Forelesning 9 STK3100/4100

Størrelse: px
Begynne med side:

Download "Forelesning 9 STK3100/4100"

Transkript

1 p. 1/3 Forelesning 9 STK3100/4100 Plan for forelesning: 18. oktober 2012 Geir Storvik 1. Lineære blandede modeller 2. Marginale modeller 3. Estimering - ML og REML 4. Modell seleksjon

2 p. 2/3 Modell med alle antagelser Y i =X i β + Z i b i + ε i,i = 1,...,N b i N(0,D) ε i N(0,Σ i ) b 1,..,b N,ε 1,...,ε N uavhengige Laird & Ware modell formulering Ofte: Forenklede strukturer på D,Σ i D = d 2 I,Σ i = σ 2 I

3 p. 3/3 Marginal modell/likelihood Y i N(X i β,v i ) V i =Z i DZ T i + Σ i avh av parametre ψ L i =f(y i ;β,ψ) 1 = (2π) n i/2 V i 1/2 exp{ 1(Y 2 i X i β) T V 1 i (Y i X i β)} l i = n i log(2π) 1 log V 2 2 i 1(Y 2 i X i β) T V 1 i (Y i X i β N l(β,ψ) = i=1 l i

4 p. 4/3 Direkte spesifisering av marginal modell V i = τ 2 φ φ φ φ φ τ 2 φ φ φ φ φ τ 2 φ φ φ φ φ τ 2 φ φ φ φ φ τ 2 Compound symmetric structure, svarer til Σ i =σ 2 I,Z i = 1 T,D = d 2 = φ,τ 2 = σ 2 + d 2

5 p. 5/3 Direkte spesifisering av marginal modell V i = τ 2 c 21 c 31 c 41 c 51 c 21 τ 2 c 32 c 42 c 52 c 31 c 32 τ 2 c 43 c 53 c 41 c 42 c 43 τ 2 c 54 c 51 c 52 c 53 c 54 τ 2 general correlation matrix

6 p. 6/3 Eksempel Blandet modell > M.mixed <- lme(richness NAP, random = 1 fbeach, method = "REML", data = RIKZ) > summary(m.mixed)$coef$fixed (Intercept) NAP Marginal modell > M.gls <- gls(richness NAP, method = "REML", correlation = corcompsymm(form = 1 fbeach), data = RIKZ) > coef(m.gls) (Intercept) NAP

7 p. 7/3 ML estimering l(β,ψ) = N i=1 1 Kan maksimeres numerisk [ n i 2 log(2π) 1 2 log V i (Y 2 i X i β) T V 1 i (Y i X i β)] Gir forventningsskjeve estimater for varianser Finnes alternative strategier som gir forventningsrette estimater Lettest illustert først i vanlig lineær regresjonsmodell.

8 p. 8/3 Estimering Vanlig: ML estimering. gir ˆµ = ȳ og Y i uif N(µ,σ 2 ) ˆσ 2 = 1 n n (y i ȳ) 2 Forventningsskjev i=1 Foretrekker ofte ˆσ 2 = 1 n 1 n (y i ȳ) 2 Forventningsrett i=1 Forventningsskjevhet i ML-estimat: Tar ikke hensyn til usikkerhet i µ

9 p. 9/3 REML REML = Restricted maximum likelihood Modell (vanlig lineær regresjon): Y i = X i β + ε i, ε i N(0,σ 2 ) Ide: Transformere data slik at β forsvinner. A er en n (n p) matrise slik at A T X = 0. Gir A T Y =A T Xβ + A T ε N(0,σ 2 A T A) Estimer σ 2 ved ML basert på A T Y i.

10 p. 10/3 REML (forts) 1 1 L REML = exp{ Y T A[A T A] 1 A T Y} (2π) N/2 σ 2 A T A 1/2 2σ 2 l REML = N 2 log(2π) n p log σ log AT A 1 Y T A[A T A] 1 A T Y 2σ 2 Gir ˆσ 2 = 1 n p YT A[A T A] 1 A T Y

11 p. 11/3 Eksempel Y i uif N(µ,σ 2 ) X =1 N = 1 N 1 1, A T = A T X =I N 1 1 N 1 1 N 1 = 0 Y 1 Y N A T Y =. (I N 1 1 N 1 ) Y N 1 Y N ˆσ 2 = 1 n (y i ȳ) 2 n 1 i=1 Utledning av ˆσ 2 krever noe regning!

12 p. 12/3 REML og blandede modeller Modell: Y i N(X i β,v i ), V i = Z i DZ T i + Σ i Kombinert: Y N(Xβ,V) X T =(X T 1,...,X T N),V = Diag{V i } Definer A slik at A T X = 0. Gir A T Y N(0,A T VA) Estimer parametre i V ved ML estimering basert på A T Y. Merk: Resultat ikke avhengig av hvordan vi spesifiserer A. Gir forventningsrette estimater! Resultater avhengig av parametrisering (faktorer)!

13 p. 13/3 Eksempel RIKZ$fExp<-RIKZ$Exposure RIKZ$fExp[RIKZ$fExp==8]<-10 RIKZ$fExp<-factor(RIKZ$fExp,levels=c(10,11)) M0.ML <- lme(richness NAP, data = RIKZ, random = 1 fbeach, method = "ML") M0.REML <-lme(richness NAP, data = RIKZ, random = 1 fbeach, method = "REML") M1.ML <- lme(richness NAP+fExp, data = RIKZ, random = 1 fbeach, method = "ML") M1.REML <- lme(richness NAP+fExp, data = RIKZ, random = 1 fbeach, method = "REML")

14 Estimater p. 14/3

15 p. 15/3 Modell valg i blandede modeller To modell-deler Faste effekter/forklaringsvariable Tilfeldige effekter/korrelasjonsstruktur Vil påvirke hverandre Nødvendig med ulike metoder

16 p. 16/3 Modell seleksjonsprotokoll Hovedide: Ønsker mest forklart gjennom faste effekter 1. Start med modell med alle forklaringsvariable og så mange interaksjoner som mulig 2. Finn optimal struktur på tilfeldige effekter. Her bør REML brukes! 3. Finn optimal struktur for faste effekter. Her bør ML brukes! 4. Presenter endelig modell med REML estimering.

17 p. 17/3 Metoder To hovedstrategier Informasjonskriterier: AIC, BIC Via hypotesetesting på parametre (nøstede modeller) t-observator (Wald test) F -observator (flere parametre/faktorer) Likelihood ratio test

18 p. 18/3 AIC/BIC og ML AIC = 2 l(ˆθ) + 2 q BIC = 2 l(ˆθ) + log(n) q Feil i boka q: Antall parametre i modell (β-er og σ-er) n = N i=1 n i AIC: Minimerer prediksjonsfeil, kan gi for store modeller BIC: Vil asymptotisk velge riktig modell, men kan velge for små modeller for endelig n. Kan brukes direkte ved ML estimering l(ˆθ) er log-likelihood verdi oppnådd ved ML.

19 p. 19/3 AIC/BIC og REML AIC = 2 l(ˆθ) + 2 q BIC = 2 l(ˆθ) + log(n p) q Feil i boka p: Antall regresjonsparametre Her er nå l(ˆθ) likelihood verdi oppnådd ved REML. Kan vise L REML (θ) = N i=1 X T i V 1 i X i 1/2 L ML (θ)

20 p. 20/3 Eksempel gal tilnærming Biodiversitet: Starter med kun NAP som forklaringsvariabel Finner optimal struktur for tilfeldig effekt Ingen tilfeldige effekter Tilfeldig konstantledd for hvert område Tilfeldig konstantledd og stigningstall Sammenlikning med REML Merk: lm bruker ML, lme krever tilfeldig effekt, gls mulig.

21 p. 21/3 Eksempel gal tilnærming > Wrong1 <- gls(richness 1 + NAP, method = "REML", data = RIKZ) > Wrong2 <- lme(richness 1 + NAP, random = 1 fbeach, method = "REML", data = RIKZ) > Wrong3 <- lme(richness 1 + NAP, method = "REML", random = 1 + NAP fbeach, data = RIKZ) > cbind(aic(wrong1,wrong2,wrong3),bic(wrong1,wrong2,wrong3)) df AIC df BIC Wrong Wrong Wrong Best med tilfeldig konstantledd og stigningsledd.

22 p. 22/3 LR tester for tilfeldige effekter Likelihood ratio test gjennom anova kommandoen: > anova(wrong1,wrong2,wrong3) Model df AIC BIC loglik Test L.Ratio p-valu Wrong Wrong vs Wrong vs Problem: Tester H 0 : σ 2? Gir feil P-verdi! = 0 som er på randen av parameterrrommet

23 p. 23/3 LR tester for tilfeldige effekter H 0 : θ Θ 0 mot H 1 : θ Θ a LR test: Vanlig asymptotisk teori krever Θ 0 i det indre av Θ = Θ 0 Θ a. Har da 2LR χ 2 q a q 0. P-verdi = Pr(χ 2 q a q 0 > 2LR). Her: Tester H 0 : d 2 11 = 0. På grensen av Θ : {d }. Kan vise: P-verdi for stor. Konservativ test. Presist: Anta k tilfeldige effekter under H 0, k + 1 tilfeldige effekter under H a. T = 2LR Pr(T > c) = 0.5 [Pr(χ 2 k > c) + Pr(χ 2 k+1 > c)] Spesielt: k = 0: Pr(T > c) = 0.5 Pr(χ 2 1 > c)

24 p. 24/3 Trinn 2: Valg av tilfeldige effekter Wrong1 mot Wrong2: > 1-0.5*(pchisq(T,0)+pchisq(T,1)) [1] Wrong2 mot Wrong3 > T = anova(wrong1,wrong2,wrong3)[3,8] > 1-0.5*(pchisq(T,1)+pchisq(T,2)) [1] Velger modell Wrong3, dvs tilfeldig konstantledd og stigningskoefficient.

