressurser
Statistikk og havressurser STK2120-16. april 2012 Geir Storvik April 16, 2012 Fiskeri i Norge Norges havområder er mer enn seks ganger større enn våre landområder, og har noen av verdens rikeste fiskebanker.
DetaljerGeneraliserte Lineære Modeller
Eksponensiell klasse Generaliserte Lineære Modeller Y i f(y i ;θ i ) = c(y i ;φ) exp((θ i y i a(θ i ))/φ) µ i = E[Y i ] = a (θ i ) σ 2 i = Var[Y i ] = φa (θ i ) = φv (µ i ) STK3100-4. september 2011 Geir
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2 Eksamensdag: Mandag 4. juni 2007. Tid for eksamen: 14.30 17.30. Oppgavesettet er
DetaljerEKSAMENSOPPGAVER STAT100 Vår 2011
EKSAMENSOPPGAVER STAT100 Vår 2011 Løsningsforslag Oppgave 1 (Med referanse til Tabell 1) a) De 3 fiskene på 2 år hadde lengder på henholdsvis 48, 46 og 35 cm. Finn de manglende tallene i Tabell 1. Test
DetaljerLøsningsforslag eksamen 25. november 2003
MOT310 Statistiske metoder 1 Løsningsforslag eksamen 25. november 2003 Oppgave 1 a) Vi har µ D = µ X µ Y. Sangere bruker generelt trapesius-muskelen mindre etter biofeedback dersom forventet bruk av trapesius
DetaljerSTK Oppsummering
STK1110 - Oppsummering Geir Storvik 11. November 2015 STK1110 To hovedtemaer Introduksjon til inferensmetoder Punktestimering Konfidensintervall Hypotesetesting Inferens innen spesifikke modeller/problemer
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST110 Statistiske metoder og dataanalyse Eksamensdag: Mandag 30. mai 2005. Tid for eksamen: 14.30 20.30. Oppgavesettet er på
DetaljerOppgave 1. Kilde SS df M S F Legering Feil Total
MOT30 Statistiske metoder, høste0 Løsninger til regneøving nr. 0 (s. ) Oppgave Y ij = µ i + ε ij, der ε ij uavh. N(0, σ ) der µ i er forventa kopperinnhold for legering i og ε ij er feilleddet (tilfeldig
DetaljerEKSAMENSOPPGAVE. «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004. Dato: Fredag 26. mai 2017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»
DetaljerEksamensoppgave i TMA4267 Lineære statistiske modeller
Institutt for matematiske fag Eksamensoppgave i TMA4267 Lineære statistiske modeller Faglig kontakt under eksamen: Mette Langaas Tlf: 988 47 649 Eksamensdato: 19. mai 2017 Eksamenstid (fra til): 09.00
DetaljerForelesning 6 STK3100
Scorefunksjon og estimeringsligninger for GLM Forelesning 6 STK3100 29. september 2008 S. O. Samuelsen Plan for forelesning: 1. Observert og forventet informasjon 2. Optimeringsrutiner 3. Iterative revektede
DetaljerSTK juni 2016
Løsningsforslag til eksamen i STK220 3 juni 206 Oppgave a N i er binomisk fordelt og EN i np i, der n 204 Hvis H 0 er sann, er forventningen lik E i n 204/6 34 for i, 2,, 6 6 Hvis H 0 er sann er χ 2 6
DetaljerForelesning 8 STK3100
$ $ $ # Fortolkning av Dermed blir -ene Vi får variasjonen i '& '& $ Dermed har fortolkning som andel av variasjonen forklart av regresjonen Alternativt: pga identiteten Forelesning 8 STK3100 p3/3 Multippel
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 202 Statistiske slutninger for den eksponentielle fordelingsklasse. Eksamensdag: Fredag 15. desember 1995. Tid for eksamen:
DetaljerKlassisk ANOVA/ lineær modell
Anvendt medisinsk statistikk, vår 008: - Varianskomponenter - Sammensatt lineær modell med faste og tilfeldige effekter - Evt. faktoriell design Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin
DetaljerKp. 11 Enkel lineær regresjon (og korrelasjon) Kp. 11 Regresjonsanalyse; oversikt
Bjørn H. Auestad Kp. 11: Regresjonsanalyse 1 / 57 Kp. 11 Regresjonsanalyse; oversikt 11.1 Introduction to Linear Regression 11.2 Simple Linear Regression 11.3 Least Squares and the Fitted Model 11.4 Properties
DetaljerEksamensoppgåve i TMA4267 Lineære statistiske modellar
Institutt for matematiske fag Eksamensoppgåve i TMA4267 Lineære statistiske modellar Fagleg kontakt under eksamen: Øyvind Bakke Tlf: 73 59 81 26, 990 41 673 Eksamensdato: 22. mai 2015 Eksamenstid (frå
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Løsningsforslag: Statistiske metoder og dataanalys Eksamensdag: Fredag 9. desember 2011 Tid for eksamen: 14.30 18.30
DetaljerIntroduksjon til Generaliserte Lineære Modeller (GLM)
Literatur / program Introduksjon til Generaliserte Lineære Modeller (GLM) STK3100-20. august 2007 Sven Ove Samuelsen Plan for første forelesning: 1. Introduksjon, Literatur, Program 2. ksempler 3. Uformell
DetaljerVariansanalyse og lineær regresjon notat til STK2120
Variansanalyse og lineær regresjon notat til STK2120 Ørulf Borgan februar 2013 Formålet med dette notatet er å beskrive sammenhengen mellom variansanalyse med faste effekter og multippel lineær regresjon
DetaljerLineære modeller i praksis
Lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y én eller flere uavhengige variabler:
DetaljerOppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er
DetaljerInferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"
Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.
Detaljer(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].
FORMELSAMLING TIL STK2100 (Versjon Mai 2018) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)
DetaljerOppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir
DetaljerEKSTRAOPPGAVER I STK1110 H2017
EKSTRAOPPGAVER I STK0 H207. Simuleringer for å illustrere store talls lov og sentralgrenseteoremet Oppgave.. I denne oppgaven skal vi bruke kommandoen rbinom(n,size,prob). Kommandoen trekker n tilfeldige
DetaljerLøsningsforsalg til andre sett med obligatoriske oppgaver i STK1110 høsten 2015
Løsningsforsalg til andre sett med obligatoriske oppgaver i STK1110 høsten 2015 R-kode for alle oppgaver er gitt bakerst. Oppgave 1 (a) Boksplottet antyder at verdiene er høyere for kvinner enn for menn.
DetaljerGeneraliserte Lineære Modeller
Lineær regresjon er en GLM Generaliserte Lineære Modeller Responser (Y i -er) fra normalfordelinger Lineær komponent η i = β 0 + β 1 x i1 + + β p x ip E[Y i ] = µ i = η i, dvs. linkfunksjonen g(µ i ) =
DetaljerFra boka: 10.32, 10.33, 10.34, 10.35, 10.3 og (alle er basert på samme datasett).
Fra boka: 10.32, 10.33, 10.34, 10.35, 10.3 og 10.37 (alle er basert på samme datasett). ############ OPPGAVE 10.32 # Vannkvalitet. n=49 målinger i ulike områder. # Forutsetter at datasettene til boka (i
DetaljerFasit og løsningsforslag STK 1110
Fasit og løsningsforslag STK 1110 Uke 36: Eercise 8.4: a) (57.1, 59.5), b) (57.7, 58, 9), c) (57.5, 59.1), d) (57.9, 58.7) og e) n 239. (Hint: l(n) = 1 = 2z 1 α/2 σ/n 1/2 ). Eercise 8.10: a) (2.7, 7.5),
DetaljerLøsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010
Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100
Detaljer1 + γ 2 X i + V i (2)
Seminaroppgave 8 8.1 I en studie av sammenhengen mellom gjennomsnittlig inntekt og utgifter til offentlig skoledrift for ulike amerikanske stater i 1979 estimeres modellen; Y i = β 0 + β 1 X i + β 2 Xi
DetaljerEKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004. Dato: Mandag 24. september 2018. Klokkeslett: 09-13. Sted: Administrasjonsbygget K1.04 Tillatte hjelpemidler: «Tabeller og
DetaljerStatistisk analyse av data fra planlagte forsøk
Statistisk analyse av data fra planlagte forsøk 19. mars 2019 9.00 10.30 Skypemøte 2 i NLR s kurs i forsøksarbeid 2019 Torfinn Torp Temaer Noen sentrale begreper, framgangsmåte etc., via et eksempel. Noen
Detaljer(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].
FORMELSAMLING TIL STK2100 (Versjon Mai 2017) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)
DetaljerHØGSKOLEN I STAVANGER
EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN
DetaljerEkstraoppgaver for STK2120
Ekstraoppgaver for STK2120 Geir Storvik Vår 2011 Ekstraoppgave 1 Anta X 1 og X 2 er uavhengige med X 1 N(1.0, 1.0) og X 2 N(2.0, 1.5). La X = (X 1, X 2 ) T. Definer c = ( ) 2.0 3.0, A = ( ) 1.0 0.5 0.0
DetaljerForelesning 6 STK3100/4100
Forelesning 6 STK3100/4100 p. 1/4 Forelesning 6 STK3100/4100 4. oktober 2012 Presentasjon av S. O. Samuelsen (modifisert av Geir H12) Plan for forelesning: 1. GLM Binære data 2. Link-funksjoner 3. Parameterfortolkning
DetaljerTil nå, og så videre... TMA4240 Statistikk H2010 (25) Mette Langaas. Foreleses mandag 15.november, 2010
TMA4240 Statistikk H2010 (25) 11.4: Egeskaper til MKE 11.5: Iferes om α og β 11.6: Prediksjo Mette Lagaas Foreleses madag 15.ovember, 2010 2 Til å, og så videre... Modell ekel lieær regresjo: Y = α + βx
DetaljerMOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1. Oppgave 1
MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Oppgave 1 a) Normalantakelse: Målingene x 1,..., x 21 og y 1,..., y 8 betraktes som utfall av tilfeldige variable X 1,..., X 21
DetaljerKp. 12 Multippel regresjon
Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt Kp 12 Multippel Bjørn H Auestad Kp 11: Regresjonsanalyse 1 / 46 Kp 12 Multippel ; oversikt Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt 121 Introduction
DetaljerEksamensoppgave i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 30. mai 2014 Eksamenstid (fra til): 09:00-13:00
DetaljerOppgave 14.1 (14.4:1)
MOT30 Statistiske metoder, høste006 Løsninger til regneøving nr. 0 (s. ) Modell: Oppgave 4. (4.4:) Y ijk = µ + α i + β j + (αβ) ij + ε ijk, der ε ijk uavh. N(0, σ ) der µ er gjennomsnittseffekten, α i
DetaljerEKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004. Dato: Torsdag 31. mai 2018. Klokkeslett: 09-13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»
DetaljerEKSAMEN I EMNE TMA4315 GENERALISERTE LINEÆRE MODELLER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Bokmål Faglig kontakt under eksamen: Håkon Tjelmeland 73 59 35 38 EKSAMEN I EMNE TMA4315 GENERALISERTE LINEÆRE MODELLER
DetaljerTMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Oppgave 1 Oppgave 11.5 fra læreboka. Oppgave 2 Oppgave 11.21 fra læreboka. Oppgave
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Mandag 30. mai 2005. Tid for eksamen: 14.30 17.30. Oppgavesettet er
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2 Maskinlæring og statistiske metoder for prediksjon og klassifikasjon Eksamensdag: Torsdag 4. juni 28. Tid for eksamen: 4.3
DetaljerRidge regresjon og lasso notat til STK2120
Ridge regresjon og lasso notat til STK2120 Ørulf Borgan februar 2016 I dette notatet vil vi se litt nærmere på noen alternativer til minste kvadraters metode ved lineær regresjon. Metodene er særlig aktuelle
DetaljerEKSAMENSOPPGAVE STA-1001.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Mandag 28. mai 2018. Klokkeslett: 09-13. Sted: Tillatte hjelpemidler: Administrasjonsbygget B154/AUDMAX. «Tabeller og
DetaljerKandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert!
MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Flott! Samlet sett leverer dere gode resultater. Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert! Totalt
Detaljer