Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra
|
|
- Gunn Guttormsen
- 3 år siden
- Visninger:
Transkript
1 Anne-Mari Jensen Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Innledning I ungdomsskolen kommer funksjoner inn som et av hovedområdene i læreplanen i matematikk. Arbeidet med dette hovedområdet fortsetter i videregående skole. Jeg har prøvd å finne arbeidsformer hvor elevene selv må forske og undersøke. Tenk om vi kunne legge til rette så elevene våre fikk oppleve noe av spenningen og gleden ved å oppdage systemer og sammenhenger selv! Undersøkelsesoppgaver Gjennom oppgaver der elevene selv må undersøke og lete etter løsninger utfordres de til å tenke kreativt. De må gjette, begrunne sine gjetninger og lete etter regler og generaliseringer gjennom å analysere og systematisere spesielle tilfeller. Det er en trening i matematisk tenkning. Gjennom oppgaver som skal løses i fellesskap, får de øve på å uttrykke seg muntlig i faget. De må artikulere sine tanker, kanskje argumentere og presisere. Mange ganger kan samtalen være til hjelp for forståelsen av et problem og løsningen av det. Og det er motiverende å oppdage sammenhenger og løsninger uten at læreren sier Anne Marise Jensen Meløy videregående skole avd. Ørnes hvordan alt er. Ved å la elevene skrive ned regler eller løsninger med egne ord, får de trening i å uttrykke seg presist. Og ved å analysere og diskutere det de har skrevet i fellesskap øves de i logisk resonnering og kritisk tenkning. I tillegg vil de se at det kan være svært mye å lære av en feil. Undervisningsoppleggene som er skissert nedenfor kan passe til Vg1 på videregående skole, men like godt i de øverste klassene på ungdomsskolen. De fleste oppgavene nedenfor egner seg for samarbeid i par. Graftegneprogram Dette undervisningsopplegget krever at elevene tegner mange grafer og studerer sammenhengen mellom funksjonsuttrykkene og grafene. Det fungerte greit når elevene hadde lommeregner med grafisk display. Men de siste par årene har elevene hatt bærbare Pc-er og vi har brukt programmet GeoGebra. Andre graftegneprogram kan også brukes. Men jeg har gode erfaringer med GeoGebra og kan anbefale det. Det er gratis og kan lastes ned på datamaskinene, se: GeoGebra.org. Lineære funksjoner I første klasse på videregående skole er de fleste elevene fortrolig med at en lineær funksjon har formen y = ax + b, og at man kan illustrere den med en lineær graf i et koordinatsystem. tangenten 3/2008 7
2 Figur 1: Rette linjer som går gjennom samme punkt på x-aksen. Funksjonsuttrykkene kommer fram i algebravinduet til venstre På dette nivået bruker vi begrepet funksjon. I første omgang holder det å si at en funksjon er en ligning der det fins en ukjent som kan variere fritt, som regel x, og en annen variabel y som er avhengig av verdien til x. Vi starter med at elevene kommer med forslag på noen lineære funksjoner som de kan tegne i GeoGebra (eller det tegneprogrammet de bruker). Jeg velger ut et av forslagene, f. eks. y = 2x + 3 og ber elevene skrive denne funksjonen inn i inntastingsfeltet nederst i bildet. Da tegnes grafen til denne funksjonen. Så ber jeg dem skrive inn mange ulike funksjonsuttrykk slik at linjene tegnes i samme koordinatsystem. De skal beholde alle linjene som går gjennom samme punkt på y-aksen. Andre linjer skal de slette. Når alle har funnet en del linjer som går gjennom samme punkt på y-aksen, ber jeg dem se på funksjonsuttrykkene som står i algebravinduet til venstre. Hva er felles? Oppgaven blir å formulere en regel med egne ord: Hva kreves 8 av funksjonene for at grafene skal gå gjennom samme punkt på y-aksen? Hva er likt i alle funksjonsuttrykkene? Og hva kan variere? Elevene samarbeider, og alle parene må så lese opp sin regel. I fellesskap må hver regel vurderes. Er den riktig? Kan den misforstås? Må noe endres for at den skal bli helt klar? Til slutt har alle fått sin egen regel. Her passer det å innføre, evt. å repetere, begrepet konstantledd. Neste oppgave starter med at elevene på nytt tegner den rette linja til y = 2x + 3 i et blankt koordinatsystem. På samme måte skal de nå samle på linjer som er parallelle med den første, finne systemet og formulere en regel. Og alle reglene må leses høyt og vurderes. Og så innfører vi, eller repeterer, begrepet stigningstall. En gang hadde klassen min avsluttet denne jobben. Jeg syntes vi hadde fått med det viktigste om lineære funksjoner og grafer, da en av elevene sa: Nå har du vel tenkt å be oss finne mange rette linjer som går gjennom samme 3/2008 tangenten