25 p. 25/3 Trinn 3: Faste effekter > summary(wrong3) Fixed effects: Richness 1 + NAP Value Std.Error DF t-value p-value (Intercept) e+00 NAP e-04 NAP signifikant, legger til Exposure og interaksjon > RIKZ$fExp<-RIKZ$Exposure > RIKZ$fExp[RIKZ$fExp==8]<-10 > RIKZ$fExp<-factor(RIKZ$fExp,levels=c(10,11)) > Wrong4 <- lme(richness 1 + NAP * fexp,random = 1 + NAP fbeach method = "ML", data = RIKZ) Error in lme.formula(richness 1 + NAP * fexp, random = 1 + NAP nlminb problem, convergence error code = 1 > lmc <- lmecontrol(niterem = 5000, msmaxiter = 5000) > Wrong4 = lme(richness 1 + NAP * fexp,random = 1 + NAP fbeach, method = "ML", data = RIKZ,control=lmc)

26 p. 26/3 Trinn 3 (forts) > anova(wrong4) numdf dendf F-value p-value (Intercept) <.0001 NAP fexp NAP:fExp > summary(wrong4) Fixed effects: Richness 1 + NAP * fexp Value Std.Error DF t-value p-value (Intercept) NAP fexp NAP:fExp Interaksjon ikke signifikant

27 p. 27/3 Trinn 3: Faste effekter > Wrong4.2 <- lme(richness 1 + NAP + fexp,random = 1 + NAP fbea method = "ML", data = RIKZ) > anova(wrong5) numdf dendf F-value p-value (Intercept) <.0001 NAP fexp > summary(wrong4.2) Fixed effects: Richness 1 + NAP + fexp Value Std.Error DF t-value p-value (Intercept) NAP fexp > cbind(aic(wrong4,wrong4.2),bic(wrong4,wrong4.2)) df AIC df BIC Wrong Wrong Exposure også på kanten av å være signifikant på 5% nivå. Endelig modell: Y ij =α + b 1i + (β + b 2i )NAP ij + ε ij

28 p. 28/3 Frihetsgrader Brukes i t og F tester Forklaringsvariable delt inn i to grupper Nivå 1: Variable med ulike verdier for hver observasjon innen gruppe. fg: Totalt antall obs - antall grupper/klustre - antall nivå 1 variable Eksempel: NAP, fg=45-9-1=35 Nivå 2: Variable med samme verdi innen hver gruppe. fg: Antall grupper - antall nivå 2 variable (inkl konstantledd) Eksempel: Exposure, fg=9-2=7

29 p. 29/3 Testing og ML > lmc <- lmecontrol(niterem = 5200, msmaxiter = 5200) > Wrong4A <- lme(richness 1 + NAP, method="ml", control = lmc, data = RIKZ, random = 1+NAP fbeach) > Wrong4B <- lme(richness 1 + NAP + fexp, random = 1 + NAP fbeach, method="ml", data = RIKZ,control = lmc) > Wrong4C <- lme(richness 1 + NAP * fexp, random = 1 + NAP fbeach, data = RIKZ, method = "ML", control = lmc) > anova(wrong4a, Wrong4B, Wrong4C) Model df AIC BIC loglik Test L.Ratio p-valu Wrong4A Wrong4B vs Wrong4C vs Optimal modell: Kun NAP

30 p. 30/3 Trinn 4: Endelig modell > Wrong5 <- lme(richness 1 + NAP,random = 1 + NAP fbeach, + method = "REML", data = RIKZ) > summary(wrong5) Random effects: Formula: 1 + NAP fbeach Structure: General positive-definite, Log-Cholesky parametrization StdDev Corr (Intercept) (Intr) NAP Residual Fixed effects: Richness 1 + NAP Value Std.Error DF t-value p-value (Intercept) e+00 NAP e-04 Number of Observations: 45 Number of Groups: 9

31 p. 31/3 God metode, trinn 1 Innkluderer begge variable med interaksjon > B1=gls(Richness 1+NAP*fExp,method="REML",data=RIKZ) > B2=lme(Richness 1+NAP*fExp,data=RIKZ,random= 1 fbeach,method="rem > B3=lme(Richness 1+NAP*fExp,data=RIKZ,random= 1+NAP fbeach,method= > AIC(B1,B2,B3) df AIC B B B Best modell: Tilfeldig effekt i konstantledd

32 p. 32/3 God metode: Trinn 2 > summary(b2) Fixed effects: Richness 1 + NAP * fexp Value Std.Error DF t-value p-value (Intercept) NAP fexp NAP:fExp Dropper interaksjon

33 p. 33/3 God metode: Trinn 3 > B2B=lme(Richness 1+NAP+fExp,data=RIKZ,random= 1 fbeach,method="re > summary(b2b) Linear mixed-effects model fit by REML Data: RIKZ AIC BIC loglik Random effects: Formula: 1 fbeach (Intercept) Residual StdDev: Fixed effects: Richness 1 + NAP + fexp Value Std.Error DF t-value p-value (Intercept) NAP fexp Endelig modell: Y ij =α + b i + β 1 NAP ij + β 2 Exposure i + ε ij

34 p. 34/3 Modell validering Modell-valg: Velger mellom et antall mulige modeller Vil endelig modell beskrive data godt? Modell validering: Sjekke endelig modell Goodness-of-fit test Residual-plott

35 p. 35/3 Modell validering/residualer Respons residualer (default i R): Y ij ŷ ij Standardiserte residualer (Pearson residualer) Y ij ŷ ij sd[y ij ] Begge kan beregnes på ulike nivåer: Nivå 0: Populasjonsnivå. ŷ ij = X T i ˆβ. Nivå 1: Innen gruppe. ŷ ij = X T i ˆβ + Z T i ˆb i. (Default) sd[y ij ] justert etter hvilket nivå en bruker. Merk: Nivå 0 residualer er avhengige!

36 p. 36/3 Residual plott for RIKZ data - nivå 0 plot(fitted(b2b,level=0),residuals(b2b,level=0)) residuals(b2b, level = 0) fitted(b2b, level = 0)

37 p. 37/3 Residual plott for RIKZ data - nivå 1 plot(fitted(b2b,level=1),residuals(b2b,level=1)) residuals(b2b, level = 1) fitted(b2b, level = 1)

Forelesning 9 STK3100/4100

Forelesning 9 STK3100/4100 Forelesning 9 STK3100/4100 Plan for forelesning: 17. oktober 2011 Geir Storvik 1. Lineære blandede modeller 2. Marginale modeller 3. Estimering - ML og REML 4. Modell seleksjon p. 1 Modell med alle antagelser

Detaljer

Forelesning 8 STK3100/4100

Forelesning 8 STK3100/4100 Forelesning STK300/400 Plan for forelesning: 0. oktober 0 Geir Storvik. Lineære blandede modeller. Eksempler - data og modeller 3. lme 4. Indusert korrelasjonsstruktur. Marginale modeller. Estimering -

Detaljer

Forelesning 11 STK3100/4100

Forelesning 11 STK3100/4100 Forelesning STK300/400 Plan for forelesning: 3. oktober 20 Geir Storvik. Generaliserte lineære blandede modeller Eksempler R-kode - generell formulering av modell Tillater innbygging av avhengigheter mellom

Detaljer

Forelesning 11 STK3100/4100

Forelesning 11 STK3100/4100 Forelesning 11 STK3100/4100 Plan for forelesning: 1. november 2012 Geir Storvik 1. Generaliserte lineære blandede modeller Eksempler R-kode GLMM - generell formulering av modell Likelihood og estimering

Detaljer

7. november 2011 Geir Storvik

7. november 2011 Geir Storvik Forelesning 13 STK3100/4100 Plan for forelesning: 7. november 2011 Geir Storvik Generaliserte lineære blandede modeller 1. Sammenlikning ulike estimeringsmetoder 2. Tolkning parametre 3. Inferens Konfidensintervaller

Detaljer

Oppsummering av STK2120. Geir Storvik

Oppsummering av STK2120. Geir Storvik Oppsummering av STK2120 Geir Storvik Vår 2011 Hovedtemaer Generelle inferensmetoder Spesielle modeller/metoder Bruk av R Vil ikke bli testet på kommandoer, men må forstå generelle utskrifter Generelle

Detaljer

Kapittel 6 - modell seleksjon og regularisering

Kapittel 6 - modell seleksjon og regularisering Kapittel 6 - modell seleksjon og regularisering Geir Storvik 21. februar 2017 1/22 Lineær regresjon med mange forklaringsvariable Lineær modell: Y = β 0 + β 1 x 1 + + β p x p + ε Data: {(x 1, y 1 ),...,

Detaljer

Prøveeksamen i STK3100/4100 høsten 2011.

Prøveeksamen i STK3100/4100 høsten 2011. Prøveeksamen i STK3100/4100 høsten 2011. Oppgave 1 (a) Angi tetthet/punktsannsynlighet for eksponensielle klasser med og uten sprednings(dispersjons)ledd. Nevn alle fordelingsklassene du kjenner som kan

Detaljer

Tilleggsoppgaver for STK1110 Høst 2015

Tilleggsoppgaver for STK1110 Høst 2015 Tilleggsoppgaver for STK0 Høst 205 Geir Storvik 22. november 205 Tilleggsoppgave Anta X,..., X n N(µ, σ) der σ er kjent. Vi ønsker å teste H 0 : µ = µ 0 mot H a : µ µ 0 (a) Formuler hypotesene som H 0

Detaljer

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka: MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,

Detaljer

Introduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller

Introduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller Introduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller p. 1/34 Introduksjon til Generaliserte Lineære Modeller (GLM) og blandede modeller STK3100/4100-23. august 2011 Geir Storvik (Oppdatert

Detaljer

Forelesning 7 STK3100/4100

Forelesning 7 STK3100/4100 Forelesning 7 STK3100/4100 p. 1/2 Forelesning 7 STK3100/4100 8. november 2012 Geir Storvik Plan for forelesning: 1. Kontinuerlige positive responser 2. Gamma regresjon 3. Invers Gaussisk regresjon Forelesning

Detaljer

STK Oppsummering

STK Oppsummering STK1110 - Oppsummering Geir Storvik 11. November 2015 STK1110 To hovedtemaer Introduksjon til inferensmetoder Punktestimering Konfidensintervall Hypotesetesting Inferens innen spesifikke modeller/problemer

Detaljer

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2 MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.27 (11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal finne konfidensintervall

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2100 - FASIT Eksamensdag: Torsdag 15. juni 2017. Tid for eksamen: 09.00 13.00. Oppgavesettet er på 5 sider. Vedlegg: Tillatte

Detaljer

Forelesning 3 STK3100

Forelesning 3 STK3100 Eks. Fødselsvekt mot svangerskapslengde og kjønn Forelesning 3 STK3100 8. september 2008 S. O. Samuelsen Plan for forelesning: 1. Generelt om lineære modeller 2. Variansanalyse - Kategoriske kovariater

Detaljer

Forelesning 7 STK3100/4100

Forelesning 7 STK3100/4100 Gamma regresjon Forelesning 7 STK3100/4100 26. september 2008 Geir Storvik Plan for forelesning: 1. Kontinuerlige positive responser 2. Gamma regresjon 3. Invers Gaussisk regresjon Modell: Har y Gamma(µ,ν),

Detaljer

STK juni 2016

STK juni 2016 Løsningsforslag til eksamen i STK220 3 juni 206 Oppgave a N i er binomisk fordelt og EN i np i, der n 204 Hvis H 0 er sann, er forventningen lik E i n 204/6 34 for i, 2,, 6 6 Hvis H 0 er sann er χ 2 6

Detaljer

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. FORMELSAMLING TIL STK2100 (Versjon Mai 2017) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)

Detaljer

Ekstraoppgaver for STK2120

Ekstraoppgaver for STK2120 Ekstraoppgaver for STK2120 Geir Storvik Vår 2011 Ekstraoppgave 1 Anta X 1 og X 2 er uavhengige med X 1 N(1.0, 1.0) og X 2 N(2.0, 1.5). La X = (X 1, X 2 ) T. Definer c = ( ) 2.0 3.0, A = ( ) 1.0 0.5 0.0

Detaljer

vekt. vol bruk

vekt. vol bruk UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: 10. desember 2010. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

Introduksjon Lineære blanda modellar Generaliserte lineære blanda modellar Analyser av modellar Eit randproblem Oppsummering. Blanda modellar i R

Introduksjon Lineære blanda modellar Generaliserte lineære blanda modellar Analyser av modellar Eit randproblem Oppsummering. Blanda modellar i R Blanda modellar i R Jorunn Slagstad Universitetet i Bergen 20. desember 2006 1 Introduksjon 2 Lineære blanda modellar 3 Generaliserte lineære blanda modellar 4 Analyser av modellar 5 Eit randproblem 6

Detaljer

Løsningsforslag eksamen 27. februar 2004

Løsningsforslag eksamen 27. februar 2004 MOT30 Statistiske metoder Løsningsforslag eksamen 7 februar 004 Oppgave a) Y ij = µ i + ε ij, der ε ij uavh N(0, σ ) der µ i er forventa kopperinnhold for legering i og ε ij er feilleddet (tilfeldig variasjon)

Detaljer

MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ

MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.25 (11.27, 11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal nne

Detaljer

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. FORMELSAMLING TIL STK2100 (Versjon Mai 2018) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)

Detaljer

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100

Detaljer

STK2100. Obligatorisk oppgave 1 av 2

STK2100. Obligatorisk oppgave 1 av 2 14. februar 2018 Innleveringsfrist STK2100 Obligatorisk oppgave 1 av 2 Torsdag 1. mars 2018, klokken 14:30 gjennom Devilry (https:devilry.ifi.uio.no). Praktiske instruksjoner Første side av din innlevering

Detaljer

10.1 Enkel lineær regresjon Multippel regresjon

10.1 Enkel lineær regresjon Multippel regresjon Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel

Detaljer

Prøveeksamen STK vår 2017

Prøveeksamen STK vår 2017 Prøveeksamen STK2100 - vår 2017 Geir Storvik Vår 2017 Oppgave 1 Anta en lineær regresjonsmodell p Y i = β 0 + β j x ij + ε i, j=1 ε i uif N(0, σ 2 ) Vi kan skrive denne modellen på vektor/matrise-form:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Løsningsforslag: Statistiske metoder og dataanalys Eksamensdag: Fredag 9. desember 2011 Tid for eksamen: 14.30 18.30

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1100 Statistiske metoder og dataanalyse 1 - Løsningsforslag Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30

Detaljer

Forelesning 7 STK3100

Forelesning 7 STK3100 ( % - -! " stimering: MK = ML Forelesning 7 STK3100 1 oktober 2007 S O Samuelsen Plan for forelesning: 1 Generelt om lineære modeller 2 Variansanalyse - Kategoriske kovariater 3 Koding av kategoriske kovariater

Detaljer

Prøveeksamen STK2100 (fasit) - vår 2018

Prøveeksamen STK2100 (fasit) - vår 2018 Prøveeksamen STK2100 (fasit) - vår 2018 Geir Storvik Vår 2018 Oppgave 1 (a) Vi har at E = Y Ŷ =Xβ + ε X(XT X) 1 X T (Xβ + ε) =[I X(X T X) 1 X T ]ε Dette gir direkte at E[E] = 0. Vi får at kovariansmatrisen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK2120 Skisse til løsning/fasit. Eksamensdag: Torsdag 5. juni 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider.

Detaljer

Oppgave N(0, 1) under H 0. S t n 3

Oppgave N(0, 1) under H 0. S t n 3 MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr 9 (s 1) Oppgave 1 Modell: Y i β 0 + β 1 x i + β 2 x 2 i + ε i der ε 1,, ε n uif N(0, σ 2 ) e) Y Xβ + ε der Y Y 1 Y n, X 1 x 1 x 2 1

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 202 Statistiske slutninger for den eksponentielle fordelingsklasse. Eksamensdag: Fredag 15. desember 1995. Tid for eksamen:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2 Maskinlæring og statistiske metoder for prediksjon og klassifikasjon Eksamensdag: Torsdag 4. juni 28. Tid for eksamen: 4.3

Detaljer

Anvendt medisinsk statistikk, vår Repeterte målinger, del II

Anvendt medisinsk statistikk, vår Repeterte målinger, del II Anvendt medisinsk statistikk, vår 009 Repeterte målinger, del II Eirik Skogvoll Overlege, Klinikk for anestesi og akuttmedisin 1. amanuensis, Enhet for anvendt klinisk forskning (med bidrag fra Harald

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2 Eksamensdag: Mandag 4. juni 2007. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

Oppgave 1. Kilde SS df M S F Legering Feil Total

Oppgave 1. Kilde SS df M S F Legering Feil Total MOT30 Statistiske metoder, høste0 Løsninger til regneøving nr. 0 (s. ) Oppgave Y ij = µ i + ε ij, der ε ij uavh. N(0, σ ) der µ i er forventa kopperinnhold for legering i og ε ij er feilleddet (tilfeldig

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST110 Statistiske metoder og dataanalyse Eksamensdag: Mandag 30. mai 2005. Tid for eksamen: 14.30 20.30. Oppgavesettet er på

Detaljer

Kp. 12 Multippel regresjon

Kp. 12 Multippel regresjon Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt Kp 12 Multippel Bjørn H Auestad Kp 11: Regresjonsanalyse 1 / 46 Kp 12 Multippel ; oversikt Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt 121 Introduction

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

Generelle lineære modeller i praksis

Generelle lineære modeller i praksis Generelle lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y en eller flere uavhengige

Detaljer

Løsningsforslag: STK2120-v15.

Løsningsforslag: STK2120-v15. Løsningsforslag: STK2120-v15 Oppgave 1 a) Den statistiske modellen er: X ij = µ i + ϵ ij, j = 1,, J, i = 1,, I Her indekserer i = 1,, I gruppene og j = 1,, J observasjone innen hver gruppe Feilleddene

Detaljer

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y Statistiske metoder 1 høsten 004. Løsningsforslag Oppgave 1: a) Begge normalplottene gir punkter som ligger omtrent på ei rett linje så antagelsen om normalfordeling ser ut til å holde. Konfidensintervall

Detaljer

EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag 14. desember 2006 Tid: 09:0013:00

EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag 14. desember 2006 Tid: 09:0013:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist, tlf. 975 89 418 EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER

Detaljer

Løsningsforslag STK1110-h11: Andre obligatoriske oppgave.

Løsningsforslag STK1110-h11: Andre obligatoriske oppgave. Løsningsforslag STK1110-h11: Andre obligatoriske oppgave. Oppgave 1 a) Legg merke til at X er gamma-fordelt med formparameter 1 og skalaparameter λ. Da er E[X] = 1/λ. Små verdier av X tyder derfor på at

Detaljer

Forelesning 6 STK3100

Forelesning 6 STK3100 Scorefunksjon og estimeringsligninger for GLM Forelesning 6 STK3100 29. september 2008 S. O. Samuelsen Plan for forelesning: 1. Observert og forventet informasjon 2. Optimeringsrutiner 3. Iterative revektede

Detaljer

Generaliserte Lineære Modeller

Generaliserte Lineære Modeller Eksponensiell klasse Generaliserte Lineære Modeller Y i f(y i ;θ i ) = c(y i ;φ) exp((θ i y i a(θ i ))/φ) µ i = E[Y i ] = a (θ i ) σ 2 i = Var[Y i ] = φa (θ i ) = φv (µ i ) STK3100-4. september 2011 Geir

Detaljer

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som:

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som: Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1110 FASIT. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider. Vedlegg: Tillatte

Detaljer

Gruvedrift. Institutt for matematiske fag, NTNU. Notat for TMA4240/TMA4245 Statistikk

Gruvedrift. Institutt for matematiske fag, NTNU. Notat for TMA4240/TMA4245 Statistikk Gruvedrift Notat for TMA/TMA Statistikk Institutt for matematiske fag, NTNU I forbindelse med planlegging av gruvedrift i et område er det mange hensyn som må tas når en skal vurdere om prosjektet er lønnsomt.

Detaljer

EKSTRAOPPGAVER I STK1110 H2017

EKSTRAOPPGAVER I STK1110 H2017 EKSTRAOPPGAVER I STK0 H207. Simuleringer for å illustrere store talls lov og sentralgrenseteoremet Oppgave.. I denne oppgaven skal vi bruke kommandoen rbinom(n,size,prob). Kommandoen trekker n tilfeldige

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

Introduksjon til Generaliserte Lineære Modeller (GLM)

Introduksjon til Generaliserte Lineære Modeller (GLM) Introduksjon til Generaliserte Lineære Modeller (GLM) p. 1/25 Introduksjon til Generaliserte Lineære Modeller (GLM) STK3100-23. august 2010 Sven Ove Samuelsen/Anders Rygh Swensen Plan for første forelesning:

Detaljer

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - Fornuftig verdi Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.

Detaljer

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47) MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.

Detaljer

Eksamensoppgave i TMA4267 Lineære statistiske modeller

Eksamensoppgave i TMA4267 Lineære statistiske modeller Institutt for matematiske fag Eksamensoppgave i TMA4267 Lineære statistiske modeller Faglig kontakt under eksamen: Mette Langaas Tlf: 988 47 649 Eksamensdato: 22. mai 2014 Eksamenstid (fra til): 09.00-13.00

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA440 Statistikk Høst 009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Løsningsskisse Oppgave a) n 8, i x i 675, x 37.5, i y i 488, i x i 375, i x iy i

Detaljer

Ridge regresjon og lasso notat til STK2120

Ridge regresjon og lasso notat til STK2120 Ridge regresjon og lasso notat til STK2120 Ørulf Borgan februar 2016 I dette notatet vil vi se litt nærmere på noen alternativer til minste kvadraters metode ved lineær regresjon. Metodene er særlig aktuelle

Detaljer

Forelesning STK september 2011

Forelesning STK september 2011 Forelesning STK3100 12. setember 2011 Geir Storvik (S. O. Samuelsen) Plan for forelesning: 1. Mer om evians 2. Devians og Gooness-of-fit tester 3. GLM og resiualer En Mettet (saturate) moell er en moell

Detaljer

Oppgave 14.1 (14.4:1)

Oppgave 14.1 (14.4:1) MOT30 Statistiske metoder, høste006 Løsninger til regneøving nr. 0 (s. ) Modell: Oppgave 4. (4.4:) Y ijk = µ + α i + β j + (αβ) ij + ε ijk, der ε ijk uavh. N(0, σ ) der µ er gjennomsnittseffekten, α i

Detaljer

Fasit og løsningsforslag STK 1110

Fasit og løsningsforslag STK 1110 Fasit og løsningsforslag STK 1110 Uke 36: Eercise 8.4: a) (57.1, 59.5), b) (57.7, 58, 9), c) (57.5, 59.1), d) (57.9, 58.7) og e) n 239. (Hint: l(n) = 1 = 2z 1 α/2 σ/n 1/2 ). Eercise 8.10: a) (2.7, 7.5),

Detaljer

EKSAMEN I TMA4255 ANVENDT STATISTIKK

EKSAMEN I TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Mette Langaas (988 47 649) BOKMÅL EKSAMEN I TMA4255 ANVENDT STATISTIKK Fredag 25.

Detaljer

Generaliserte Lineære Modeller

Generaliserte Lineære Modeller Lineær regresjon er en GLM Generaliserte Lineære Modeller Responser (Y i -er) fra normalfordelinger Lineær komponent η i = β 0 + β 1 x i1 + + β p x ip E[Y i ] = µ i = η i, dvs. linkfunksjonen g(µ i ) =

Detaljer

Forelesning 6 STK3100/4100

Forelesning 6 STK3100/4100 Forelesning 6 STK3100/4100 p. 1/4 Forelesning 6 STK3100/4100 4. oktober 2012 Presentasjon av S. O. Samuelsen (modifisert av Geir H12) Plan for forelesning: 1. GLM Binære data 2. Link-funksjoner 3. Parameterfortolkning

Detaljer

Løsningsforslag eksamen 25. november 2003

Løsningsforslag eksamen 25. november 2003 MOT310 Statistiske metoder 1 Løsningsforslag eksamen 25. november 2003 Oppgave 1 a) Vi har µ D = µ X µ Y. Sangere bruker generelt trapesius-muskelen mindre etter biofeedback dersom forventet bruk av trapesius

Detaljer

Modellvalg ved multippel regresjon notat til STK2120

Modellvalg ved multippel regresjon notat til STK2120 Modellvalg ved multippel regresjon notat til STK2120 Ørulf Borgan februar 2016 I dette notatet vil vi se litt nærmere på hvordan vi kan velge ut hvilke forklaringsvariabler vi skal ha med i en regresjonsmodell.

Detaljer

Statistikk og havressurser

Statistikk og havressurser Statistikk og havressurser STK2120-16. april 2012 Geir Storvik April 16, 2012 Fiskeri i Norge Norges havområder er mer enn seks ganger større enn våre landområder, og har noen av verdens rikeste fiskebanker.

Detaljer

Eksamensoppgave i TMA4255 Anvendt statistikk

Eksamensoppgave i TMA4255 Anvendt statistikk Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 16. mai 2015 Eksamenstid (fra til): 09:00-13:00

Detaljer

Statistikk og havressurser

Statistikk og havressurser Statistikk og havressurser STK2120-16. april 2012 Geir Storvik April 16, 2012 Fiskeri i Norge Norges havområder er mer enn seks ganger større enn våre landområder, og har noen av verdens rikeste fiskebanker.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Mandag 1. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet

Detaljer

Ekstraoppgaver STK3100 h10

Ekstraoppgaver STK3100 h10 Ekstraoppgaver STK3100 h10 Oppgave 1 En-veis variansanalyse modellen kan formuleres som Y ij = µ + α i + ɛ ij (1) der α i = 0 og ɛ ij er i.i.d N(0, σ 2 ). Her representerer er Y ij j te observasjon fra

Detaljer

Punktestimator. STK Bootstrapping og simulering - Kap 7 og eget notat. Bootstrapping - eksempel Hovedide: Siden λ er ukjent, bruk ˆλ:

Punktestimator. STK Bootstrapping og simulering - Kap 7 og eget notat. Bootstrapping - eksempel Hovedide: Siden λ er ukjent, bruk ˆλ: Punktestimator STK00 - Bootstrapping og simulering - Kap 7 og eget notat Geir Storvik 8. april 206 Trekke ut informasjon om parametre fra data x,..., x n Parameter av interesse: θ Punktestimator: Observator,

Detaljer

STK Maskinlæring og statistiske metoder for prediksjon og klassifikasjon

STK Maskinlæring og statistiske metoder for prediksjon og klassifikasjon STK2100 - Maskinlæring og statistiske metoder for prediksjon og klassifikasjon Oppsummering av kurset 17. april 2018 Hovedproblem Input x R p. Output y Numerisk: regresjon Kategorisk: Klassifikasjon Gitt

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

Lineære modeller i praksis

Lineære modeller i praksis Lineære modeller Regresjonsmodeller med Forskjellige spesialtilfeller Uavhengige variabler Én binær variabel Analysen omtales som Toutvalgs t-test én responsvariabel: Y én eller flere uavhengige variabler:

Detaljer

j=1 (Y ij Ȳ ) 2 kan skrives som SST = i=1 (J i 1) frihetsgrader.

j=1 (Y ij Ȳ ) 2 kan skrives som SST = i=1 (J i 1) frihetsgrader. FORMELSAMLING TIL STK2120 (Versjon av 30. mai 2012) 1 Enveis variansanalyse Anta at Y ij = µ + α i + ɛ ij ; j = 1, 2,..., J i ; i = 1, 2,..., I ; der ɛ ij -ene er uavhengige og N(0, σ 2 )-fordelte. Da

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet

Detaljer

Variansanalyse og lineær regresjon notat til STK2120

Variansanalyse og lineær regresjon notat til STK2120 Variansanalyse og lineær regresjon notat til STK2120 Ørulf Borgan februar 2013 Formålet med dette notatet er å beskrive sammenhengen mellom variansanalyse med faste effekter og multippel lineær regresjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk Eksamensdag: Mandag 3. desember 2018. Tid for eksamen: 14.30 18.30. Oppgavesettet er på

Detaljer

Inferens i regresjon

Inferens i regresjon Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons

Detaljer

Multippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p.

Multippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Multippel regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Det er fortsatt en responsvariabel y. Måten dette gjøre på er nokså

Detaljer

EKSAMENSOPPGAVE. B154 «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator.

EKSAMENSOPPGAVE. B154 «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004 Dato: 29.september 2016 Klokkeslett: 09 13 Sted: Tillatte hjelpemidler: B154 «Tabeller og formler i statistikk» av Kvaløy og

Detaljer

Forelesning 6 STK3100/4100

Forelesning 6 STK3100/4100 Binomiske eller binære responser Forelesning 6 STK3100/4100 26. september 2008 Geir Storvik (S. O. Samuelsen) Plan for forelesning: 1. GLM Binære data 2. Link-funksjoner 3. Parameterfortolkning logistisk

Detaljer

Kp. 11 Enkel lineær regresjon (og korrelasjon) Kp. 11 Regresjonsanalyse; oversikt

Kp. 11 Enkel lineær regresjon (og korrelasjon) Kp. 11 Regresjonsanalyse; oversikt Bjørn H. Auestad Kp. 11: Regresjonsanalyse 1 / 57 Kp. 11 Regresjonsanalyse; oversikt 11.1 Introduction to Linear Regression 11.2 Simple Linear Regression 11.3 Least Squares and the Fitted Model 11.4 Properties

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Kap. 13: Lineær korrelasjons-

Detaljer

UNIVERSITETET I OSLO Matematisk Institutt

UNIVERSITETET I OSLO Matematisk Institutt UNIVERSITETET I OSLO Matematisk Institutt Eksamen i: STK 1110 Statistiske metoder og dataanalyse 1 Tid for eksamen: Mandag 28. november 2016, kl. 14:30 18:30 Hjelpemidler: Formelsamling til STK 1100 og

Detaljer

MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1. Oppgave 1

MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1. Oppgave 1 MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Oppgave 1 a) Normalantakelse: Målingene x 1,..., x 21 og y 1,..., y 8 betraktes som utfall av tilfeldige variable X 1,..., X 21

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlege stokastiske variabelen X ha fordelingsfunksjon (sannsynstettleik

Detaljer

Introduksjon til Generaliserte Lineære Modeller (GLM)

Introduksjon til Generaliserte Lineære Modeller (GLM) Literatur / program Introduksjon til Generaliserte Lineære Modeller (GLM) STK3100-20. august 2007 Sven Ove Samuelsen Plan for første forelesning: 1. Introduksjon, Literatur, Program 2. ksempler 3. Uformell

Detaljer

EKSAMEN I TMA4255 ANVENDT STATISTIKK

EKSAMEN I TMA4255 ANVENDT STATISTIKK Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 7 Fagleg kontakt under eksamen: Mette Langaas (988 47 649) NYNORSK EKSAMEN I TMA4255 ANVENDT STATISTIKK Fredag 25. mai

Detaljer

SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE

SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE 1 SOS 301 og SOS31/ SOS311 MULTIVARIAT ANALYSE Eksamensdag: 8 desember 1997 Eksamensstad: Dragvoll, paviljong C, rom 201 Tid til eksamen: 6 timar Vekt: 5 for SOS301 og 4 for SOS31/ SOS311 Talet på sider

Detaljer

Eksamensoppgave i TMA4255 Anvendt statistikk

Eksamensoppgave i TMA4255 Anvendt statistikk Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: August 2016 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer