Løsningsforslag til Øvingsoppgave 5

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Løsningsforslag til Øvingsoppgave 5"

Transkript

1 Oppgve 5.1 ) Figu 5.1 vise et foenklet tilstndsdigm fo det metstbile system jen-kbon, Fe-C. Skiv på digmmet stuktuelementene og fsene som tilhøe de enkelte flte. Mek v eutektisk og eutektoidisk eksjon Se Figu L b) To stål med henholdsvis 0,5% C og 1,% C vkjøles skte f ustenittomådet og ned til væelsestempetu, slik t det hele tiden følge likevektsdigmmet. Fokl nøye hv som skje med stuktuen unde vkjølingen, og finn mssefoholdet mellom de stuktuelemente vi h ved omtempetu. Vi se føst på nedkjøling v stål med 0,5% C. Ved c o C h ll smelten støknet til en fse med fltesentet stuktu, -fsen, også klt ustenitt. Ved videe nedkjøling e vstenitten stbil helt ned til like unde 800 o C, se Figu L punkt A. He bli ustenitten mettet på Fe og den spltes opp i to fse, -jen med et lite C-innhold og -jen. Det e vnlig å se bot f det lille C-innholdet i -jen, og egne fsen som ent jen. -jen klles også feitt. Ette hvet som tempetuen synke og det utskilles C fttig -jen, øke -fsens ndel v C. Smmensetningen v -fsen e gitt v linjen A-C. Vi se -jen få en noe støe ndel v C ette som tempetuen synke. Ved tempetuen A 1 = 7 o C h både - og -fsene sin støste oppløselighet v C, henholdsvis 0,05% C og 0,8% C, se Figu L punkt D og C. Legeingens totle smmensetning e selvfølgelig ufondet, og gitt v punktet B. Ved denne tempetuen kn ustenitten, -fsen, oppfttes som mettet både på Fe (feitt) og kbon, punkt C. Ved ytteligee vmebotledning spltes ustenitten til eutektoidet pelitt som e en finfodelt meknisk blnding v feitt og cementitt (Fe C). Vi h ltså nå to stuktuelemente, feitt og pelitt. Feitten inneholde be en fse -jen, mens pelitten inneholde begge fsene som e til stede, -jen og cementitt (Fe C). -jenets smmensetning e gitt v punkt D, cementittens smmensetning v punktet E og pelittens smmensetning v punktet C, se Figu L Ved den videe nedkjøling til nomltempetu fobli disse stuktubestnddelene ufondet. Den eneste fondingen som finne sted, e t feittens oppløselighet v C vt, slik t C diffundee ut v feitten og inn i cementitten. Vi vil nå finne mssefoholdet mellom de to stuktuelementene vi h ved omtempetu, feitt og pelitt, ved hjelp v hevmloven, idet vi se helt bot f den lille ndelen C som fotstt finnes i feitten Vi h d f digmmet i Figu L-5.1.1: Henning Johnsen side 1

2 Oppgve 5.1b, fots. Figu L Den eutektoide eksjonen e mket med bokstven C. Den eutektiske eksjonen e mket med bokstven H. feitt 0,5 = pelitt (0,8-0,5) feitt pelitt 0,8 0,5 0,6 0,5 vi se nå på nedkjøling v stål med 1,%C. Ved c. 100 o C h ll smelten støknet til fst fse, ustenitt. Ved videe nedkjøling e ustenitten stbil helt ned til c. 900 o C, se Figu L-5.1.1, punkt F. He bli ustenitten mettet på C, og den spltes opp i to fse, cementitt (Fe C) og ustenitt. Cementittens smmensetning e gitt v punkt E i Figu L Ette hvet som tempetuen synke og det skilles ut me cementitt med C innhold på 6,7%, synke -fsens ndel v C. Smmensetningen v -fsen følge linjen F-C i digmmet. Cementittens oppløselighet v C e hele tiden 6.7%. Henning Johnsen side

3 Oppgve 5.1b, fots. Nå legeingen e vkjølt til A 1 = 7 o C, punkt G, h ustenitten smmensetning gitt v punkt C. Austenitten kn he oppfttes som mettet både med feitt og med kbon, og ved videe vmebehndling spltes den til eutektoidet pelitt (blnding v feitt og cementitt). Legeingen bestå nå v to stuktuelemente, cementitt og pelitt. Cementitten bestå kun v en fse, Fe C, mens pelitten inneholde begge fsene som e til stede, -jen og Fe C. -jenets smmensetning e gitt v punkt D, cementittens smmensetning v punkt E og pelittens smmensetning v punkt C. Den eneste fonding som finne sted ved den videe nedkjøling til nomltempetu, e t -fsens oppløselighet v C vt, slik t C diffundee ut v feitten og inn i cementitten. Vi finne nå mssefoholdet mellom de to stuktuelementene vi h ved omtempetu, cementitt og pelitt, ved hjelp v hevmloven, idet vi se helt bot f den lille ndelen C som fotstt finnes i -fsen. Vi h d f digmmet i Figu L-5.1.1: cementitt (6,7 1,) = pelitt (1, - 0,8) cementitt pelitt 1, 0,8 0,09 6,7 1, c) Ved mikoundesøkelse v kbonstål e det funnet t 10% v slipets el bestå v kongense-cementitt og esten v pelitt. Cementitt og pelitt kn egnes å h smme tetthet. Hv e stålets kboninnhold i %? Vi skl finne stålets smmensetning, q x %C, nå vi vet t 10% v slipets el bestå v cementitt og esten v pelitt. Vi vet t cementittens smmensetning m& vee gitt v punkt E og pelittens smmensetning v punkt C i Figu L Ved buk v hevmloven få vi: cementitt (6,7 - q x ) = pelitt (q x 0,8) cementitt pelitt q x 0,8 6,7 q x 0,1 0,11 0,9 q x 0,8 = (6.7 - q x ) 0,11 q x = 0,74 0,11q x (1 + 0,11)q x = 0,74 + 0,8 q x 1,54 1,9% 1,11 Henning Johnsen side

4 Oppgve 5.1, fots. d) Fokl hvofo oppløseligheten v C i -jen e mye minde enn i -jen. Finn ved hjelp v det gitte utsnitt v fsedigmmet fo jen kbon i figuen, mengdefoholdet mellom de eksisteende stuktuelemente ved hhv. 800 o C og ved omtempetu. Nvngi stuktuelementene. Legeingens kboninnhold e 0,%. Kbon og jen dnne ddisjonsoppløsning. I kubisk omsentet stuktu (-jen) gi mellomommene mellom tomene minde plss fo femmedtome enn tilfellet e fo kubisk fltesentet stuktu selv om kubisk fltesentet stuktu e me tettpkket enn kubisk omsentet stuktu. Mengdefoholdet mellom stuktuelementene ved 800 o C: Legeingen bestå v to fse: Feitt (-) med q l = 0,05%C og ustenitt () med q 1 = 0,4%C. (Kbonposentene finnes f Figu L i oppgveteksten. Et utsnitt v figuen e vist nedenfo). I dette tilfellet e stuktuelementene lik fsene. Hve fse utgjø ett stuktuelement. Legeingens kboninnhold: q x = 0,% Hevmloven: q x ( + ) = q l + q 1 0,4 0, 0,6 0, 0,05 Figu L-5.1. Henning Johnsen side 4

5 Oppgve 5.1d, fots. Mengdefoholdet mellom stuktuelementene ved omtempetu: Ved vkjøling v med 0,%C f høyee tempetu enn eutektoid tempetu, vil feitt utskilles inntil eutektoid tempetu e nådd. Ved den eutektoide tempetu vil esten v ustenitten omvndles til pelitt (eutektoid). Austenitten h ved eutektoid tempetu oppnådd 0,8% kbon. Økning i ustenittens kboninnhold skyldes t den feitten som tidligee e utskilt, ikke kn inneholde me enn noen hundedels posent kbon. Eutektoid bestå v to fse (feitt + cementitt), men oppfttes som. Ett stuktuelement fodi fsene h et bestemt mengdefohold og e odnet ette spesielle mønste innenfo omåde som kn smmenlignes med kon. I pelitt bestå disse omådene v lmelle v vekselvis feitt og cementitt. Unde 7 o C vil det væe dnnet to stuktuelemente: 1. Feitt, bestående v fsen feitt.. Pelitt, bestående v fsene feitt og cementitt. Figu L-5.1. Fo å finne mengdefoholdet mellom stuktuelementene feitt og pelitt ved omtempetu må vi buke hevmloven ved 7 o C fodi det e he pelitten oppstå, og mengden pelitt vil ikke fondes (selv om feitts evne til å oppløse kbon vt ved lvee tempetu). Ved vkjøling til omtempetu vil det f feitten utskilles me cementitt, men denne inngå ikke i pelitt slik t pelittmengden e like sto ved 7 o C som ved omtempetu. Den sekundæt dnnede cementitt vil deimot ligge finfodelt i feitten og væe åsk til noe uttellingsheding. (Den sekundæe utskilling foegå ove lng tid, gjene flee å fodi diffusjon v kbon e uhye lngsom i kldt, kubisk omsentet jen). Hevmloven: q x ( + P) = q + q p P P 0,9 0, 1,9 0, 0,04 Henning Johnsen side 5

6 Oppgve 5. Figuen unde vise enhetscellene til kubisk omsentet stuktu, ks, og kubisk fltesentet stuktu, kfs, inkludet mulige mellomomsposisjone fo C. Figu L-5. Enhetscelle i kubisk omsentet stuktu og kubisk fltesentet stuktu. Støelsen på tomene i stål vhengig v kystllstuktu e som følge: ATOM: KRYSTALLSTRUKTUR: RADIUS (Å): Fe Feitt, 1,4 Fe Austenitt, 1,9 C 0,71 ) Beegn støelsen på mellomommene i feitt og ustenitt, som C kn gå inn i. Kubisk omsentet stuktu, ks ( = b = c): 4Fe Fe 4 Henning Johnsen side 6

7 Henning Johnsen side 7 Oppgve 5., fots. Kubisk fltesentet stuktu, kfs ( = b = c): Fe Fe 4 4 Sette: Fe = R mellomom = 0,91 R 5R R 5R 4R R 0,414 R R R 4R R

8 Oppgve 5., fots. Defo e: mellomom = (0,91) (1,4) = 0,6Å mellomom = (0,414) (1,9) = 0,5Å b) Fokl så foskjellen i mksimum løselighet v C i de to fsene. Støelsen på mellomommene e minde enn C = 0,71Å. Dette føe til lv oppløselighet og god løsningsstyking. Løseligheten e c. 100 gnge støe i ustenitt enn i feitt (: C mks = 0,0% og : C mks =,06%), p.g.. støe mellomom i enhetscellen til kubisk fltesentet stuktu. Oppgve 5. Beegn mengden (vekt - %) v feitt og cementitt som e tilstede i pelitt. Pelitt må inneholde C = 0,8%. Vi buke hevmloven: 1 0,8 0,0 FeC 6,67 0,8 0 Vi kn også skive: FeC 1100% Fe C 1 Sette ligning inn i 1: 0,8 0,0 1 6,67 0,8 0 0,8 0,0 6,67 0,8 6,67 0,8 0,8 0,0 6,67 0,8 6,67 0,8 6,67 0,0 6,67 0,8 6,67 0,8 x100% 88,% 6,67 0,0 F ligning : Fe C , 11,7% 0 Henning Johnsen side 8

9 Oppgve 5.4 En meiknsk bilfbikk benytte et AISI 1050-stål med c. 0,5% C til smiing v hjulksle. En fohåndsundesøkelse v stålet fø smiing og vmebehndling, viste t mikostuktuen inneholdt c. 60% pelitt og 40% feitt. ) Beegn mengden i % v hve fse og stuktuelement som du egne med å finne i stålet. C < 0,8% Feitt () + Pelitt (P) P = + Fe C Tot. (inkl. i P):,, FeC,, FeC % 667, 05, x100% 9, 8% fse 667, 00, Fe C 100 9, 8 7, % fse,,,, 1 P P 1 100% 05, 00, P x100% 615%, stuktuelement, fse 08, 00, , 5 8, 5% stuktuelement, 1fse b) E dette et AISI stål? Dette e et AISI stål. De beegnede vedie ligge næe vediene f mikoundesøkelsen. Oppgve 5.5 En bedift mott stngstål f en levendø. Mikoundesøkelse i lbotoiet viste t stålet inneholdt c. 95% pelitt og 5% Fe C. Bestem stålets C - innhold. P + Fe C oveeutektoid stål C > 0,8% %,, % FeC 1 P C08 Fe C 667 C 0 P 1 100% 667, % C P x 100% 95% 667, 08, 667, % C ,, 08, % C 11%, Henning Johnsen side 9

10 Oppgve 5.6 Et stål til poduksjon v fjæe ble bestilt f en levendø. Stålets innhold v fsene Fe C og ble beegnet til henholdsvis 10% og 90%. Kn vi nt t dette e et eutektoid stål? Hevmloven: % C, Fe C, % C % 0, 9 Fe C 10% 0, 1 C C 09, % 00, 01667,, % 0 % C 09, 01, 09, , 667, % C 0, 69% %C 0,8% IKKE eutektoid stål (undeeutektoid) Henning Johnsen side 10

Løsningsforslag kapittel 3

Løsningsforslag kapittel 3 Løsningsoslg kpittel 3 3.1 ) Uttykket o (den konigusjonelle) entopien S e gitt ved S k ln W, de W uttykke ntll skillbe mikotilstnde. Siden kystllen inneholde n vknse odelt ove N N! N! tomplsse e W og S

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN MAI 2007

LØSNINGSFORSLAG TIL EKSAMEN MAI 2007 NTNU Noges teknisk-ntuvitenskpelige univesitet Fkultet fo ntuvitenskp og teknologi Institutt fo mteilteknologi TMT40 KJEMI LØSNINGSFORSLAG TIL EKSAMEN MAI 007 OPPGAVE ) - ph definees som den negtive logitmen

Detaljer

Løsning øving 12 N L. Fra Faradays induksjonslov får vi da en indusert elektromotorisk spenning:

Løsning øving 12 N L. Fra Faradays induksjonslov får vi da en indusert elektromotorisk spenning: nstitutt fo fysikk, NTNU Fg SF 4 Elektognetise og MNFFY 3 Elektisitet og gnetise Høst øsning øving Oppgve Mgnetfeltet inne i solenoiden e : ( H( (N/) ( (dvs fo < R). Utenfo solenoiden: ( > R) Fo å eegne

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14. TFY404 Fysikk. Institutt fo fysikk, NTNU. Høsten 203. Øving 9. Veiledning: 8. oktobe. Innleveingsfist: 23. oktobe kl 4. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet

Detaljer

Midtsemesterprøve onsdag 7. mars 2007 kl Versjon A

Midtsemesterprøve onsdag 7. mars 2007 kl Versjon A Institutt fo fysikk, NTNU FY1003 lektisitet og mgnetisme I TFY4155 lektomgnetisme Vå 2007 Midtsemestepøve onsdg 7. ms 2007 kl 1300 1500. Løsningsfoslg. Vesjon 1) Hvilken påstnd om elektisk potensil e feil?

Detaljer

Modul 1 15 studiepoeng, internt kurs Notodden/Porsgrunn

Modul 1 15 studiepoeng, internt kurs Notodden/Porsgrunn Høgskole i Telemk Avdelig fo estetiske fg, folkekultu og læeutdig BOKMÅL 4. mi 007 EKSAMEN I MATEMATIKK 3 Tid: 6 time Modul 5 studiepoeg, itet kus Notodde/Posgu Oppgvesettet e på 7 side (ikludet fomelsmlig).

Detaljer

Øving 6. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme. Veiledning: Uke 7 Innleveringsfrist: Mandag 19. februar.

Øving 6. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme. Veiledning: Uke 7 Innleveringsfrist: Mandag 19. februar. Institutt fo fsikk, NTNU TFY4155/FY1003: Elektisitet og mgnetisme Vå 2007 Veiledning: Uke 7 Innleveingsfist: Mndg 19. febu Øving 6 Oppgve 1 z Figuen ove vise en gussflte (dvs lukket flte) S fomet som en

Detaljer

10 JERN - KARBON LEGERINGER, LIKEVEKTSTRUKTURER (Ferrous Alloys) 10.1 Generelt

10 JERN - KARBON LEGERINGER, LIKEVEKTSTRUKTURER (Ferrous Alloys) 10.1 Generelt 10 JERN - KARBON LEGERINGER, LIKEVEKTSTRUKTURER (Ferrous Alloys) 10.1 Generelt Ikke noe annet legeringssystem kan by på så mange nyttige reaksjoner og mikrostrukturer som det der jern Fe og karbon C er

Detaljer

Løsningsforslag for eksamen i FY101 Elektromagnetisme torsdag 12. desember 2002

Løsningsforslag for eksamen i FY101 Elektromagnetisme torsdag 12. desember 2002 Løsningsfoslag fo eksamen i FY Elektomagnetisme tosdag. desembe Ved sensueing vil alle delspøsmål i utgangspunktet bli gitt samme vekt (uavhengig av oppgavenumme), men vi fobeholde oss etten til justeinge.

Detaljer

Øving 1. Institutt for fysikk, NTNU Fag SIF 4012 Elektromagnetisme og MNFFY 103 Elektrisitet og magnetisme Høst 2002

Øving 1. Institutt for fysikk, NTNU Fag SIF 4012 Elektromagnetisme og MNFFY 103 Elektrisitet og magnetisme Høst 2002 Institutt fo fysikk, NTNU Fg SIF 4 Elektomgnetisme og MNFFY Elektisitet og mgnetisme Høst Øving Veiledning: Tosdg 9. ugust Innleveingsfist: Tisdg. septembe kl. Oppgve En ldning q e plsset i (,y)(,) og

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 10. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 10. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt. TFY0 Fysikk. Institutt fo fysikk, NTNU. Høsten 06. Øving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil undefostått elektosttisk

Detaljer

RAPPORT. Endring E014 Flomvurdering eksisterende E6 STATENS VEGVESEN OPPDRAGSNUMMER [ R01] 29/05/2015 SWECO NORGE AS

RAPPORT. Endring E014 Flomvurdering eksisterende E6 STATENS VEGVESEN OPPDRAGSNUMMER [ R01] 29/05/2015 SWECO NORGE AS RAPPORT STATENS VEGVESEN Ending E014 Flomvudeing eksisteende E6 OPPDRAGSNUMMER 12143214 [12143214-R01] 29/05/2015 SWECO NORGE AS SAMUEL VINGERHAGEN epo002.docx 2013-06-14 Sweco epo002.docx 2013-06-14

Detaljer

Kap. 23 Elektrisk potensial

Kap. 23 Elektrisk potensial Kp. 23 Elektisk potensil Skl definee på gunnlg v elektisk felt E: Elektisk potensiell enegi, U Elektisk potensil, V (Ketsteknikk: El. potensilfoskjell = spenning) Potensilgdient og elektisk felt. Ekvipotensilflte

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons love i én dimensjon 4.01.013 kaft akseleasjon hastighet posisjon YS-MEK 1110 4.01.013 1 Hva e kaft? Vi ha en intuitivt idé om hva kaft e. Vi kan kvantifisee en kaft med elongasjon av en fjæ. Hva

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TEP4170 VARME- OG FORBRENNINGSTEKNIKK 18. mai 2007 Tid:

LØSNINGSFORSLAG TIL EKSAMEN I FAG TEP4170 VARME- OG FORBRENNINGSTEKNIKK 18. mai 2007 Tid: av 4 Noges teknisk-natuvitenskapelige univesitet Initutt fo enegi- og poseseknikk Kontakt unde eksamen: Toleif Weydahl, tlf. 7359634 / 945 ØSNINGSFORSAG TI EKSAMEN I FAG TEP47 VARME- OG FORBRENNINGSTEKNIKK

Detaljer

Eksamen TFY 4240: Elektromagnetisk teori

Eksamen TFY 4240: Elektromagnetisk teori NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Ola Hundei, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektomagnetisk teoi 8 desembe 2007 kl. 09.00-13.00

Detaljer

n_angle_min.htm

n_angle_min.htm Kp 9 Rotjon 9.1 En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik 1. -1. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til

Detaljer

b) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y

b) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y MATEMATISKE METODER I Buk av egneegle: Regn ut: a ( ( b 7 c ( 7 y 8 d 8 e f 5y y Regn ut og tekk sammen: a 5a b a b a + b b y + y + + y c t t + 6 ( 6t t + 8 d s+ s + s ( s + s Multiplise ut og odne a (

Detaljer

Formelsamling i medisinsk statistikk

Formelsamling i medisinsk statistikk Fomelsamling i medisinsk statistikk Vesjon av 5. juni 2009 Dette e en fomelsamling til O. O. Aalen (ed.): Statistiske metode i medisin og helsefag, Gyldendal, 2006. Mek at boken ha en nettside de det e

Detaljer

Oppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2

Oppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2 1 Løsningsfoslag EMC-eksamen 24.5. Oppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2 Oppgave 2 a) En geneisk standad e en geneell standad som bukes nå det ikke foeligge en poduktstandad. EN581

Detaljer

TFE4120 Elektromagnetisme

TFE4120 Elektromagnetisme NTNU IET, IME-fkultetet, Noge teknisk-ntuvitenskpelige univesitet TFE4120 Elektomgnetisme Løsningsfoslg øving 5 Oppgve 1 ) Pg. symmeti h vi E = E()ˆ gjennom hele oppgven. i) Vi l Gussflten S væe oveflten

Detaljer

Matematikk 3MX AA6524 / AA6526 Elever / privatister Oktober 2002

Matematikk 3MX AA6524 / AA6526 Elever / privatister Oktober 2002 E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 / AA6526 Eleve / pivatiste Bokmål Eksempeloppgave ette læeplan godkjent juli 2000 Videegående kus II Studieetning fo allmenne, økonomiske og administative

Detaljer

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011)

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011) Sensorveiledning Oppgveverksted 4, høst 203 (bsert på eksmen vår 20) Ved sensuren tillegges oppgve vekt 0,2, oppgve 2 vekt 0,4, og oppgve 3 vekt 0,4. For å bestå eksmen, må besvrelsen i hvert fll: gi minst

Detaljer

c) etingelsen fo at det elektiske feltet E e otasjonsinvaiant om x-aksen e, med E og ee som denet ovenfo, at e E = E. Dette skal gjelde fo en vilkalig

c) etingelsen fo at det elektiske feltet E e otasjonsinvaiant om x-aksen e, med E og ee som denet ovenfo, at e E = E. Dette skal gjelde fo en vilkalig Eksamen i klassisk feltteoi, fag 74 5, 4. august 995 Lsninge a) Koodinatene x; y; z tansfomees slik x 7 bx = x; y 7 by = y cos, z sin ; z 7 by = y sin + z cos Den invese tansfomasjonen e en otasjon en

Detaljer

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNIVRSITTT I GDR Gi K S M N S O P P G V : FG: FYS5 Fyikk/Kjei LÆRR: Fyikk : Pe Henik Hog Gehe Lehnn Kle: Do:.. keni, f-il: 9. 4. kenoppgen eå følgene nll ie: 6 inkl. foie / elegg nll oppge: 5 nll elegg:

Detaljer

Rettelser til. Øistein Bjørnestad Tom Rune Kongelf Terje Myklebust. Alfa. Oppgaveløsninger

Rettelser til. Øistein Bjørnestad Tom Rune Kongelf Terje Myklebust. Alfa. Oppgaveløsninger Rettelse til Øistein Bjønestad Tom Rune Kongelf Teje Myklebust Alfa Oppgaveløsninge 007 Kapittel S. 7: Fasit til oppgave.9e): Slik oppgaven stå, skal svaet væe 065 (noe ha falt ut i oppgaveteksten). S.

Detaljer

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka Løsninger til oppgvene i ok R1 kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Kpitteltest Del 1 Uten hjelpemidler Oppgve 1 De fem lppene kn ordnes i rekkefølge på 5! = 15 = forskjellige måter. Vi kn

Detaljer

8 Eksamens trening. E2 (Kapittel 1) På figuren er det tegnet grafene til funksjonene f og g gitt ved

8 Eksamens trening. E2 (Kapittel 1) På figuren er det tegnet grafene til funksjonene f og g gitt ved 84 8 Eksamenstening 8 Eksamens tening Uten hjelpemidle E1 (Kapittel 1) Polynomfunksjonen P e gitt ved P ( ) = 7 + 14 8, DP = R. a Det kan vises at alle heltallige løsninge av P() = 0 gå opp i konstantleddet

Detaljer

Høgskolen i Gjøvik 15HBTEKD, 15HTEKDE. INNFØRING MED PENN, evt. trykkblyant som gir gjennomslag.

Høgskolen i Gjøvik 15HBTEKD, 15HTEKDE. INNFØRING MED PENN, evt. trykkblyant som gir gjennomslag. Høgskolen i Gjøvik LØSNINGSFORSLAG! EKSAMEN EMNENAVN: MATERIALLÆRE EMNENUMMER: TEK2091 EKSAMENSDATO: 9. desember 2015 KLASSE: 15HBTEKD, 15HTEKDE TID: 3 timer: KL 09.00 - KL 12.00 EMNEANSVARLIG: Henning

Detaljer

Billige arboresenser og matchinger

Billige arboresenser og matchinger Billige aboesense og matchinge Magnus Lie Hetland 16. jan 009 Dette e foelesningsnotate til føste foelesning i faget Algoitmekonstuksjon, videegående kus, ved Institutt fo datateknikk og infomasjonsvitenskap,

Detaljer

BASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12.

BASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12. BASISÅR I IDRETTSVITENSKAP 1/11 Us indiiduell skiflig eksmen i 1BA 111- Beegelseslæe Mndg. ugus 11 kl. 1.-1. Hjelpemidle: klkulo og elle i fysikk Eksmensoppgen eså 3 side inklude fosiden Sensufis: 1. sepeme

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERITETET I AGDER Gimstad E K A M E N O P P G A V E : FAG: MA-9 Matematikk ÆRER: Pe enik ogstad Klasse: Dato:.6. Eksamenstid fa-til: 9.. Eksamensoppgaven bestå av følgende Antall side: 5 inkl. foside

Detaljer

Bioberegninger - notat 3: Anvendelser av Newton s metode

Bioberegninger - notat 3: Anvendelser av Newton s metode Bioberegninger - nott 3: Anvendelser v Newton s metode 20. februr 2004 1 Euler-Lotk ligningen L oss tenke oss en populsjon bestående v individer v ulik lder. L n være mksiml lder. L m i være ntll vkom

Detaljer

Obj104. Ukentlige lekser med oppgaver knyttet til de fire regneartene, tid, omgjøring mellom ulike enheter, brøk, algebra og problemløsning

Obj104. Ukentlige lekser med oppgaver knyttet til de fire regneartene, tid, omgjøring mellom ulike enheter, brøk, algebra og problemløsning Obj104 RENDALEN KOMMUNE Fagetun skole Åsplan i matematikk fo 6. tinn 2014/15 Ukentlige lekse med oppgave knyttet til de fie egneatene, tid, omgjøing mellom ulike enhete, bøk, algeba poblemløsning TID TEMA

Detaljer

Løsning øving 9 ( ) ( ) sin ( )

Løsning øving 9 ( ) ( ) sin ( ) nsttutt fo fskk, NTNU Fg SF 4 Elektomgnetsme og MNFFY Elektstet og mgnetsme Høst Løsnng øvng 9 Oppgve Ktesske koodnte: Enhetsvektoen stå nomlt på, som dnne en vnkel med -ksen. Det et t dnne en vnkel med

Detaljer

Høgskolen i Gjøvik 13HBTEKD, 13HTEKDE. INNFØRING MED PENN, evt. trykkblyant som gir gjennomslag.

Høgskolen i Gjøvik 13HBTEKD, 13HTEKDE. INNFØRING MED PENN, evt. trykkblyant som gir gjennomslag. Høgskolen i Gjøvik LØSNINGSFORSLAG! EKSAMEN EMNENAVN: MATERIALLÆRE EMNENUMMER: TEK2091 EKSAMENSDATO: 11. desember 2013 KLASSE: 13HBTEKD, 13HTEKDE TID: 3 timer: KL 13.00 - KL 16.00 EMNEANSVARLIG: Henning

Detaljer

Veileder for mentorer

Veileder for mentorer Veilede fo mentoe Utabeidet av Likestillingssenteet 2011 Food Likestillingssenteet ha siden 2006 diftet mentonettveket Velkommen inn, et mentonettvek spesielt ettet mot innvandekvinne. Mentoene i Velkommen

Detaljer

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr KAPITTEL 1 TALL OG TALLREGNING FLERE UTFORDRINGER Oppgve 1 Du hr sifrene A 1 3 5 7 9 og B 2 4 6 8 Ve å ruke tre v sifrene i enten A eller B skl u lge ett tll så nærme 500 som mulig. Du kn re ruke ett siffer

Detaljer

Løsningsforslag, Midtsemesterprøve torsdag 6. mars 2008 kl Oppgavene med kort løsningsskisse

Løsningsforslag, Midtsemesterprøve torsdag 6. mars 2008 kl Oppgavene med kort løsningsskisse Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2008 Løsningsforslg, Midtsemesterprøve torsdg 6. mrs 2008 kl 1000 1200. Fsit side 12. Oppgvene med kort løsningsskisse

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00 EKSAMENSOPPGAVE - Skoleeksamen MET 11803 Matematikk Institutt fo Samfunnsøkonomi Utleveing: 17122014 Kl 0900 Innleveing: 17122014 Kl 1400 Vekt: 70% av MET 1180 Antall side i oppgaven: Antall vedleggsfile:

Detaljer

trygghet FASE 1: barnehage

trygghet FASE 1: barnehage tygghet banehage De voksnes olle Banemøte Leikeguppe Guppeaktivitet Hjemmebesøk Samlinge Måltid Påkledning Uteleik Konfliktløsning Vudeing Haug banehage 2011-2012 tygghet tygghet «Banehagen skal bistå

Detaljer

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNVEEE GE Gid E E N O G V E : FG: FY Fikk LÆE: Fikk : e enik ogd le: o: 9.5.7 Ekenid, f-il: 9.. Ekenoppgen beå følgende nll ide: 6 inkl. foide nll oppge: nll edlegg: ille hjelpeidle e: lkulo Foelling:

Detaljer

Øving 13, løsningsskisse.

Øving 13, løsningsskisse. TFY455/FY3 Elektr & mgnetisme Øving 3, løsningsskisse nduksjon Forskyvningsstrøm Vekselstrømskretser nst for fysikk 5 Oppgve nduktns for koksilkbel ) Med strømmen jmt fordelt over tverrsnittet på lederne

Detaljer

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Noges teknisk ntuitenskpelige uniesitet Institutt fo elektonikk og telekommuniksjon ide 1 8 Bokmål/Nynosk Fglig/fgleg kontkt unde eksmen: Johnnes k (48497352) Hjelpemidle: C - pesifisete tykte og håndskene

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

b) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel.

b) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel. Løsningsfoslag Fysikk 2 Høst 203 Løsningsfoslag Fysikk 2 Høst 203 Opp Sva Foklaing gave a) B Fomelen fo bevegelsesmengde p = mv gi enheten kg m. s Dette kan igjen skives som: kg m = kg m s s2 s = Ns b)

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1 En funksjon f er gitt ved f ( x) ( x 2) e x.

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1 En funksjon f er gitt ved f ( x) ( x 2) e x. UNIVERSITETET I BERGEN De maemaisk-nauvienskapelige fakule Eksamen i emne MAT Bukekus i maemaikk Fedag 8 febua, kl 9-4 BOKMÅL Tillae hjelpemidle: Læebok og kalkulao i samsva med fakulee sine egle Oppgave

Detaljer

MATERIALLÆRE for INGENIØRER

MATERIALLÆRE for INGENIØRER Høgskolen i Gjøvik LØSNINGSFORSLAG! EKSAMEN EMNENAVN: MATERIALLÆRE for INGENIØRER EMNENUMMER: TEK2011 EKSAMENSDATO: 9. desember 2015 KLASSE: 15HBIMAS og 14HBIMAS-F TID: 3 timer: KL 09.00 - KL 12.00 EMNEANSVARLIG:

Detaljer

a) Hvordan skiller de mekaniske egenskapene seg fra hverandre for materialgruppene keramer og glasser, metaller og polymermaterialer?

a) Hvordan skiller de mekaniske egenskapene seg fra hverandre for materialgruppene keramer og glasser, metaller og polymermaterialer? ILI 1458 17.06.03. Tekst m. løsn. side 1 v 7 RA/23.06.2003 MATERIALER OG BEARBEIDING Fgkode: ILI 1458 Tid: 17.06.03 kl 0900-1400 Tilltte hjelpemidler: Klkultor med tomt minne. Lærebøkene: Corneliussen,

Detaljer

Laboratorieøvelse i MNFFY1303-Elektromagnetisme Institutt for Fysikk, NTNU MAGNETISK HYSTERESE

Laboratorieøvelse i MNFFY1303-Elektromagnetisme Institutt for Fysikk, NTNU MAGNETISK HYSTERESE Laboatoieøvelse i MNFFY33-Elektomagnetisme Institutt fo Fysikk, NTNU Hensikten med oppgave å gjøe seg kjent med opphavet til magnetiske felte og målinge av slike. Det innebæe måling av magnetfelt fa enkle

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loe i o og e dimensjone 5..3 oblige innleees mndg kl. bel fo læeboken FYS-MEK 5..3 Beegelse i e dimensjone Beegelsen e kkeise ed posisjon, hsighe og kselesjon. Vi må buke ekoe: posisjon: i j z k

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside

Detaljer

Tall i arbeid Påbygging terminprøve våren 2013

Tall i arbeid Påbygging terminprøve våren 2013 Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer

Detaljer

FAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVEITETET I AGDE Gid E K A E N O G A V E : FAG: FY7 Fikk/Kjei LÆE: Fikk : e Henik Hogd Kjei : Gehe Lehnn Kle: Do: 7.. Ekenid, f-il: 9.. Ekenoppgen beå følgende Anll ide: 6 inkl. foide og edlegg Anll

Detaljer

Magnetisk hysterese. 1. Beregn magnetfeltet fra en strømførende spole med kjent vindingstall.

Magnetisk hysterese. 1. Beregn magnetfeltet fra en strømførende spole med kjent vindingstall. FY33 Elektisitet og magnetisme II Institutt fo fysikk, TU FY33 Elektisitet og magnetisme II, høst 7 Laboatoieøvelse Magnetisk hysteese Hensikt Hensikten med oppgave å gjøe seg kjent med opphavet til magnetiske

Detaljer

Emnekode: LO270 B. Dato: 27.05.04 Eksamenstid: 09.00 - - I ~ ~ ~~ ~ k.. Enkel ikke-programmerbar kalkulator

Emnekode: LO270 B. Dato: 27.05.04 Eksamenstid: 09.00 - - I ~ ~ ~~ ~ k.. Enkel ikke-programmerbar kalkulator G høgskolen i oslo nne: Mterillære og husbyggingsteknikk Gruppe(r): BC, BB ogtba Emnekode: LO270 B Fglig veiieder:- Morten Opshl. Dto: 27.05.04 Eksmenstid: 09.00 - Eksmensoppgven består v: r- : -- Antll

Detaljer

Tall i arbeid Påbygging terminprøve våren 2014

Tall i arbeid Påbygging terminprøve våren 2014 Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15

Detaljer

Kap. 23 Elektrisk potensial. Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap

Kap. 23 Elektrisk potensial. Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap Kp23 28.1.211 Kp. 23 Elektsk potensl Skl defnee på gunnlg v elektsk felt E: Elektsk potensell eneg, U Elektsk potensl, V (Ketsteknkk: El. potenslfoskjell spennng) Aed må gjøes fo å føe smmen ldnnge Påføt

Detaljer

Løsningsforslag til Øvingsoppgave 6

Løsningsforslag til Øvingsoppgave 6 Oppgave 6.1 a) Forklar kort hvilken varmebehandling som kan gi martensitt. Hvilken rolle spiller diffusjon under martensittdannelsen? Vis med en figur både gitterstruktur og mikrostruktur av martensitt

Detaljer

Oppgave 5 Et rektangel har en omkrets på 24 cm 2. Hva blir arealet? Dersom lengdene på sidene skal ha heltallige svar, hvor mange løsninger får du?

Oppgave 5 Et rektangel har en omkrets på 24 cm 2. Hva blir arealet? Dersom lengdene på sidene skal ha heltallige svar, hvor mange løsninger får du? KAPITTEL 3 GEOMETRI Mer øving kpittel 3 I e første oppgvene skl u gjøre om enheter på en lgeriske måten. Det vil si t når u skl gjøre om mellom relenheter skl u gå veien om å gjøre om mellom lengeenheter.

Detaljer

Løsningsforslag til Øvingsoppgave 2

Løsningsforslag til Øvingsoppgave 2 Oppgave 2.1 Definer begrepet fase. Nevn eksempler på at et metall kan opptre med forskjellig fase innen samme aggregattilstand. Definisjon fase: En homogen tilstand, når homogen refererer til atom- eller

Detaljer

Kap. 23 Elektrisk potensial. Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap 23

Kap. 23 Elektrisk potensial. Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap 23 Kp 23 Kp. 23 Elektsk potensl Skl defnee på gunnlg v elektsk felt E: Elektsk potensell eneg, U Elektsk potensl, V (Ketsteknkk: El. potenslfoskjell spennng) Aed keves fo å føe smmen ldnnge Påføt ed g potensell

Detaljer

11 VARMEBEHANDLING AV STÅL, IKKE LIKEVEKTSTRUKTURER (Ferrous Alloys - Heat Treatments) 11.1 Generelt. 11.2 Fremstilling av austenitt

11 VARMEBEHANDLING AV STÅL, IKKE LIKEVEKTSTRUKTURER (Ferrous Alloys - Heat Treatments) 11.1 Generelt. 11.2 Fremstilling av austenitt 11 VARMEBEHANDLING AV STÅL, IKKE LIKEVEKTSTRUKTURER (Ferrous Alloys - Heat Treatments) 11.1 Generelt Fe-C fasediagrammet gjelder bare under forutsetning av at avkjølingshastigheten er tilstrekkelig langsom

Detaljer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.

Detaljer

Høst 95 Ordinær eksamen

Høst 95 Ordinær eksamen Høt 95 Odinæ eken. En ptikkel ed e =.5 kg e i o i oigo ed tiden t =.. Ptikkelen utette (f tiden t =. ) fo en kft F ho koponentene F og F e gitt ed: F = t F = t Kontntene og e gitt ed: = 5. N/ =. N/ ngdekften

Detaljer

Veileder for adepter. Bruk mentor - unngå omveier

Veileder for adepter. Bruk mentor - unngå omveier Veilede fo adepte Buk mento - unngå omveie At eg e til, Det veit eg. Eg kjenne pusten min Og eit og anna hjeteslag. Men eg vil noko mei, enn bee å vea, eg vil vea nokon, som bety noko, i det stoe fellesskapet.

Detaljer

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 1 0 O r d i n æ r g e n e r a l f o r s a m l i n g i, a v h o l d e s m a n d a g 3. m ai 2 0 1 0, k l. 1 8 0 0 p å T r e

Detaljer

3.7 Pythagoras på mange måter

3.7 Pythagoras på mange måter Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen

Detaljer

sosiale behov FASE 2: Haug barnehage 2011-2012

sosiale behov FASE 2: Haug barnehage 2011-2012 : Hva kjennetegne bana i denne fasen? De voksnes olle Banemøte Påkledning Samlinge Måltid Posjekte Uteleik Konfliktløsning Vudeing Haug banehage 2011-2012 «Omsog, oppdagelse og læing i banehagen skal femme

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i INF2080 Logikk og eregninger Eksmensdg: 6. juni 2016 Tid for eksmen: 14.30 18.30 Oppgvesettet er på 5 sider. Vedlegg: Ingen Tilltte

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newtons love i to og te dimensjone 7..13 innleveing: buk iktige boks! FYS-MEK 111 7..13 1 Skått kast kontaktkaft: luftmotstand langtekkende kaft: gavitasjon initialbetingelse: () v() v v cos( α ) iˆ +

Detaljer

Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap. 23 Elektrisk potensial

Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap. 23 Elektrisk potensial Kp23 26.1.215 Kp. 23 Eektsk potens Sk defnee p gunng v eektsk fet E: Eektsk potense eneg, U Eektsk potens, V (Ketsteknkk: E. potensfoskje spennng) Ekvpotensfte Potensgdent og eektsk fet. Eks. 1, fots.

Detaljer

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A)

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A) Institutt for fysikk, NTNU FY100 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Løsningsforslg, Midtsemesterprøve fredg 1. mrs 2009 kl 1415 1615. Fsit side 10. Oppgvene med kort løsningsforslg

Detaljer

informasjon GENERELL barnehage

informasjon GENERELL barnehage maianne@futuia.no «Det e at å ha 5 finge på hve hånd og 5 tæ på hve fot. Jeg kunne like gjene hatt 13 elle 30 sammenlagt. Og så ble det tilfeldigvis 20». Inge Hageup banehage Åpningstid Tilvenning av nye

Detaljer

DELPRØVE 2 (35 poeng)

DELPRØVE 2 (35 poeng) DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.

Detaljer

Fasthetslære. HIN Teknologisk avd. RA Side 1 av 8

Fasthetslære. HIN Teknologisk avd. RA Side 1 av 8 HIN Teknologisk vd. R 04.0.13 Side 1 v 8 sthetslære Irgens: utdrg fr kp. 11. Hieler: Kp 8+9. Konstruksjonsmteriler Konstruksjonsmteriler er fste stoffer og skl i tillegg skl h god evne til å henge smmen.

Detaljer

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rsch-Hlvorsen Oddvr Asen Illustrtør: Bjørn Eidsvik 7B NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 2011 Mterilet i denne publiksjonen er omfttet v åndsverklovens bestemmelser. Uten særskilt

Detaljer

Metallene kjennetegnes mekanisk ved at de kan være meget duktile. Konstruksjonsmetaller har alltid en viss duktilitet og dermed seighet.

Metallene kjennetegnes mekanisk ved at de kan være meget duktile. Konstruksjonsmetaller har alltid en viss duktilitet og dermed seighet. Metall-A 1 Metaller Metallene kjennetegnes mekanisk ved at de kan være meget duktile. Konstruksjonsmetaller har alltid en viss duktilitet og dermed seighet. Kjemisk er metaller kjennetegnet ved at de består

Detaljer

BASISÅR I IDRETTSVITENSKAP 2012/2013. Utsatt individuell skriftlig eksamen. IDR 130- Funksjonell anatomi. Onsdag 28. august 2013 kl. 10.00-13.

BASISÅR I IDRETTSVITENSKAP 2012/2013. Utsatt individuell skriftlig eksamen. IDR 130- Funksjonell anatomi. Onsdag 28. august 2013 kl. 10.00-13. BASISÅR I IDRETTSVITENSKAP 1/13 Us individuell skriflig eksmen i IDR 13- Funksjonell nomi Onsdg 8. ugus 13 kl. 1.-13. Hjelpemidler: klkulor og formelsmling som lir del u på eksmen Eksmensoppgven esår v

Detaljer

Eksamensoppgave i TEP4105 FLUIDMEKANIKK

Eksamensoppgave i TEP4105 FLUIDMEKANIKK Institutt fo enegi- og posessteknikk Eksamensoppgave i TEP45 FLUIDMEKANIKK Faglig kontakt unde eksamen: Ive Bevik Tlf.: 7359 3555 Eksamensdato: 7. august 23 Eksamenstid : 9. 3. Hjelpemiddelkode/Tillatte

Detaljer

Mer øving til kapittel 2

Mer øving til kapittel 2 Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

Vanlige varmebehandlings metoder for stål:

Vanlige varmebehandlings metoder for stål: Vanlige varmebehandlings metoder for stål: 1. SPENNINGS- og REKRYSTALLISASJONSGLØDING (ProcessAnneal) - ferritt i stål med C < 0,25% C styrkes ved kalddeformering - gløding opphever virkningen 2. NORMALISERING

Detaljer

FFI RAPPORT FORDAMPING FRA OVERFLATER OG DRÅPER. BUSMUNDRUD Odd FFI/RAPPORT-2005/03538

FFI RAPPORT FORDAMPING FRA OVERFLATER OG DRÅPER. BUSMUNDRUD Odd FFI/RAPPORT-2005/03538 FFI RAPPORT FORDAMPING FRA OVERFLATER OG DRÅPER BUSMUNDRUD Odd FFI/RAPPORT-5/58 FORDAMPING FRA OVERFLATER OG DRÅPER BUSMUNDRUD Odd FFI/RAPPORT-5/58 FORSVARETS FORSKNINGSINSTITUTT Nowegian Defence Reseach

Detaljer

Universitetet i OSLO. Matrisemultiplikasjon i FPGA. Masteroppgave. Masterprogrammet for elektronikk og datateknologi. Geir Haug Andersen

Universitetet i OSLO. Matrisemultiplikasjon i FPGA. Masteroppgave. Masterprogrammet for elektronikk og datateknologi. Geir Haug Andersen Univesitetet i OSLO Mstepogmmet fo elektonikk og dtteknologi Mtisemultipliksjon i FPGA Msteoppgve Gei Hug Andesen August 2005 SAMMENDRAG Denne ppoten omhndle mtisemultipliksjon i FPGA. Det e lget systeme

Detaljer

I Jakten p Dypet vil det med ujevne mellomrom dukke opp ulike hendelseskort. De finnes tre typer av disse kortene:

I Jakten p Dypet vil det med ujevne mellomrom dukke opp ulike hendelseskort. De finnes tre typer av disse kortene: Spillinformasjon: Jakten p Dypet Jakten p Dypet er et simulasjonsspill som tar utgangspunkt i hvordan det er drive et selskap innen petroleumsbransjen. Spillet gir en forenklet, men likevel realistisk

Detaljer

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK Faglig/fagleg kontakt unde eksamen: Navn: Helge E. Engan Tlf.: 944 EKSAMEN I EMNE SIE415 BØLGEFORPLANTNING

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2 Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten

Detaljer

Oppgave N2.1. Kontantstrømmer

Oppgave N2.1. Kontantstrømmer 1 Orientering: Oppgvenummereringen leses slik: N står for nettsiden, første siffer står for kpittelnummer og ndre for oppgvenummer. Oppgve N2.1. Kontntstrømmer En edrift vurderer å investere 38 millioner

Detaljer

Løsningsforslag Fysikk 2 Høst 2014

Løsningsforslag Fysikk 2 Høst 2014 Løsningsfoslag Fysikk Høst 014 Løsningsfoslag Fysikk Høst 014 Opp Sva Foklaing gave a) D Det elektiske feltet gå adielt ut fa en positivt ladet patikkel. Til høye fo elektonet lage elektonet en feltstyke

Detaljer

Problemet. Datamaskinbaserte doseberegninger. Usikkerheter i dose konsekvenser 1 Usikkerheter i dose konsekvenser 2

Problemet. Datamaskinbaserte doseberegninger. Usikkerheter i dose konsekvenser 1 Usikkerheter i dose konsekvenser 2 Poblemet Datamaskinbasete dosebeegninge Beegne dosefodeling i en pasient helst med gunnlag i CT-bilde Eiik Malinen Sentale kilde: T. Knöös (http://www.clin.adfys.lu.se/downloads.htm) A. Ahnesjö (div. publikasjone)

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9 Fsit til utvlgte oppgver MAT00, uk 20-24/9 Øyvind Ryn oyvindry@ifi.uio.no September 24, 200 Oppgve 5..5 år vi viser t f er kontinuerlig i ved et ɛ δ-bevis, er det lurt å strte med uttrykket fx f, og finne

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 1 Oppgve 1 FY1005/TFY4165 Termisk fysikk Institutt for fysikk, NTNU åren 2015 Løsningsforslg til øving 4 For entomig gss hr vi c pm = 5R/2 og c m = 3R/2, slik t γ = C p /C = 5/3 Lngs dibten er det (pr

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

Fasit. Grunnbok. Kapittel 2. Bokmål

Fasit. Grunnbok. Kapittel 2. Bokmål Fsit 9 Grunnbok Kpittel Bokmål Kpittel Lineære funksjoner rette linjer. ƒ(x) = 4x + 5 ƒ() = 3 ƒ(4) = ƒ(6) = 9.6 ƒ(x) = -x b ƒ(x) = x b ƒ(x) = (x + ) 3 ƒ() = ƒ(4) = 8 ƒ(6) = 4 ƒ(x) = x 4 ƒ() = - ƒ(4) =

Detaljer

MATERIALLÆRE for INGENIØRER

MATERIALLÆRE for INGENIØRER Høgskolen i Gjøvik LØSNINGSFORSLAG! EKSAMEN EMNENAVN: MATERIALLÆRE for INGENIØRER EMNENUMMER: TEK2011 EKSAMENSDATO: 11. desember 2013 KLASSE: 13HBIMAS og 12HBIMAS-F TID: 3 timer: KL 13.00 - KL 16.00 EMNEANSVARLIG:

Detaljer

Dok.nr.: JD 551 Utgitt av: Teknikk Godkjent av: Teknologi

Dok.nr.: JD 551 Utgitt av: Teknikk Godkjent av: Teknologi Jernbneverket SIGNL Kp.: 7.d Teknologi Regler for bygging Utgitt: 0.0. Justeringsregler 0/50 KHz innkoblingsfelt, rele i ett Rev.: Togdeteksjon Side: v 7 GENERELT.... Spesielle forholdsregler.... Gyldige

Detaljer