3 punkt på x-aksen? En flott utfordring som vi måtte gripe! Dette er vanskeligere. Er det nok å bare variere enten stigningstall eller konstantledd? Det er flott om elevene kan være med på å oppdage at denne regelen må ha med begge konstantene å gjøre. Se figur 1. Linja y = 2x + 3 går gjennom punktet ( 3/2, 0) på x-aksen. Flere linjer som går gjennom samme punkt på x-aksen, er for eksempel y = 4x + 6, y = 0,5x + 0,75 og y = x 3/2. Vi kan hjelpe elevene til å finne en sammenheng ved å lage en tabell hvor de kan sette inn verdier for a og b: a 2 4 0,5 1 b 3 6 0,75 3/2 I alle tilfellene blir b/a = 3/2. Så alle funksjoner som oppfyller kravet b/a = 3/2 vil ha lineære grafer som går gjennom punktet ( 3/2, 0). Gjelder denne regelen bare for linja til funksjonen y = 2x + 3? Hva om vi starter med linja til y = 3x + 1 eller med y = 2x 4? Vil den samme regelen gjelde da? Generelle løsninger Etter hvert er det tid for å snakke om generelle løsninger. Elevene, i alle fall i Vg1T, bør få øving i å prøve å finne generelle regler. Skjæringspunktet mellom grafen og y-aksen Hvorfor ville alle rette linjer skjære y-aksen i konstantleddet? Jo, fordi dette er punktet der x = 0. Hvis vi setter x = 0 inn i funksjonsuttrykket til linja, får vi y = = 3. Da har vi vist at linja til y = 2x + 3 må skjære y-aksen i y = 3. På samme måte kan vi vise at det alltid blir slik at linja til y = ax + b vil skjære y-aksen i y = b. Skjæringspunktet mellom grafen og x-aksen I punktet der linja y = 2x + 3 skjærer x-aksen, er y = 0. Ligningen blir da 0 = 2x + 3. Vi får 2x = 3 og x = 3/2. Da har vi vist at linja må skjære x-aksen i x = 3/2. Og vi så ovenfor at lineære funksjoner som er slik at konstanledd/ stigningstall = 3/2 vil gi linjer som går gjennom punktet 3/2 på x-aksen. Og generelt for linja y = ax + b : Vi setter y = 0 og får 0 = ax + b. Vi får ax = b og x = b/a. Så alle rette linjer y = ax + b går gjennom punktet x = b/a på x-aksen. Og alle lineære funksjoner som er slik at b/a blir lik det samme tallet, vil ha grafer som går gjennom samme punkt på x-aksen. Illustrasjon med GeoGebra Først når vi har kommet så langt, viser jeg elevene hvordan de lett kan få bekreftet sine regler ved hjelp av GeoGebra. Vi kan starte med å gi a og b hver sin tallverdi, f. eks. skrive inn a = 1 og b = 1. Videre kan vi skrive inn y = a*x + b, da tegnes linja y = x + 1. Høyreklikk på a og b i algebravinduet og velg vis objekt. Da kommer det fram glidere, - små tallinjer for de to verdiene. Punktet på glideren kan flyttes langs glidelinjene og på denne måten kan vi variere verdiene til hhv. a og b. Samtidig kommer de tilhørende funksjonsuttrykkene for linja fram i algebravinduet. (Se figur 2.) Vi kan nå på kort tid teste ut reglene på mange ulike funksjoner og linjer. Jeg vil understreke at jeg ikke ønsker å starte med disse animasjonene, men heller bruke dem til slutt for å kontrollere og bekrefte resultatene vi har fått. Det kan være spennende å arbeide videre med lineære grafer. Én oppgave kan være å tegne fire rette linjer slik at de dannes et kvadrat mellom dem. Videre kan det være en oppgave å finne ut hva som skal til for at to linjer skal stå vinkelrett på hverandre, og prøve å finne og formulere en regel. Andregradsfunksjoner For å undersøke andregradsfunksjoner og deres grafer bruker vi samme metodikk som ovenfor. Starte med en gitt funksjon, og la en og en parameter variere mens de andre holdes fast. Prøve med ulike verdier av de parametrene som holdes fast. Undersøke nøye og formulere regler med tangenten 3/2008 9
4 Figur 2: Ved hjelp av glidere kan vi se hvordan variasjon i verdiene til a og b påvirker grafen. egne ord. Lese reglene høyt, diskutere og vurdere. Når vi begynner å arbeide med funksjoner som gir krumme grafer, er det tid for å presisere og utdype funksjonsbegrepet: Det kreves at hver verdi av x gir nøyaktig én funksjonsverdi (én verdi av y eller av f(x)). Andregradsfunksjonen er på formen f(x) = ax 2 + bx + c. Vi kan for eksempel begynne med funksjonen f(x) = x 2 + x + 1. I Geogebra kan vi først skrive inn a = 1, b = 1 og c = 1, og så f(x) = ax 2 + bx + c. Det enkleste er å finne ut hva som forandrer seg og hva som ikke forandrer seg når c varierer. Hvorfor kan vi kalle c konstantledd? I f(x) = x 2 + x + 1 er a = 1, selv om ett-tallet er usynlig. Hva skjer om vi lar a variere, hva forandrer seg, og hva forandrer seg ikke på grafen? Hva skjer når a øker og når a minker, når a er positiv og når a er negativ? Og hva når a = 0? Hvorfor blir det slik? Hvis elevene har lært å derivere, er det et godt tips å se på hvordan den deriverte forandrer seg når vi lar a variere i funksjonen f(x) = ax 2 + bx + c. Og når vi studerer hva ulike verdier av b gjør med grafen, har vi samme spørsmål: Hva 10 forandrer seg, og hva forandrer seg ikke når b varierer? Hvordan forandrer grafen seg når vi lar b øke og når vi lar b minke? I GeoGebra kan vi merke av topp- eller bunnpunktet ved å skrive Extremum[f] i inntastingsfeltet nederst (i den norske versjonen av GeoGebra skriver du Ekstremalpunkt[f]). Så kan vi høyreklikke på punktet, slå på sporing og la verdien av b variere. Det vil da tegnes en kurve som elevene lett kjenner igjen. (Se figur 3.) Hva slags graf tegnes? Gjør det samme med utgangspunkt i funksjoner med andre a-verdier, - hvordan vil a-verdien påvirke formen på kurven som spores? Andre undersøkelsesoppgaver Man kan bruke tilsvarende arbeidsmåte og la elevene studere polynomfunksjoner av ulike grader og lete etter sammenheng mellom funksjonenes grad og følgende egenskaper: Største og minste antall nullpunkter, størst mulig antall ekstremalpunkter, og begrenset eller ubegrenset verdimengde. Min erfaring er at når en slik arbeidsform har vært brukt flere ganger, vil elevene selv begynne å undersøke nye funksjoner på lignende måte. Det er nyttig når vi kommer til andre typer 3/2008 tangenten
5 Figur 3: Vi kan studere hvordan bunnpunktene til denne parabelen flytter seg når vi varierer verdien av b. funksjoner som eksponentialfunksjoner, logaritmefunksjoner og trigonometriske funksjoner. Matematisk modellering Læreplanene presiserer at vi skal arbeide med matematisk modellering. Man skal for eksempel finne en funksjon som passer godt til noen data som er innhentet. Om dataene plottes inn som punkter i koordinatsystemet, kan det være enklere å se hvilken type graf som kan passe best. Da er det nyttig å være fortrolig med funksjonene og hva vi kan gjøre med funksjonsuttrykkene for å få dem til å passe best mulig til punktene. Er det verdt tidsbruken? Å jobbe på denne måten tar tid. Hensikten med å bruke utforskende arbeidsmetoder er å skape god forståelse. Det blir dessverre ikke alltid tid til å følge opp med så mange regneøvinger som det kunne ha blitt om vi hadde fulgt lærebokas opplegg. Jeg mener likevel at det er vel anvendt tid. Jeg har latt elevene i mange klasser arbeide på denne måten, og utforskende oppgaver engasjerer de fleste. Jeg tror mange opplever den gode følelsen av å oppdage noe nytt og av å forstå. I løpet av arbeidet kommer ofte misforståelser for en dag. Skal forståelsen øke, må vi få misforståelsene opp til overflaten og granske dem nøye: Hvordan var tanken bak misforståelsen? Hvorfor er den feil? Hvordan skal man forstå det aktuelle emnet? Hvis vi prøver å la elevene forske og finne ut systemer og sammenhenger selv, må vi også være åpne for innspill som de kommer med underveis. Forløpet i et undervisningsopplegg kan variere fra gruppe til gruppe, og det kan dukke opp problemstillinger som går utenfor det man egentlig hadde tenkt å ta opp der og da. Men det at elevene selv stiller spørsmål og formulerer problemer, er et svært godt utgangspunkt for læring. Utnytt slike øyeblikk! Det er ikke sikkert at motivasjonen for å forstå et problem er like stor når det dukker opp i læreboka på et annet tidspunkt. tangenten 3/
Funksjoner 1T Quiz. Test, 4 Funksjoner
Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den
Kurs. Kapittel 2. Bokmål
Kurs 9 Kapittel 2 Bokmål 1 av 9 Kurs i GeoGebra Funksjoner og grafer I dette kurset skal vi se nærmere på hvordan vi kan bruke GeoGebra som en graftegner. Grunnleggende innstillinger Når vi skal bruke
QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen
QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...
KORT INNFØRING I GEOGEBRA
Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER... 9 ØVELSE 2. TEGNE GRAFER TIL RASJONALE FUNKSJONER... 11 ØVELSE 3. LIKNINGSLØSNING... 15 ØVELSE 4. TANGENTER OG MAKS OG MIN
Hurtigstart. Hva er GeoGebra? Noen fakta
Hurtigstart Hva er GeoGebra? En dynamisk matematisk programvare som er lett å ta i bruk Er egnet til læring og undervisning på alle utdanningsnivå Binder interaktivt sammen geometri, algebra, tabeller,
Grafer og funksjoner
Grafer og funksjoner Fredrik Meyer Sammendrag Vi går raskt igjennom definisjonen på hva en funksjon er. Vi innfører også begrepet førstegradsfunksjon. Det forutsettes at du husker hva et koordinatsystem
Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål
Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en
Funksjoner og andregradsuttrykk
88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter
Grafisk løsning av ligninger i GeoGebra
Grafisk løsning av ligninger i GeoGebra Arbeidskrav 2 Læring med digitale medier 2013 Magne Svendsen, Universitetet i Nordland Innholdsfortegnelse INNLEDNING... 3 GRAFISK LØSNING AV LIGNINGER I GEOGEBRA...
I Katalog velger du: Ny eksamensordning i matematikk våren 2015
CAS teknikker H-P Ulven 10.12.2014 Innledning Våren 2015 gjelder nye regler for bruk av digitale hjelpemidler: Når det står "Bruk CAS", så må kandidaten bruke CAS, og når det står "Bruk graftegner", så
Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra
Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................
Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy
Sinus 1P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra
Lær å bruke GeoGebra 4.0
Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...
Lineære funksjoner. Skjermbildet
Lineære funksjoner I dette opplæringsløpet lærer du å tegne funksjoner i GeoGebra samt å bruke verktøy til å løse oppgaver som dreier seg om funksjoner. Alle oppgavene handler om lineære funksjoner. I
Spørsmål og svar om GeoGebra, versjon 2.7 bokmål
Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste
Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter:
Spørsmål og svar om GeoGebra, versjon 3.0 bokmål. Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste
GeoGebra. Menylinje Angreknapp. Verktøylinje. Aktivt verktøy med mørkeblå kant. Innstillinger. Algebrafelt. Velge oppsett.
GeoGebra Menylinje Angreknapp Verktøylinje Aktivt verktøy med mørkeblå kant Innstillinger Algebrafelt Grafikkfelt Inntastingsfelt Velge oppsett GEOGEBRA SOM FUNKSJONSTEGNER OPPSETT FLYTTE TEGNE- FLATEN,
GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10.
2 Grafer Å tegne grafen til en funksjon Akser Rutenett Avrunding GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. Funksjonen får automatisk navnet f. Hvis grafen ikke vises, kan du høyreklikke i grafikkfeltet
Løsningsskisser til arbeidsoppgaver i CAS.
Løsningsskisser til arbeidsoppgaver i CAS. Oppgave 1 En bonde har et 20 meter langt gjerde og skal sperre av et rektangulært område der en av sidene i rektangelet er en fjøsvegg. Finn maksimalt areal som
GeoGebra-opplæring i Matematikk 2P
GeoGebra-opplæring i Matematikk 2P Emne Underkapittel Graftegning 2.1 Linje gjennom to punkter 2.1 Å finne y- og x-verdier 2.1 Lineær regresjon 2.3 Andregradsfunksjoner 2.4 Polynomregresjon 2.4 Eksponential-
Kurshefte GeoGebra. Ungdomstrinnet
Kurshefte GeoGebra Ungdomstrinnet GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk verktøy Gratis Brukes på alle nivåer i utdanningssystemet Finnes på både bokmål og nynorsk Kan lastes
Vi kan finne formler som gir oss neste tall i tallfølgen dersom vi kjenner ett tall. Det er den rekursive formelen. gir oss gir oss alle tallene a
Tallfølger, figurtall, algebra (utgave beregnet for GLU1-7). Av Geir Martinussen, Høgskolen i Oslo og Akershus (Se også: http://www.matematikk.org/uopplegg.html?tid=114140 ) Tallfølger er en nyttig ressurs
Meningsfull matematikk for alle
Meningsfull matematikk for alle Anne-Mari Jensen Novemberkonferansen 2015 26-Nov-15 Elevene: En vei mot et yrke Et statussymbol Personlig tilfredsstillelse Nødvendig i hverdagen Må vite hva vi skal bruke
Brukermanual i GeoGebra
Brukermanual i GeoGebra for Vg1T, Vg1P, Vg2T, Vg2P, R1 og R2. GeoGebra er et program for Geometri og AlGebra. GeoGebra er en dynamisk matematisk programvare, som binder sammen geometri, algebra og utregninger.
Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal
Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal Hefte med praktiske eksempler Tone Elisabeth Bakken Molde, 29.januar 2013 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt!
Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org
Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er
Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra
Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Menyer..................................... 4 2 Regning 5 2.1 Tallregning...................................
Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008. eksamensoppgaver.org
Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 1MX er gratis, og det er lastet
Løsningsforslag for eksamen i REA3026 Matematikk S1-08.05.2008. eksamensoppgaver.org
Løsningsforslag for eksamen i REA306 Matematikk S1-08.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er lastet ned
( ) = ( ) = ( ) = + = ( ) = + =
6. Lineær modell I modell A (foregående side) la vi til grunn en tanke om like stor tilvekst pr. tidsenhet. Vi kan lage tabell: År 989 990 99 992 993 994 År etter 989 0 2 3 4 5 Antall elever 00 5 30 År
Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program
Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Fastsatt som forskrift av Utdanningsdirektoratet 27. mars 2006 etter delegasjon i brev 26. september 2005 fra Utdannings-
NyGIV Regning som grunnleggende ferdighet Akershus
NyGIV Regning som grunnleggende ferdighet Akershus Hefte med praktiske eksempler Tone Elisabeth Bakken 16.januar 014 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt! tone.bakken@ohg.vg.no
Eksamen MAT1005 Matematikk 2P-Y Høsten 2014
Eksamen MAT1005 Matematikk P-Y Høsten 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0,0003 500000000 0,00,0 10,0 4 8 3,0 10 5,0 10 3,0 5,0 4 8 ( 3) 7 3 10 7,5 10 Oppgave (1 poeng) Prisen
Klarer dere disse abel-nøttene fra 2011?
2: Lineære funksjoner VG1-T - teoretisk retning En del av dere synes nok at innføringa i kapittel 1 er i vanskeligste laget. Trass i at vi stort sett har repetert foreløpig, ser jeg at dere merker overgangen
GeoGebra på vgs. Versjon 3.0
GeoGebra på vgs. Versjon 3.0 Bokmål Lær å bruke et gratis program for graftegning, funksjonsanalyse og dynamisk geometri. av Sigbjørn Hals GeoGebra på vgs. Innhold: HVA ER GEOGEBRA?... 3 HVOR KAN JEG FÅ
Eksamen 31.05.2012. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 31.05.01 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
På reise Nivå: Formål: Program: Henvisning til plan: 8. klasse Matematikk i dagliglivet: Tall og algebra: Grafer og funksjoner:
På reise Nivå: 8. og 9. klasse Formål: Arbeide med lineære funksjoner og verktøyprogram Program: Regneark, kurvetegningsprogram Henvisning til plan: 8. klasse Matematikk i dagliglivet: registrere og formulere
Velg mellom disse kommandoene: Dersom[<Vilkår>, <Så>, <Ellers>] Funksjon[<Funksjon>, <Start>, <Slutt>]
442 Grafer Å tegne grafen til en funksjon Nullpunkter Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ] GeoGebra finner nullpunktene til en innlagt
GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals
GeoGebra brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals Innhold Hva er GeoGebra?... 2 Hvilken nytte har elevene av å bruke GeoGebra?... 2 Hvor finner vi GeoGebra?... 2 Oppbyggingen av programmet...
Grensekostnad og grenseinntekt Matematikk S1 1. Refleksjon
Grensekostnad og grenseinntekt Matematikk S1 1. Refleksjon Læreplanmål Matematikk S1 lage og tolke funksjoner som modellerer og beskriver praktiske problemstillinger i økonomi tegne grafen til polynomfunksjoner,
Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra
Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning
Funksjoner, likningssett og regning i CAS
Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...
2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42
Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus 1P boka til Cappelen Damm til Excel- og GeoGebrastoff. Se brukerveiledningen i Lokus for perspektivtegning med GeoGebra..1 Regnerekkefølge
S1 kapittel 3 Lineær optimering
S kapittel 3 Lineær optimering Løsninger til oppgavene i boka 3. a b c d Aschehoug www.lokus.no Side av 66 3. a b c d Aschehoug www.lokus.no Side av 66 3.3 Løsninger til oppgavene i boka Ulikhetene i oppgave
Modul nr. 1649 Funksjoner med GeoGebra
Modul nr. 1649 Funksjoner med Tilknyttet rom: Newton ENGIA - Statoil energirom - Ofoten 1649 Newton håndbok - Funksjoner med Side 2 Kort om denne modulen Denne modulen handler om matematiske funksjoner
Undervisningsopplegg. Kapittel 2. Bokmål
Undervisningsopplegg 9 Kapittel 2 Bokmål 1 av 10 Bruk av GeoGebra i eksamensoppgaver I dette undervisningsopplegget skal vi se nærmere på hvordan vi kan bruke GeoGebra som en graftegner i eksamensoppgaver
Løsningsforslag heldagsprøve våren 2010 1T
Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y
Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860
Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................
Løsningsskisser - Kapittel 6 - Differensialligninger
Løsningsskisser - Kapittel 6 - Differensialligninger Vi bruker det vi har lært i 6.3 om løsning av separable differensialligninger også i noen av oppgavene fra 6.1 og 6.2 for å knytte denne løsningsteknikken
Løsningsforslag heldagsprøve våren 2012 1T
Løsningsforslag heldagsprøve våren 01 1T DEL 1 OPPGAVE 1 a1) Skriv så enkelt som mulig x 9 x 6 Vi må faktorisere både teller og nevner. Så kan vi forkorte felles faktorer. Da får vi: x 9 x x 6 a) 4a4 b
SINUS R1, kapittel 5-8
Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173
Eksamen MAT1005 Matematikk 2P-Y Høsten 2013
Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et
Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860
Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................
1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at
Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8
Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål
Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål
Løsning eksamen S1 våren 2008
Løsning eksamen S1 våren 008 Del. Oppgaver løst med pc og enkel lommeregner. Noen gode grunner til å lære å utnytte pc-en effektivt på eksamen: I eksamensinformasjonen står det: Der oppgaveteksten ikke
Plotting av grafer og funksjonsanalyse
Opplæringshefte i GeoGebra Innholdsfortegnelse: Plotting av grafer og funksjonsanalyse... 2 Oppgave 1... 2 Oppgave 2... 4 Oppgave 3... 8 Å plassere et bilde i GeoGebra... 8 Oppgave 4... 8 Vektorregning
Undervisningsopplegg for ungdomstrinnet om koordinatsystemer og rette linjer
Undervisningsopplegg for ungdomstrinnet om koordinatsystemer og rette linjer Kilde: www.clipart.com 1 Funksjoner. Lærerens ark Hva sier læreplanen? Funksjoner Mål for opplæringen er at eleven skal kunne
Elektroniske arbeidsark i Cabri
Anne Berit Fuglestad Elektroniske arbeidsark i Cabri Dynamisk geometri her er det noe i bevegelse. Vi kan flytte på figurer eller dra i dem, forandre form eller størrelser. Vi starter i utgangspunktet
Løsningsforslag Eksamen R1 - REA3022-28.05.2008
Løsningsforslag Eksamen R1 - REA3022-28.05.2008 eksamensoppgaver.org September 14, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i R1 er gratis, og det er lastet ned på eksamensoppgaver.org.
Alan Mathison Turing. Gunnar Gjone
I sommerens presseoppslag finner vi en rekke sammenlikninger av kommunene i Norge. En av dem dreier seg selvsagt om elevkarakterene. Pressen er opptatt av å sammenlikne storbyene. Ordførere må på kort
Delprøve 1. 8 f) Regn ut. Forklar hvor i Pascals trekant du finner denne binomialkoeffisienten. 6
Delprøve 1 OPPGAVE 1 a) Deriver funksjonen ( ) = + 3 f x 3x x 7 b) Bestem den gjennomsnittlige veksthastigheten til funksjonen f( x ) = 3 x fra x = 0 til x = 3. c) Skriv så enkelt som mulig x 3 + x 9 3x
Løsningsforslag 1T Eksamen. Høst 24.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag 1T Eksamen 6 Høst 4.11.011 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
Eksamen 02.05.2008. VG1340 Matematikk 1MX Privatistar/Privatister. Nynorsk/Bokmål
Eksamen 02.05.2008 VG1340 Matematikk 1MX Privatistar/Privatister Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel: Vedlegg: Andre opplysningar: Framgangsmåte og forklaring: 5 timar
Løsningsforslag. og B =
Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og
Løsning av typeoppgaver og eksamensoppgaver med Microsoft Mathematics, WordMat og GeoGebra. Av Sigbjørn Hals
Løsning av typeoppgaver og eksamensoppgaver med Microsoft Mathematics, WordMat og GeoGebra Av Sigbjørn Hals 1 Innhold Innledning... 3 Typeoppgave 1... 3 Oppgaven... 3 Fremgangsmåten... 4 Løsningen... 4
S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka
S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka 5.1 a f( x) = 4x+ 0 I GeoGebra skriver vi f(x)=funksjon[-4x+0,-5,5]. Grafen viser at [ 0, 40] V =. f b gx ( ) =,5x+ 10 I GeoGebra skriver vi f(x)=funksjon[,5x+10,-10,4].
Bokmål. Eksamensinformasjon
Eksamen 27052010 REA022 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del
Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 19.05.010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: Veiledning om vurderingen: 5 timer: Del 1 skal
Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy
Sinus 2P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra
Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maple
Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Maple Innhold 1 Om Maple 4 1.1 Tillegg til Maple................................ 4 2 Regning 5 2.1 Tallregning...................................
Pytagoras, Pizza og PC
Øistein Gjøvik Pytagoras, Pizza og PC Skal vi bestille en stor eller to små? Eller kanskje en medium og en liten? Magnus har helt klart tenkt seg å få mest for pengene. Kan du regne ut hvor stor forskjellen
Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver.
Tempoplan: Kapittel 4: 8/11 14/1. Kapittel 5: /1 1/. Kapittel 6: 1/ 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 3: Vektorer Dette kapitlet er meget spesielt og annerledes enn den matematikken
Eksempeloppgave 2014. REA3022 Matematikk R1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)
Eksempeloppgave 014 REA30 Matematikk R1 Eksempel på eksamen våren 015 etter ny ordning Ny eksamensordning Del 1: 3 timer (uten hjelpemidler) Del : timer (med hjelpemidler) Minstekrav til digitale verktøy
0, 12. 1) Sett opp ei uendelig rekke som viser hvor stor del av bløtkaka som er spist av gjestene. Hva slags rekke er dette?
OPPGAVE 1 a) Deriver funksjonen f( x) = 5x tanx b) Deriver funksjonen ( ) 3 g( x) = x + cosx c) Bestem integralet (sin x cos x) dx d) Løs ligningen ved regning π,4,6cos x = 1,8, 1 4 x e) I et selskap blir
Grafer og funksjoner
14 4 Grafer og funksjoner Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder omforme en praktisk problemstilling
Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.
1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset
Løsningsforslag matematikk S1 V14
Løsningsforslag matematikk S1 V14 Oppgave 1 Bruker ABC-formelen: ABC-formelen gir x = 2 x = 3 x 2 + 3x 3 = 3 2x x 2 + 5x 6 = 0 x = b ± b 2 4ac 2a lg(x + 2) = 2 lg x lg(x + 2) = lg x 2 10 lg(x+2) lg x2
Breddegradene er linjene som gôr parallelt med ekvator. Lengdegradene er linjene som gôr fra pol til pol. Den vannrette aksen, ogsô kalt försteaksen
Breddegrader Lengdegrader Koordinatsystem Breddegradene er linjene som gôr parallelt med ekvator. Lengdegradene er linjene som gôr fra pol til pol. Et koordinatsystem bestôr av to akser. Aksene er tallinjer
Sigbjørn Hals. Nedenfor har vi tegnet noen grafer til likningen y = C, der C varierer fra -2 til 3, med en økning på 1.
Retningsdiagrammer og integralkurver Eksempel 1 Den enkleste av alle differensiallikninger er nok y' = 0. Denne har løsningen y = C fordi den deriverte av en konstant er 0. Løsningen vil altså bli flere
Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS
Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-NspireCAS Innhold 1 Om TI-NspireCAS 4 1.1 Applikasjonene................................. 4 1.2 Dokumenter...................................
Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015
Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8
Kapittel 6. Funksjoner
Kapittel 6. Funksjoner Funksjon er et av de viktigste begrepene i matematikken. Funksjoner handler om sammenhengen mellom to størrelser. Dette kapitlet handler blant annet om: Hva en funksjon er. Lineære
GeoGebra 3.2. for. ungdomstrinnet
GeoGebra 3.2 for ungdomstrinnet av Sigbjørn Hals 1 Innhold: Hva er GeoGebra?... 3 Hvor kan jeg få tak i dette programmet?... 3 Hvordan kommer jeg i gang med å bruke programmet?... 4 Å hente og legge til
Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den?
side 1 Detaljert eksempel om Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? Dette er et forslag til undervisningsopplegg der utgangspunktet er sentrale problemstillinger
2P kapittel 2 Modellering Løsninger til innlæringsoppgavene
P kapittel Modellering Løsninger til innlæringsoppgavene.1 a c d e y = 4x+ 1 Stigningstallet er 4. Konstantleddet er 1. Linja skjærer altså y-aksen i punktet (0,1). y = 3x 4 Stigningstallet er 3. Konstantleddet
Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om
1 Eksponentielt vekst: En størrelse vokser eller avtar med en fast prosent per tidsenhet. Eulers tall e: En matematisk konstant, e=2,7 1828.. ln a gir det tallet du må opphøye Eulers tall e i for å få
Matematikk 2T. det digitale verktøyet. Kristen Nastad
Matematikk 2T og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.4.11643 2008 07 09 av operativsystemet til programmet TI-nspire TM CAS Operating System Software
Un d er s ø ken d e mat emat ikkun d er v is n in g i v id er eg å en d e s ko l e
Un d er s ø ken d e mat emat ikkun d er v is n in g i v id er eg å en d e s ko l e Ko mmun ik a s j o n - mo t iva s j o n - f o r s t å el s e Anne-Mari Jensen og Kjersti Wæge 2010 Matematikksenteret,
Kommunikasjon - motivasjon - forståelse
Undersøkende matematikkundervisning i videregående skole Kommunikasjon - motivasjon - forståelse Anne-Mari Jensen og Kjersti Wæge 2010 Matematikksenteret, Trondheim 1. utgave / 1. opplag 2010 ISBN 978-82-997163-6-9
Geogebra er viktig i dette kapitlet, samt passer, linjal, blyant og viskelær! Tommy og Tigern:
Tempoplan: Etter dette kapitlet repetisjon og karaktergivende prøver! 7: Geometri Kunnskapsløftet de nye læreplanene legger vekt på konstruksjon av figurer! I utgangspunktet kan det høres ganske greit
DERIVASJON MED LITT TEKNISK HJELP
DERIVASJON MED LITT TEKNISK HJELP Viskalnåsepåhvordanvikanundersøkeenfunksjonvednoesomvikallerderivasjon. Funksjoner er en sammenhengen mellom størrelser. Det kan være antall solgte biler per måned, temperaturvariasjoner,
Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon. framgangsmåte.
Eksamen.05.009 REA306 Matematikk S1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:
Løsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen
Løsningsforslag eksamen T våren 00 DEL Oppgave a) Funksjonen f er gitt ved f 3. Tegn grafen og finn nullpunktene for f f 3 Grafen y 0 8 6 4-4 -3 - - 3 4 - -4 Nullpunkt 3 0 3 Nullpunkt når 3 b) Løs likningen
Analyse og metodikk i Calculus 1
Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................
Grenseverdier og asymptoter. Eksemplifisert med 403, 404, 408, 409, 410, 411, 412, 414, 416, 417, 418, 419
Grenseverdier og asymptoter Eksemplifisert med 403, 404, 408, 409, 40, 4, 42, 44, 46, 47, 48, 49 Grenseverdier Grenseverdien til en funksjon, lim x a f x g, er en verdi vi kan komme så nær vi vil, når
De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon.
Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter
Matematikk R1 Forslag til besvarelse
Matematikk R1 Forslag til besvarelse NITH 4. mars 014 Oppgave 1 a) Regn ut p x) når px) = x 3 3x + 6x 1. p x) = x 3 ) 3x ) + 6x) 0 = 3x ) 3x) + 6 1 = 6x 6x + 6 b) Regn ut p x) når px) = ax + bx + c. Her
GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals
GeoGebra 4.2 for Sinus Påbyggingsboka P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Eksponentiell vekst. Side 45 i læreboka... 3 Søylediagram. Side 50-52 i læreboka... 4 Kurvediagram. Side 55-56 i læreboka...
Krasjkurs MAT101 og MAT111
Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten