Midtsemesterprøve onsdag 7. mars 2007 kl Versjon A

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Midtsemesterprøve onsdag 7. mars 2007 kl Versjon A"

Transkript

1 Institutt fo fysikk, NTNU FY1003 lektisitet og mgnetisme I TFY4155 lektomgnetisme Vå 2007 Midtsemestepøve onsdg 7. ms 2007 kl Løsningsfoslg. Vesjon 1) Hvilken påstnd om elektisk potensil e feil? Desom det elektiske feltet i et omåde e unifomt, e potensilet i dette omådet konstnt. I et unifomt elektisk felt endes potensilet lineæt med posisjonen. 2) Hvilken påstnd om elektisk ldning e iktig? Netto ldning på en metllkule ligge lltid på oveflten. Se foelesningene. I en isolto befinne netto ldning seg de vi plssee den. 3) Hvilken påstnd om en ldet lede e feil? På oveflten v ledeen e det null elektisk felt. På oveflten v en lede stå det elektiske feltet nomlt på oveflten. 4) Hvilken påstnd e iktig? Kpsitnsen til en pllellpltekondensto bli minde hvis vi øke vstnden mellom pltene. 1

2 5) Hv bli kften på ldningen q som e plsset i posisjon (, y) = ( 3/2, /2)? y q D ˆ 2q 2 /πε 0 2 q /2 2q 2 De te nde punktldningene ligge lle i like sto vstnd f den i midten. Kften f ldningen 2q nedest til venste vike på skå oppove mot høye (med etning 45 gde i fohold til positiv -etning), mens kften f de to nde begge vike på skå nedove mot høye. Totl kft må demed vike i positiv -etning. q 6) Hv e totl potensiell enegi til de fie punktldningene i oppgve 5? 3q 2 /4 2πε 0 U = ij q i q j 4πε 0 ij Demed knsellee bidgene til U f vekselvikningen mellom 2q og q oppe til venste og mellom 2q og q nede til høye, og f vekselvikningen mellom q i midten og q oppe til venste og mellom q i midten og q nede til høye. Vi stå igjen med bidg f vekselvikningen mellom q i midten og 2q og mellom q oppe til venste og q nede til høye: U = q2 ( ) 3q / 2 = 4πε 0 4 2πε 0 7) Te v ldningene i oppgve 5 holdes fst mens den fjede, den øvest til venste, med ldning q og msse m, slippes med null stthstighet f posisjonen ( 2, ). Hvo sto e ften v til denne ldningen nå den h kommet svæt lngt unn de te nde? v = [( ) q 2 /mπε 0 ] 1/2 Fø den slippes h ldningen oppe til venste potensiell enegi U 1 (i fohold til om den v uendelig lngt bote) U 1 = q2 ( ) / 2 4πε 0 Nå denne ldningen h kommet lngt bot, h U 1 blitt omgjot til kinetisk enegi mv 2 /2. Demed følge det t v e gitt som i ltentiv. 2

3 8) To små metllkule h ldning henholdsvis 6.0 µ og 5.0 µ. vstnden mellom kulene e 60 cm. Innbydes kft mellom de to kulene e d 0.75 N Innbydes kft e gitt ved oulombs lov: F = q 1q 2 4πε 0 2 = = 0.75 N 9) I sto vstnd = L ˆ f en liten (dvs: utstekning mye minde enn L) elektisk dipol med dipolmoment p = p 0 ŷ e det elektiske feltet 0 ŷ. Feltet i vstnd 3Lˆ f dipolen e d omtent lik ŷ lektisk feltstyke f en elektisk dipol vt med vstnden opphøyd i 3. potens. Te gnge så sto vstnd må demed gi en feltstyke eduset til 1/27. (Selv om en ikke visste t () 1/ 3, bø en i det minste vite t det må vt skee enn som 1/ 2, noe feltet f en punktldning gjø. Demed bli be ktuelt sv.) 10) Hv e den elektiske feltstyken i vstnd 30 cm f de fie ldningene i figuen desom q = 1µ og = 1 mm? 2q 200 V/mm q 3q 4q I vstnd 30 cm se dette ut som en enkelt punktldning Q = 2q = 2 µ. Demed: = = V/m = 200 V/mm 3

4 11) Figuen nedenfo vise elektiske feltlinje i et omåde som inneholde to metllkule. Hv kn du si om netto ldning på de to kulene? D D Negtiv på kule 1, null på kule lektiske feltlinje stte på positiv ldning og ende på negtiv ldning. Defo netto negtiv ldning på kule 1 mens kule 2 e nøytl. 12) I figuen i oppgve 11, i hvilken v de fie posisjonene,, og D e potensilet støst? lektisk felt peke f høyt mot lvt potensil. 13) n pllellpltekondensto h kvdtiske metllplte med el = 2, og vstnden mellom pltene e d. Volumet mellom pltene e delvis fylt med luft (høye hlvdel) og delvis fylt med et dielektikum med eltiv pemittivitet ε = 5 (venste hlvdel) Metllpltene e stoe smmenlignet med vstnden mellom dem, dvs d. Hv bli kpsitnsen til denne kondenstoen? ( 0 ε 0 2 /d) 3 ε d 0 = 5 /2 /2 Dette e en pllellkobling v to kpsitnse, begge med pltevstnd d, el 2 /2, den ene med pemittivitet ε 0 og den nde med pemittivitet 5ε 0. Demed: 2 /2 = ε 0 d + 5ε 2 /2 2 0 = 3ε 0 d d = 3 0 4

5 14) I et omåde e det elektiske feltet ( ) () = 0 3 ˆ He e 0 og 0 konstnte, mens ngi vstnden f oigo. Hvo mye netto ldning e det d innenfo et kuleskll med dius 2 0 og sentum i oigo? 96πε Med Guss lov finnes netto ldning innenfo kuleskll med dius 2 0 : ( 20 Q in (2 0 ) = ε 0 0 (2 0) 3 ) ˆ 4π( ) 2ˆ = 96πε ) i metllkule h dius R og positiv ldning Q. Kul e belgt med et lg plst (dvs: dielektikum) med tykkelse R og eltiv pemittivitet ε = 3. I plstlget e en negtiv (fi, men ikke mobil) ldning 2Q jevnt fodelt (dvs: konstnt ldning p volumenhet). Hvilken v gfene D vise det esulteende elektiske feltet () (slik t () = () ˆ)? Q R R 2Q ε =3 D D Uten å gå i detlj: Like utenfo = R gi Guss lov fo D-feltet t D = Q/4πR 2, og demed = Q/12πε 0 R 2. Tilsvende, like innenfo = 2R gi Guss lov fo D t D = Q/4π(2R) 2, og demed = Q/48πε 0 R 2. ndelig, fo > 2R h vi D() = Q/4π 2, og demed () = Q/4πε 0 2. Figu D psse med lt dette. 5

6 16) i metllkule h dius R og positiv ldning Q. Kul e belgt med et lg elektisk nøytl plst (dvs: dielektikum) med tykkelse 3R og eltiv pemittivitet ε = 5. Utenfo plstlget e det et metllisk kuleskll med tykkelse R og netto ldning 3Q. Hvo mye ldning befinne seg d på yte oveflte v det metlliske kuleskllet? 5R 2Q Q R R ε =5 8R P 3Q Vi må h null elektisk felt inne i det metlliske kuleskllet. D må, med Guss lov, en ldning Q befinne seg på kuleskllets inde oveflte. D e det igjen en ldning 2Q som må befinne seg på ytteste oveflte. 17) I oppgve 16, hv e den elektiske feltstyken i punktet P, dvs i vstnd 8R f systemets sentum (oigo)? Q/128πε 0 R 2 Med Guss lov, gussflte med dius 8R, netto ldning 2Q innenfo h vi ( = 8R) = 2Q/4πε 0 (8R) 2 = Q/128πε 0 R 2 (Med etning innove, men he v det be snkk om feltstyken, og ikke etningen.) 18) I oppgve 16, hv e potensilfoskjellen mellom den inneste metllkul og punktet P? 0 8R V = V P V (R) = ()d = 0 R desom vi sette inn t () = 2Q/4πε 0 2 fo > 5R, () = 0 fo 4R < < 5R og () = Q/20πε 0 2 fo R < < 4R. 6

7 19) Hvo stot beid må utføes fo å ende ldningen f null til 2Q på ei metllkule med dius R? Q 2 /2πε 0 R W = U = R 1 2 ε 0() 2 4π 2 d = Q 2 /2πε 0 R desom vi sette inn t () = 2Q/4πε 0 2 fo > 5R, () = 0 fo 4R < < 5R og () = Q/20πε 0 2 fo R < < 4R. 20) n tynn ing med dius R h ldning λ(θ) = λ 0 cosθ p lengdeenhet. Ringen ligge i y-plnet med sentum i oigo, og vinkelen θ e som ngitt i figuen nedenfo. Hv e ingens dipolmoment? y + R + πλ 0 R θ + Totl positiv ldning på hlvingen til høye e q = π/2 π/2 λ 0 cosθ Rdθ = 2λ 0 R Tilsvende negtiv ldning befinne seg på hlvingen til venste. ttesom vi h mest ldning i næheten v -ksen, skulle midlee vstnd mellom positiv og negtiv ldning ligge et sted mellom R og 2R. L oss gjette på en midlee vstnd omtent lik 3R/2. Det gi et dipolmoment på omtent 3λ 0 R 2, så ltentiv må væe det iktige. kskt utegning: p = = = dp π/2 dq π/2 = 2λ 0 R 2 π/2 = πλ 0 R 2 (λ 0 cosθrdθ) (2R cosθ) π/2 cos 2 θ dθ 7

8 21) Figuen vise et tvesnitt v en uendelig lng ett tåd med dius og unifom ldning ρ 0 p volumenhet. Hvilken v gfene D vise potensilet V som funksjon v vstnden f tådens sentekse? (He h vi vlgt V = 0 i = 0.) ρ 0 V V V V D Utenfo tåden vt den elektiske feltstyken poposjonlt med vstnden f tådens sentekse (se tidligee øving), og feltet e ettet utove ettesom ldningen e positiv. Det må bety t potensilet må vt som ln utenfo tåden, ettesom = V. Dette e egentlig nok til å konkludee med t e iktig. Vi kn videe buke Guss lov til å finne t vokse lineæt med inne i tåden, hvilket må bety t V gå som 2 inne i tåden. 22) Figuen vise et tvesnitt gjennom to pllelle uendelig lnge ette tåde som begge h dius. vstnden mellom tådene (sente-til-sente) e 10. De to tådene h unifom ldning p volumenhet henholdsvis ρ 0 og ρ 0. Hv e d potensilfoskjellen mellom punktene og i figuen? (vstnden f til e 8.) D ρ 0 2 ln 9/ε Med Guss lov h vi elektisk felt f slike uendelig lnge ette tåde: () = ± ρ 0 2 2ε 0 de positivt fotegn gjelde positivt ldet tåd og omvendt. He h vi vlgt -ksen til å gå gjennom sentum v begge tådene. L oss velge = 0 i sentum v den positivt ldde. Totlt elektisk felt bli d () = ρ 0 2 ( ) 1 2ε Potensilfoskjellen mellom og bli demed 9 V = V V = dl = ()d = ρ 0 2 ln 9 ε 0 8

9 23) Figuen vise te kondenstoe koblet i seie. Hv e systemets totle kpsitns? 6/11 tot = 2 3 ( ) 1 = 6/ ) Figuen vise ti kondenstoe koblet smmen. Hve v dem h kpsitns. Hv e systemets totle kpsitns? 4/13 Hve v pllellkoblinene i midten h kpsitns 2, som i seie med to kpsitnse gi i lt 2/5. To slike i pllell gi demed 4/5, som endelig i seie med to stykke gi 4/13. 9

10 25) Fie uendelig stoe pln e plsset i =, 2, 3 og 4. De fie plnene h ldning p flteenhet henholdsvis σ, 2σ, σ og 2σ. Hvilken figu vise det esulteende elektiske feltet () (slik t () = () ˆ)? = σ 2σ σ 2σ D Pln med ldning σ p flteenhet gi feltstyke σ/2ε 0, ettet bot f plnet hvis postiv ldning og inn mot plnet hvis negtiv ldning. Pln med ldning 2σ p flteenhet gi feltstyke σ/ε 0. I enhete v σ/2ε 0 bli totlt elektisk felt demed, fo < lik =+2, fo < < 2 lik =+4, fo 2 < < 3 lik =0, fo 3 < < 4 lik =+2 og endelig fo 4 < lik =-2. Figu psse fint med dette. 10

11 Institutt fo fysikk, NTNU FY1003/TFY4155 lektisitet og mgnetisme I/lektomgnetisme Midtsemestepøve onsdg 7. ms 2007 kl Fsit Vesjon Oppgve D Oppgve D 1 X 14 X 2 X 15 X 3 X 16 X 4 X 17 X 5 X 18 X 6 X 19 X 7 X 20 X 8 X 21 X 9 X 22 X 10 X 23 X 11 X 24 X 12 X 25 X 13 X 11

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 10. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 10. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt. TFY0 Fysikk. Institutt fo fysikk, NTNU. Høsten 06. Øving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil undefostått elektosttisk

Detaljer

Midtsemesterprøve onsdag 7. mars 2007 kl

Midtsemesterprøve onsdag 7. mars 2007 kl Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 2007 Midtsemestepøve onsdag 7. mas 2007 kl 1300 1500. Svatabellen stå på side 11. Sett tydelige kyss. Husk å skive

Detaljer

Midtsemesterprøve fredag 23. mars 2007 kl

Midtsemesterprøve fredag 23. mars 2007 kl Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme I TFY4155 Elektromgnetisme Vår 2007 Midtsemesterprøve fredg 23. mrs 2007 kl 1415 1615. Løsningsforslg 1) I et område er det elektriske feltet

Detaljer

Løsningsforslag, Midtsemesterprøve torsdag 6. mars 2008 kl Oppgavene med kort løsningsskisse

Løsningsforslag, Midtsemesterprøve torsdag 6. mars 2008 kl Oppgavene med kort løsningsskisse Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2008 Løsningsforslg, Midtsemesterprøve torsdg 6. mrs 2008 kl 1000 1200. Fsit side 12. Oppgvene med kort løsningsskisse

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14. TFY404 Fysikk. Institutt fo fysikk, NTNU. Høsten 203. Øving 9. Veiledning: 8. oktobe. Innleveingsfist: 23. oktobe kl 4. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet

Detaljer

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A)

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A) Institutt for fysikk, NTNU FY100 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Løsningsforslg, Midtsemesterprøve fredg 1. mrs 2009 kl 1415 1615. Fsit side 10. Oppgvene med kort løsningsforslg

Detaljer

Øving 9. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.

Øving 9. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt. Institutt for fysikk, NTNU TFY4155/FY1003: Elektromgnetisme år 2009 Øving 9 eiledning: Mndg 09. og fredg 13. (evt 06.) mrs Innleveringsfrist: Fredg 13. mrs kl. 1200 (Svrtbell på siste side.) Opplysninger:

Detaljer

TFE4120 Elektromagnetisme

TFE4120 Elektromagnetisme NTNU IET, IME-fkultetet, Noge teknisk-ntuvitenskpelige univesitet TFE4120 Elektomgnetisme Løsningsfoslg øving 5 Oppgve 1 ) Pg. symmeti h vi E = E()ˆ gjennom hele oppgven. i) Vi l Gussflten S væe oveflten

Detaljer

Midtsemesterprøve torsdag 6. mars 2008 kl

Midtsemesterprøve torsdag 6. mars 2008 kl Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2008 Midtsemesterprøve torsdg 6. mrs 2008 kl 1000 1200. Oppgver på side 3 10. Svrtbell på side 11. Sett tydelige

Detaljer

Øving 6. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme. Veiledning: Uke 7 Innleveringsfrist: Mandag 19. februar.

Øving 6. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme. Veiledning: Uke 7 Innleveringsfrist: Mandag 19. februar. Institutt fo fsikk, NTNU TFY4155/FY1003: Elektisitet og mgnetisme Vå 2007 Veiledning: Uke 7 Innleveingsfist: Mndg 19. febu Øving 6 Oppgve 1 z Figuen ove vise en gussflte (dvs lukket flte) S fomet som en

Detaljer

Øving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.

Øving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt. Institutt fo fysikk, NTNU TFY455/FY003: lektisitet og magnetisme Vå 2008 Øving 8 Veiledning: 04.03 i R2 25-400, 05.03 i R2 25-400 Innleveingsfist: Fedag 7. mas kl. 200 (Svatabell på siste side.) Opplysninge:

Detaljer

Øving 1. Institutt for fysikk, NTNU Fag SIF 4012 Elektromagnetisme og MNFFY 103 Elektrisitet og magnetisme Høst 2002

Øving 1. Institutt for fysikk, NTNU Fag SIF 4012 Elektromagnetisme og MNFFY 103 Elektrisitet og magnetisme Høst 2002 Institutt fo fysikk, NTNU Fg SIF 4 Elektomgnetisme og MNFFY Elektisitet og mgnetisme Høst Øving Veiledning: Tosdg 9. ugust Innleveingsfist: Tisdg. septembe kl. Oppgve En ldning q e plsset i (,y)(,) og

Detaljer

Midtsemesterprøve fredag 23. mars kl

Midtsemesterprøve fredag 23. mars kl Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme I TFY4155 Elektromgnetisme år 2007 Midtsemesterprøve fredg 23. mrs kl 1415 1615. Svrtbellen står på et eget rk. Sett tydelige kryss. Husk å skrive

Detaljer

Kap. 23 Elektrisk potensial

Kap. 23 Elektrisk potensial Kp. 23 Elektisk potensil Skl definee på gunnlg v elektisk felt E: Elektisk potensiell enegi, U Elektisk potensil, V (Ketsteknikk: El. potensilfoskjell = spenning) Potensilgdient og elektisk felt. Ekvipotensilflte

Detaljer

Midtsemesterprøve fredag 10. mars kl

Midtsemesterprøve fredag 10. mars kl Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 006 Midtsemestepøve fedag 10. mas kl 0830 1130. Svatabellen stå på et eget ak. Sett tydelige kyss. Husk å skive på

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk

Detaljer

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdgsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 007. Veiledning: 9. september kl 1:15 15:00. Øving 4: oulombs lov. Elektrisk felt. Mgnetfelt. Oppgve 1 (Flervlgsoppgver) ) Et proton med hstighet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVESITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: FYS1120 Elektromgnetisme Eksmensdg: 5. oktober 2015 Tid for eksmen: 10.00 13.00 Oppgvesettet er på 8 sider. Vedlegg: Tilltte hjelpemidler:

Detaljer

Løsning øving 9 ( ) ( ) sin ( )

Løsning øving 9 ( ) ( ) sin ( ) nsttutt fo fskk, NTNU Fg SF 4 Elektomgnetsme og MNFFY Elektstet og mgnetsme Høst Løsnng øvng 9 Oppgve Ktesske koodnte: Enhetsvektoen stå nomlt på, som dnne en vnkel med -ksen. Det et t dnne en vnkel med

Detaljer

b) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel.

b) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel. Løsningsfoslag Fysikk 2 Høst 203 Løsningsfoslag Fysikk 2 Høst 203 Opp Sva Foklaing gave a) B Fomelen fo bevegelsesmengde p = mv gi enheten kg m. s Dette kan igjen skives som: kg m = kg m s s2 s = Ns b)

Detaljer

Kap 21 Elektrisk ladning / Elektrisk felt

Kap 21 Elektrisk ladning / Elektrisk felt Kp lektisk lning / lektisk felt. To like elektiske lninge e plsset i vstn.. Kften so hve v lningene vike på en ne e e.5. Beste støelsen på hve v lningene. b Se so i, en enne gng e en ene lningen obbelt

Detaljer

Løsning øving 12 N L. Fra Faradays induksjonslov får vi da en indusert elektromotorisk spenning:

Løsning øving 12 N L. Fra Faradays induksjonslov får vi da en indusert elektromotorisk spenning: nstitutt fo fysikk, NTNU Fg SF 4 Elektognetise og MNFFY 3 Elektisitet og gnetise Høst øsning øving Oppgve Mgnetfeltet inne i solenoiden e : ( H( (N/) ( (dvs fo < R). Utenfo solenoiden: ( > R) Fo å eegne

Detaljer

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Noges teknisk ntuitenskpelige uniesitet Institutt fo elektonikk og telekommuniksjon ide 1 8 Bokmål/Nynosk Fglig/fgleg kontkt unde eksmen: Johnnes k (48497352) Hjelpemidle: C - pesifisete tykte og håndskene

Detaljer

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Noges teknisk ntuitenskpelige uniesitet Institutt fo elektonikk og telekommuniksjon ide 1 8 Fglæe: Johnnes k EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Lødg 25. mi 2013 Oppge 1 En koksilkbel bestå en innelede

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG Tisdag 18. desembe 01 kl. 0900-100 Oppgave 1. Ti flevalgsspøsmål. (Telle

Detaljer

Kap. 23 Elektrisk potensial. Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap 23

Kap. 23 Elektrisk potensial. Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap 23 Kp 23 Kp. 23 Elektsk potensl Skl defnee på gunnlg v elektsk felt E: Elektsk potensell eneg, U Elektsk potensl, V (Ketsteknkk: El. potenslfoskjell spennng) Aed keves fo å føe smmen ldnnge Påføt ed g potensell

Detaljer

Tre klasser kollisjoner (eksempel: kast mot vegg)

Tre klasser kollisjoner (eksempel: kast mot vegg) kap8 2.09.204 Kap. 8 Bevegelsesmengde. Kollisjone. assesente. Vi skal se på: ewtons 2. lov på ny: Definisjon bevegelsesmengde Kaftstøt, impuls. Impulsloven Kollisjone: Elastisk, uelastisk, fullstendig

Detaljer

Løsningsforslag Fysikk 2 Høst 2014

Løsningsforslag Fysikk 2 Høst 2014 Løsningsfoslag Fysikk Høst 014 Løsningsfoslag Fysikk Høst 014 Opp Sva Foklaing gave a) D Det elektiske feltet gå adielt ut fa en positivt ladet patikkel. Til høye fo elektonet lage elektonet en feltstyke

Detaljer

Sammendrag, uke 14 (5. og 6. april)

Sammendrag, uke 14 (5. og 6. april) Institutt fo fysikk, NTNU TFY4155/FY1003: Elektisitet og magnetisme Vå 2005 Sammendag, uke 14 (5. og 6. apil) Magnetisk vekselvikning [FGT 28, 29; YF 27, 28; TM 26, 27; AF 22, 24B; H 23; DJG 5] Magnetisme

Detaljer

a) C Det elektriske feltet går radielt ut fra en positivt ladet partikkel og radielt innover mot en negativt ladd partikkel.

a) C Det elektriske feltet går radielt ut fra en positivt ladet partikkel og radielt innover mot en negativt ladd partikkel. Løsningsfoslag Fysikk 2 Vå 2015 Løsningsfoslag Fysikk 2 Vå 2015 Oppgav e Sva Foklaing a) C Det elektiske feltet gå adielt ut fa en positivt ladet patikkel og adielt innove mot en negativt ladd patikkel.

Detaljer

Kap. 23 Elektrisk potensial. Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap

Kap. 23 Elektrisk potensial. Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap Kp23 28.1.211 Kp. 23 Elektsk potensl Skl defnee på gunnlg v elektsk felt E: Elektsk potensell eneg, U Elektsk potensl, V (Ketsteknkk: El. potenslfoskjell spennng) Aed må gjøes fo å føe smmen ldnnge Påføt

Detaljer

Løsning eksamen TFY desember 2014

Løsning eksamen TFY desember 2014 Løsning esmen TFY404 8. desembe 04 Oppgve ) Kftdigmmene e vist nedenf f begge lssene g f tins. Ved stm sn h begge lssene smme selesjn. Kefte sm vie på lss med msse m : S m g m Kefte sm vie på lss med msse

Detaljer

Betraktninger rundt det klassiske elektronet.

Betraktninger rundt det klassiske elektronet. Betaktninge undt det klassiske elektonet. Kistian Beland Matteus Häge - 1 - - - Innholdsfotegnelse: 1. Sammendag - 5 -. Innledning - 6 -. Innledende betaktninge - 7-4. Vå elektonmodell - 8-5. Enegi i feltene

Detaljer

Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl

Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 6 Mandag 05.02.07 Oppsummering til nå, og møte med Maxwell-ligning nr 1 Coulombs lov (empirisk lov for kraft mellom to

Detaljer

1b) Beregn den elektriske ladningstettheten inni kjernen og finn hvor stor den totale ladningen er.

1b) Beregn den elektriske ladningstettheten inni kjernen og finn hvor stor den totale ladningen er. FYS112 H-211: Løsningsforslg for vsluttende eksmen Oppgve 1 I en modell for en kuleformet tomkjerne med rdius R vrierer det elektriske feltet inne i kjernen som E(r) = Cr(xe x + ye y + ze z ). Her er C

Detaljer

KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Noges teknisk natuvitenskapelige univesitet Institutt fo elektonikk og telekommunikasjon ide 1 av 8 Bokmål/Nynosk Faglig/fagleg kontakt unde eksamen: Jon Olav Gepstad 41044764) Hjelpemidle: C - pesifisete

Detaljer

Kap. 22. Gauss lov. Gauss lov skjematisk. Eks.1: Homogent ladd kule =Y&F Ex = LHL Vi skal se på: Fluksen til elektrisk felt E Gauss lov

Kap. 22. Gauss lov. Gauss lov skjematisk. Eks.1: Homogent ladd kule =Y&F Ex = LHL Vi skal se på: Fluksen til elektrisk felt E Gauss lov Kap.. Gauss lov Vi skal se på: Fluksen til elektisk felt E Gauss lov Integalfom og diffeensialfom Elektisk ledee. Efelt fa Coulombs lov: q E = k E = k å n q n n n dq E= k ò tot. ladn. Punktladn Flee punktladn.

Detaljer

Løsningsforslag for eksamen i FY101 Elektromagnetisme torsdag 12. desember 2002

Løsningsforslag for eksamen i FY101 Elektromagnetisme torsdag 12. desember 2002 Løsningsfoslag fo eksamen i FY Elektomagnetisme tosdag. desembe Ved sensueing vil alle delspøsmål i utgangspunktet bli gitt samme vekt (uavhengig av oppgavenumme), men vi fobeholde oss etten til justeinge.

Detaljer

Fysikkolympiaden 1. runde 25. oktober 5. november 2004

Fysikkolympiaden 1. runde 25. oktober 5. november 2004 Nosk Fysikklæefoening Nosk Fysisk Selskaps fagguppe fo undevisning Fysikkolympiaden 1. unde 5. oktobe 5. novembe 004 Hjelpemidle: abell og fomelsamlinge i fysikk og matematikk Lommeegne id: 100 minutte

Detaljer

Løsningsforslag kapittel 3

Løsningsforslag kapittel 3 Løsningsoslg kpittel 3 3.1 ) Uttykket o (den konigusjonelle) entopien S e gitt ved S k ln W, de W uttykke ntll skillbe mikotilstnde. Siden kystllen inneholde n vknse odelt ove N N! N! tomplsse e W og S

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 ØSNINGSFOSAG TI EKSAMEN I FY1003 EEKTISITET OG MAGNETISME

Detaljer

Betinget bevegelse

Betinget bevegelse Betinget bevegelse 1.0.013 innleveing på fonte FYS-MEK 1110 1.0.013 1 Innleveinge aksenavn! enhete! kommente esultatene utegninge: skitt fo skitt, ikke bae esultatet vi tenge å fostå hva du ha gjot sett

Detaljer

Inst. for fysikk 2015 TFY4155/FY1003 Elektr. & magnetisme. Øving 13. Induksjon. Forskyvningsstrøm. Vekselstrømskretser.

Inst. for fysikk 2015 TFY4155/FY1003 Elektr. & magnetisme. Øving 13. Induksjon. Forskyvningsstrøm. Vekselstrømskretser. Inst for fysikk 2015 TFY4155/FY1003 Elektr & mgnetisme Øving 13 Induksjon Forskyvningsstrøm Vekselstrømskretser Veiledning: Fredg 10 pril ifølge nettsider Innlevering: Mndg 13 pril kl 14:00 SISTE ØVING!

Detaljer

Løsningsforslag Fysikk 2 Høst 2015

Løsningsforslag Fysikk 2 Høst 2015 Løsningsfoslag Fysikk Høst 015 Oppgave Sva Foklaing a) A Vi pøve oss fa ed noen kjente fole: ε vbl B ε Φ vl t vl Nå vi nå egne ed enhete på denne foelen få vi Wb B s s Wb Magnetfeltet kan altså åles i

Detaljer

Fysikk-OL Norsk finale 2005

Fysikk-OL Norsk finale 2005 Univesitetet i Oslo Nosk Fysikklæefoening Fysikk-OL Nosk finale 005 3. uttakingsunde Tid: Fedag 5. apil kl 09.00.00 Hjelpemidle: Tabell/fomelsamling, gafisk lommeegne Oppgavesettet bestå av 7 oppgave på

Detaljer

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4 Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4 Mandag 22.01.07 Elektriske feltlinjer [FGT 22.2; YF 21.6; TM 21.5; F 21.6; LHL 19.6; DJG 2.2.1] gir en visuell framstilling

Detaljer

Kap 28: Magnetiske kilder. Kap 28: Magnetiske kilder. Kap 28. Rottmann integraltabell (s. 137) μ r. μ r. μ r. μ r

Kap 28: Magnetiske kilder. Kap 28: Magnetiske kilder. Kap 28. Rottmann integraltabell (s. 137) μ r. μ r. μ r. μ r Kap 8 Kap 8: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft

Detaljer

Tirsdag r r

Tirsdag r r Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 6 Tirsdag 05.02.08 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Fra forrige uke; Gauss

Detaljer

Eksamensoppgave i TEP4105 FLUIDMEKANIKK

Eksamensoppgave i TEP4105 FLUIDMEKANIKK Institutt fo enegi- og posessteknikk Eksamensoppgave i TEP45 FLUIDMEKANIKK Faglig kontakt unde eksamen: Ive Bevik Tlf.: 7359 3555 Eksamensdato: 7. august 23 Eksamenstid : 9. 3. Hjelpemiddelkode/Tillatte

Detaljer

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk

Detaljer

( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y)

( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y) TMA415 Matematikk 2 Vå 215 Noges teknisk natuvitenskapelige univesitet Institutt fo matematiske fag Løsningsfoslag Øving 11 Alle oppgavenumme efeee til 8. utgave av Adams & Essex Calculus: A Complete Couse.

Detaljer

LØSNINGS FORSLAG EKSAMEN I EMNE SIF4005 FYSIKK Mandag 6. desember 1999 kl. kl for r R/2 ) for R/2 r R for r >R

LØSNINGS FORSLAG EKSAMEN I EMNE SIF4005 FYSIKK Mandag 6. desember 1999 kl. kl for r R/2 ) for R/2 r R for r >R Sie v 9 NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK NOEGS TEKNSK- NATUVTENSKAPELEGE UNVESTET NSTTUTT FO FYSKK Oppgve. Lningsfoelingen e gitt ve: ) Totllningen e: ρ( ) V LØSNNGS FOSLAG EKSAMEN

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET

Detaljer

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK Faglig/fagleg kontakt unde eksamen: Navn: Helge E. Engan Tlf.: 944 EKSAMEN I EMNE SIE415 BØLGEFORPLANTNING

Detaljer

Løsningsforslag Fysikk 2 Vår 2013 Oppgav e

Løsningsforslag Fysikk 2 Vår 2013 Oppgav e Løsningsfoslag Fysikk 2 Vå 203 Løsningsfoslag Fysikk 2 Vå 203 Oppgav e Sva Foklaing a) B Feltet E gå adielt ut fa en positivt ladning. Siden ladning og 2 e like stoe, og ligge like langt unna P vil E væe

Detaljer

Tirsdag E = F q. q 4πε 0 r 2 ˆr E = E j = 1 4πε 0. 2 j. r 1. r n

Tirsdag E = F q. q 4πε 0 r 2 ˆr E = E j = 1 4πε 0. 2 j. r 1. r n Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 3 Tirsdag 15.01.07 Elektrisk felt [FGT 22.1; YF 21.4; TM 21.4; AF 21.5; LHL 19.4; DJG 2.1.3] = kraft pr ladningsenhet

Detaljer

Tre klasser kollisjoner (eksempel: kast mot vegg)

Tre klasser kollisjoner (eksempel: kast mot vegg) Kap. 8 Bevegelsesmengde. Kollsjone. assesente. V skal se på: ewtons. lov på ny: Defnsjon bevegelsesmengde Kollsjone: Kaftstøt, mpuls. Impulsloven Elastsk, uelastsk, fullstendg uelastsk assesente (tyngdepunkt)

Detaljer

n_angle_min.htm

n_angle_min.htm Kp 9 Rotjon 9.1 En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik 1. -1. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til

Detaljer

EKSAMEN I FAG SIF 4008 FYSIKK Mandag 7. mai 2001 kl Bokmål. K. Rottmann: Matematisk formelsamling

EKSAMEN I FAG SIF 4008 FYSIKK Mandag 7. mai 2001 kl Bokmål. K. Rottmann: Matematisk formelsamling Side 1 av 1 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Føsteamanuensis Knut Ane Stand Telefon: 73 59 34 61 EKSAMEN I FAG SIF 48 FYSIKK Mandag 7. mai

Detaljer

Løsningsforslag til Øvingsoppgave 5

Løsningsforslag til Øvingsoppgave 5 Oppgve 5.1 ) Figu 5.1 vise et foenklet tilstndsdigm fo det metstbile system jen-kbon, Fe-C. Skiv på digmmet stuktuelementene og fsene som tilhøe de enkelte flte. Mek v eutektisk og eutektoidisk eksjon

Detaljer

Eksamen TFY 4240: Elektromagnetisk teori

Eksamen TFY 4240: Elektromagnetisk teori NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Ola Hundei, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektomagnetisk teoi 8 desembe 2007 kl. 09.00-13.00

Detaljer

Klikk (ctrl + klikk for nytt vindu) for å starte simuleringen i SimReal.

Klikk (ctrl + klikk for nytt vindu) for å starte simuleringen i SimReal. Kp 9 Rotjon 9. En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik. -. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til D. Fjen

Detaljer

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver) Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN MAI 2007

LØSNINGSFORSLAG TIL EKSAMEN MAI 2007 NTNU Noges teknisk-ntuvitenskpelige univesitet Fkultet fo ntuvitenskp og teknologi Institutt fo mteilteknologi TMT40 KJEMI LØSNINGSFORSLAG TIL EKSAMEN MAI 007 OPPGAVE ) - ph definees som den negtive logitmen

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 10.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 10. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 015. Løsningsforslag til øving 10. Oppgave A B C D 1 x x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 1 x 13 x 14 x 15 x 16 x 17 x 18 x 9 x 0 x 1) Glass-staven

Detaljer

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newtons love i to og te dimensjone 7..13 innleveing: buk iktige boks! FYS-MEK 111 7..13 1 Skått kast kontaktkaft: luftmotstand langtekkende kaft: gavitasjon initialbetingelse: () v() v v cos( α ) iˆ +

Detaljer

Løsningsforslag SIE4010 Elektromagnetisme 5. mai 2003

Løsningsforslag SIE4010 Elektromagnetisme 5. mai 2003 Oppgve 1 Løsningsforslg SIE4010 Elektromgnetisme 5. mi 2003 ) Av symmetrigrunner må det elektriske feltet være rdielt rettet og uvhengig v φ, E = E(r)u r.vilrs være overflten til en sylinder med rdius

Detaljer

FASIT FRAMSKUTT EKSAMEN VÅREN Oppg. 1

FASIT FRAMSKUTT EKSAMEN VÅREN Oppg. 1 FASIT FRAMSKUTT EKSAMEN VÅREN 00 SENSORTEORI Oppg. Ein elastisk pendel ha eit lodd ed asse 0,0 kg og ei fjø ed fjøkonstant 0,0 N/. Pendelen svinga ed aplitude 0. a) Finn svingetida (peioden) til pendelen.

Detaljer

Løsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S =

Løsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S = Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekommuniksjon Side 1 v 5 Løsningsforslg TFE4120 Elektromgnetisme 24. mi 2011 Oppgve 1 ) Av symmetrigrunner må det elektriske

Detaljer

Midtsemesterprøve fredag 11. mars kl

Midtsemesterprøve fredag 11. mars kl Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2005 Midtsemesterprøve fredag 11. mars kl 1030 1330. Løsningsforslag 1) B. Newtons 3. lov: Kraft = motkraft. (Andel

Detaljer

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME

Detaljer

FYSIKK-OLYMPIADEN Andre runde: 4/2 2010

FYSIKK-OLYMPIADEN Andre runde: 4/2 2010 Nosk Fysikklæefoening Nosk Fysisk Selskaps fagguppe fo undevisning FYSIKK-OLYMPIADEN 009 010 Ande unde: / 010 Skiv øvest: Navn, fødselsdato, e-postadesse og skolens navn Vaighet:3 klokketime Hjelpemidle:abell

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 otasjon av stive legeme Vi skal se på: Vinkelhastighet, vinkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) otasjonsenegi E k Teghetsmoment I Kaftmoment τ ulling Spinn (deieimpuls):

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME

Detaljer

Ladning og kapasitans

Ladning og kapasitans FY13 Elektisitet og magnetisme Vå 9 Faglæe: Tho Bent Melø Institutt fo fysikk, NTNU Laboatoieøvelse 3 Ladning og kapasitans I denne laboatoieoppgaven vil vi studee sammenhengen mellom kapasitans, ladning

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME

Detaljer

Oppgave 1 Svar KORT på disse oppgavene:

Oppgave 1 Svar KORT på disse oppgavene: Løsningsfoslag til Eksamen i FYS000. juni 0 Oppgae Sa KORT på disse oppgaene: a) En kontinuelig stålingskilde il gi et Planckspektum. Desom den kontinuelige stålingskilden passee gjennom en gass, il stålingen

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

Kap. 22. Gauss lov. Vi skal se på: Fluksen til elektrisk felt E Gauss lov. Elektrisk ledere. Integralform og differensialform

Kap. 22. Gauss lov. Vi skal se på: Fluksen til elektrisk felt E Gauss lov. Elektrisk ledere. Integralform og differensialform Kap. 22. Gauss lov Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform Elektrisk ledere. E-felt fra Coulombs lov: E k q r 2 r E k n q r n 2 0n r 0n dq E k r 2 r tot.

Detaljer

Øving 13, løsningsskisse.

Øving 13, løsningsskisse. FY3 Elektr & mgnetisme Øving 3, løsningsskisse nduksjon Forskyvningsstrøm Vekselstrømskretser nst for fysikk 7 Oppgve nduktns for koksilkbel ) Med strømmen jmt fordelt over tverrsnittet på lederne blir

Detaljer

b) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y

b) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y MATEMATISKE METODER I Buk av egneegle: Regn ut: a ( ( b 7 c ( 7 y 8 d 8 e f 5y y Regn ut og tekk sammen: a 5a b a b a + b b y + y + + y c t t + 6 ( 6t t + 8 d s+ s + s ( s + s Multiplise ut og odne a (

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newtons love i to og te dimensjone 9..17 Oblig e lagt ut. Innleveing: Mandag,.. FYS-MEK 111 9..17 1 Skått kast med luftmotstand F net F D G D v v mg ˆj hoisontal og vetikal bevegelse ikke lenge uavhengig:

Detaljer

Fagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. kap21 18.01.2016. mg mg. Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk

Fagoversyn: TFY4155/FY1003 Elektrisitet og magnetisme. kap21 18.01.2016. mg mg. Elektrostatikk, inkl. elektrisk strøm Magnetostatikk Elektrodynamikk kap1 18.01.016 TFY4155/FY1003 lektisitet og magnetisme Fagovesyn: lektostatikk, inkl. elektisk støm Magnetostatikk lektodynamikk l.mag. e gunnlag fo: Ketselemente (motstand, kondensato, spole, diode, tansisto)

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl NORGES TEKNISK- NATURVITENSKAPEIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 ØSNINGSFORSAG TI EKSAMEN I TFY4155 EEKTROMAGNETISME

Detaljer

Gauss lov. Kap. 22. Gauss lov. Gauss lov skjematisk. Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform

Gauss lov. Kap. 22. Gauss lov. Gauss lov skjematisk. Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform Kap. 5..6 Kap.. Gauss lov Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform Elektrisk ledere. Efelt fra Coulombs lov: q E k r r E k n q r n n r n dq E k r r tot. ladn.

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTISITET OG MAGNETISME I TFY4155

Detaljer

Øving 13, løsningsskisse.

Øving 13, løsningsskisse. TFY455/FY3 Elektr & mgnetisme Øving 3, løsningsskisse nduksjon Forskyvningsstrøm Vekselstrømskretser nst for fysikk 5 Oppgve nduktns for koksilkbel ) Med strømmen jmt fordelt over tverrsnittet på lederne

Detaljer

Vår 2004 Ordinær eksamen

Vår 2004 Ordinær eksamen år Ordinær eksmen. En bil kjører med en hstighet på 9 km/h lngs en rett strekning. Sjåføren tråkker plutselig på bremsene, men gjør dette med økende krft slik t (den negtive) kselersjonen (retrdsjonen)

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons love i én dimensjon 4.01.013 kaft akseleasjon hastighet posisjon YS-MEK 1110 4.01.013 1 Hva e kaft? Vi ha en intuitivt idé om hva kaft e. Vi kan kvantifisee en kaft med elongasjon av en fjæ. Hva

Detaljer

Løsning, eksamen 3FY juni 1999

Løsning, eksamen 3FY juni 1999 Løsning, eksamen 3FY juni 1999 Oppgae 1 km/s a) Hubbles lo sie at H, de H. 10 lyså Faten til galaksen e: 3 10 m/s H 5,0 10 7 lyså 1,10 10 m/s 10 lyså b) Dopplefomelen gi oss λ, de c e lysfaten og λ 0 e

Detaljer

Løsningsforslag TEP 4110 FLUIDMEKANIKK 18.desember ρ = = = m / s m / s 0.1

Løsningsforslag TEP 4110 FLUIDMEKANIKK 18.desember ρ = = = m / s m / s 0.1 Løsningsfoslag TEP 40 FLUIDMEKNIKK 8.desembe 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d

Detaljer

Modul 1 15 studiepoeng, internt kurs Notodden/Porsgrunn

Modul 1 15 studiepoeng, internt kurs Notodden/Porsgrunn Høgskole i Telemk Avdelig fo estetiske fg, folkekultu og læeutdig BOKMÅL 4. mi 007 EKSAMEN I MATEMATIKK 3 Tid: 6 time Modul 5 studiepoeg, itet kus Notodde/Posgu Oppgvesettet e på 7 side (ikludet fomelsmlig).

Detaljer

Løsningsforslag til øving 3

Løsningsforslag til øving 3 Institutt for fysikk, NTNU TFY455/FY003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 3 Oppgave a) C V = E dl = 0 dersom dl E b) B På samme måte som et legeme med null starthastighet faller i gravitasjonsfeltet

Detaljer

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTNUASJONSEKSAMEN TFY4155 ELEKTOMAGNETSME Fredag 11.

Detaljer

Oppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2

Oppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2 1 Løsningsfoslag EMC-eksamen 24.5. Oppgave 1 a)1 b)3 c)2 d)3 e)3 f)2 g)3 h)2 i)1 j)2 k)1 l)2 Oppgave 2 a) En geneisk standad e en geneell standad som bukes nå det ikke foeligge en poduktstandad. EN581

Detaljer

KJM Radiokjemidelen

KJM Radiokjemidelen Patikke i boks - en dimensjon KJM 1060 - Radiokjemideen Foeesning : Skamodeen d ψ m + E ψ 0 dx h n π h En V0 + m ψ n nπ( x + ) sin n 45 de n 1,,,... Sannsynigheten fo å finne patikkeen meom x og x+dx e:

Detaljer

ρ = = = m / s m / s Ok! 0.1

ρ = = = m / s m / s Ok! 0.1 Løsningsfoslag TEP 00 FLUIDMEKNIKK.juni 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d g 6

Detaljer

Midtsemesterprøve torsdag 7. mai 2009 kl

Midtsemesterprøve torsdag 7. mai 2009 kl Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Våren 2009 Tillatte hjelpemidler: Midtsemesterprøve torsdag 7. mai 2009 kl 09.15 11.15. Oppgaver på side 5 10. Svartabell

Detaljer