Formelsamling i medisinsk statistikk

Størrelse: px
Begynne med side:

Download "Formelsamling i medisinsk statistikk"

Transkript

1 Fomelsamling i medisinsk statistikk Vesjon av 5. juni 2009 Dette e en fomelsamling til O. O. Aalen (ed.): Statistiske metode i medisin og helsefag, Gyldendal, Mek at boken ha en nettside de det e lagt ut ettelse og suppleende stoff, se Gjennomsnitt Median = ( ) Alle obsevasjone odnes i stigende ekkefølge. Ved ulike antall obsevasjone, e medianen definet som den midteste av dem.ved like antall, e medianen definet som gjennomsnittet av de to midteste. Standadavvik v u = t X ( ) 2 = Guppete data Intevallmidtpunkte 2. Hyppighete 2. Totalt antall obsevasjone:. Gjennomsnitt og standadavvik e gitt ved: = ( )= v u = t X { ( ) 2 } = X Median og faktile fo guppete data finnes ved lineæ intepolasjon. Insidens og pevalens Pevalens angi andelen i befolkningen som ha en viss sykdom. Insidensaten beegnes som antall nye tilfelle av sykdommen ove et tidsintevall, dividet med totalt antall pesonå unde isiko. =

2 Regneegle fo sannsynlighet Hvis begivenhetene og e disjunkte has ( ) = ()+ () Fo alle begivenhete og has ( ) = ()+ () ( ) Definisjon av betinget sannsynlighet ( ) ( ) = () Begivenhetene og e uavhengige hvis ( ) = () () En tilsvaende poduktegel e gyldig om vi ha flee uavhengige begivenhete. Regelen om total sannsynlighet () = ( ) ()+ ( ) () Bayes lov () ( ) ( ) = () ( )+ () ( ) Diagnostiske teste Sensitivitet: Sannsynlighetfopositivtestgittatdetfoeliggesykdom. Spesifisitet: Sannsynlighet fo negativ test gitt at det ikke foeligge sykdom. Positiv pediktiv vedi: Sannsynlighet fo at det foeligge sykdom gitt postiv test. Negativ pediktiv vedi: Sannsynlighet fo at det ikke foeligge sykdom gitt negativ test. Kombinatoikk Tekning av kule fa en boks med kule. Antall odnede utvalg med tilbakelegging Antall odnede utvalg uten tilbakelegging ( )( 2) ( +) Antall ikke-odnede utvalg uten tilbakelegging µ ( )( 2) ( +) =! 2

3 Foventningogvaiansfoteoetiskfodeling E() = X alle ( = ) Va() = X alle ( E()) 2 ( = ) Regneegle fo foventning og vaians E( + ) =E()+ Va( + ) = 2 Va() SD( + ) = SD() E( )=E( )+E( 2 )+ +E( ) Hvis 2 e pavis stokastisk uavhengige has: Va( )=Va( )+Va( 2 )+ +Va( ) Binomisk fodeling Sannsynligheten fo at en begivenhet innteffe gange i løpet av binomiske fosøk, e µ ( = ) = ( ) =0 Foventning og vaians i binomisk fodeling e gitt ved: E() = Va() =( ) Poissonfodeling Sannsynligheten fo foekomste, nå foventning e lik, egittved: ( = ) =! fo =0 2 Foventningogvaiansegittved: E() = og Va() = Poissonfodelingen anvendes også ved Poissonposesse. Nomalfodeling En stokastisk vaiabel sies å væe nomal ( ) hvis den følge en nomalfodeling med foventning (sentum) og standadavvik (spedning). Den standadisete vaiable =( ) e nomal (0,). Sannsynlighetstettheten til nomalfodelingen e gitt ved følgende fomel: () = ( )2 exp( ) de exp() e det samme som eksponensialfunksjonen. 3

4 Fomle fo gjennomsnitt La væe gjennomsnittet av de uavhengige vaablene 2. gjelde: Da E() = Va() = 2 SD() = = Hvis vaiablene også e nomalfodelte, vil et konfidensintevall væe gitt ved ± de bestemmes ut fa Studentfodelingen med fihetsgade. En teststøelse e gitt ved = = og denne e Studentfodelt med fihetsgade nå 0 : = gjelde. Sammenlikning av padata Man ta diffeansen innenfo hvet pa og buke konfidensintevallet og teststøelsen ove med =0. Foutsetningen e at diffeansene e uavhengige og nomalfodelte. Sammenlikningavtogjennomsnitt Vi foutsette uavhengige og nomalfodelte obsevasjone. Foøvig antas gjennomsnittene å komme fa to uavhengige utvalg. Følgende teststøelse e Studentfodelt med fihetsgade nå 0 gjelde = q de e definet ved s ( ) 2 = +( 2 ) Et konfidensintevall e gitt ved 2 ± + 2 de e bestemt av Studentfodelingen med fihetsgade. 4

5 Poissonfodeling som tilnæming til binomisk fodeling Binomisk fodeling kan tilnæmes med en Poissonfodeling hvis: () 005 og (2) 50 Nomalfodeling som tilnæming til binomisk fodeling Nå i en binomisk fodeling e så sto at 5 og ( ) 5, vilden binomiske fodelingen likne mye på en nomalfodeling med paamete = = p ( ) Nomalfodeling som tilnæming til Poissonfodeling Nå i en Poissonfodeling e minst lik 5, vil Poissonfodelingen likne mye på en nomalfodeling med paamete = = Estimeing av sannsynlighet (andel) Hvis det e obsevet foekomste ved binomiske fosøk, e estimatet fo sannsynligheten gitt ved, mens estimet standadfeil e gitt ved ( = = ) Fodelingen til e tilnæmet nomalfodelt qunde de samme foutsetninge ( ) som fo binomisk fodeling, med = og =. Et 95% konfidensintevall fo e gitt ved ± 2 Testing av nullhypotese om en sannsynlighet = 0 p 0 ( 0 ) Teststøelse fo sammenlikning av to sannsynlighete (andele) 2 = q ( + 2 )( ) 5

6 Konfidensintevall fo diffeanse mellom to andele 2 ± 96 s ( ) + 2 ( 2 ) 2 Teststøelse fo sammenlikning av to Poissonvaiable = Konfidensintevall fo elativ isiko Relativ isiko: Hjelpestøelse: = ( + ) ( + ) = % konfidensintevall fo : ( ) Konfidensintevall fo odds-atio Odds-atio: Hjelpestøelse: = = = 95% konfidensintevall fo : Kji-kvadattest ( ) Kji-kvadattesten fo en 2 2-tabell kan beegnes ut fa følgende fomel: 2 = ( ) 2 ( + )( + )( + )( + ) 6

7 Fomelen e baset på oppsettet i tabellen øvest s. 30 i læeboken, de e summen av tallene i tabellen. Fomelen e ikke gitt i boken, men gi samme sva som beegningen av støelsen på s. 36. En fomel som også e gyldig fo støe tabelle, med kolonne og ade, e den følgende: 2 = X ( ) 2 He e og det obsevete og foventede antall foekomste i de enkelte celle og summen skal tas ove alle cellene i tabellen. Antall fihetsgade i kji-kvadatfodelingen e ( ) ( ). Fo en 2 2-tabell gi dette én fihetsgad. Regesjonsanalyse Helningskoeffisienten,, og skjæingspunktet med -aksen,, fo minste-kvadateslinjen e gitt ved ˆ = 2 ˆ = ˆ de og e standadavvikene til henholdsvis x- og y-vediene, mens e definet ved = X ( )( ) = Minste kvadatsum e gitt ved est = X ( ˆ ˆ ) 2 =( )( 2 ˆ ) = Standadavvik som måle vaiasjonen i punktene undt den beste linjen: est eg = 2 Konfidensintevall fo ˆ bestemmes ut fa fomelen: ˆ ± eg p ( ) 2 de bestemmes ut fa en studentfodeling med 2 fihetsgade. Koelasjon Koelasjonskoeffisienten e definet på følgende måte: = 7

8 Utvalgsstøelse Paallellguppestudie målevaiable: ³ 2 =2 Ovekysningsstudie målevaiable: ³ 2 = Utvalgsstøelse binomisk esponsvaiabel: = ( )+ 2 ( 2 ) ( 2 ) 2 bestemmes av tabellen: Teststyke Siginifikans nivå (tosidig) Utvalgsstøelse baset på pesisjon i estimate Binomisk espons: Kontinuelig espons: µ 2 96 = ( ) µ 96 = 2 8

Formelsamling i medisinsk statistikk

Formelsamling i medisinsk statistikk Fomelsamling i medisinsk statistikk Dette e fomelsamling til O. O. Aalen: Innføing i statistikk med medisinske eksemple, 2. utg., Ad Notam Gyldendal, 998. Fomelsamlingen e utabeidet i okt. 2000, med små

Detaljer

Formelsamling i medisinsk statistikk

Formelsamling i medisinsk statistikk Formelsamling i medisinsk statistikk Versjon av 6. mai 208 Dette er en formelsamling til O. O. Aalen (red.): Statistiske metoder i medisin og helsefag, Gyldendal, 208. Gjennomsnitt x = n (x + x 2 + x 3

Detaljer

Kapittel 9: Estimering

Kapittel 9: Estimering Kapittel 9: Estimeing TMA445 Statistikk 9.8,9.9: Estimeing, to utvalg. 9.6: Pediksjonsintevall Tuid.Follestad@math.ntnu.no p.1/13 Repetisjon: Punkt-og intevall-estimeing, eitt utvalg La X 1, X,..., X n

Detaljer

Utvalg med tilbakelegging

Utvalg med tilbakelegging Utvalg med tilbakelegging Gitt n foskjellige objekte. Vi skal velge objekte på en slik måte at fo hvet objekt vi velge, notee vi hvilket det e og legge det tilbake. Det bety at vi kan velge det samme objektet

Detaljer

Forelesning 9/ ved Karsten Trulsen

Forelesning 9/ ved Karsten Trulsen Foelesning 9/2 218 ved Kasten Tulsen Husk fa sist våe to spøsmål om kuveintegale: Desom vi skal beegne et kuveintegal som state i et punkt og ende opp i et annet punkt 1, så kan det væe mange veie fo å

Detaljer

Utvalg med tilbakelegging

Utvalg med tilbakelegging Utvalg med tilbakelegging Gitt n foskjellige objekte. Vi skal velge objekte på en slik måte at fo hvet objekt vi velge, notee vi hvilket det e og legge det tilbake. Det bety at vi kan velge det samme objektet

Detaljer

Trekking uten tilbakelegging. Disjunkte hendelser (4.5) Forts. ST0202 Statistikk for samfunnsvitere

Trekking uten tilbakelegging. Disjunkte hendelser (4.5) Forts. ST0202 Statistikk for samfunnsvitere 2 Trekking uten tilbakelegging ST0202 Statistikk for samfunnsvitere o Lindqvist Institutt for matematiske fag En bolle inneholder 7 kuler, 5 gule (Y) og to røde (). To kuler trekkes uten tilbakelegging,

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons love i én dimensjon 4.01.013 kaft akseleasjon hastighet posisjon YS-MEK 1110 4.01.013 1 Hva e kaft? Vi ha en intuitivt idé om hva kaft e. Vi kan kvantifisee en kaft med elongasjon av en fjæ. Hva

Detaljer

Øving nr. 7. LØSNINGSFORSLAG

Øving nr. 7. LØSNINGSFORSLAG FAG 4 PÅLITELIGHET I ELKRAFTSYSTEMER - GRUNNKURS. Øving n. 7. LØSNINGSFORSLAG Tilstandsdiagam: : Begge enhete i funksjon µ : En av enhetene feile Mek: seiell epaasjon innebæe at ovegangsintensiteten µ,

Detaljer

Billige arboresenser og matchinger

Billige arboresenser og matchinger Billige aboesense og matchinge Magnus Lie Hetland 16. jan 009 Dette e foelesningsnotate til føste foelesning i faget Algoitmekonstuksjon, videegående kus, ved Institutt fo datateknikk og infomasjonsvitenskap,

Detaljer

Notater. Anne Vedø. Estimering for undersysselsetting i AKU basert på modellbasert imputering 2007/27. Notater

Notater. Anne Vedø. Estimering for undersysselsetting i AKU basert på modellbasert imputering 2007/27. Notater 007/7 Notate Anne Vedø Notate Estimeing fo ndesysselsetting i AKU baset på modellbaset impteing Stabsavdeling/Seksjon fo statistiske metode og standade Innhold. Innledning..... Spøsmål i AKU med patielt

Detaljer

Betinget sannsynlighet, Total sannsynlighet og Bayes setning

Betinget sannsynlighet, Total sannsynlighet og Bayes setning Betinget sannsynlighet, Total sannsynlighet og Bayes setning Innhold: Produktsetning, avhengighet, betinget sannsynlighet (.2,.) Setningen om total sannsynlighet (.4) Bayes setning (.4) Disse tingene henger

Detaljer

ST0202 Statistikk for samfunnsvitere [4]

ST0202 Statistikk for samfunnsvitere [4] ST0202 Statistikk for samfunnsvitere [4] Kapittel 4: Sannsynlighet 4.4: Disjunkte hendelser, 4.5: Uavhengige hendelser 4.6: Er disjunkthet og uavhengighet relatert til hverandre? Bruk av sannsynlighetsregning

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERITETET I AGDER Gimstad E K A M E N O P P G A V E : FAG: MA-9 Matematikk ÆRER: Pe enik ogstad Klasse: Dato:.6. Eksamenstid fa-til: 9.. Eksamensoppgaven bestå av følgende Antall side: 5 inkl. foside

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2130 Statistikk 1 UNIVERSITETET I OSLO ØONOIS INSTITUTT Eksamensdag: 01.06.2015 Sensur kunngjøres: 22.06.2015 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider Tillatte hjelpemidler:

Detaljer

Løsningsforslag for eksamen i FY101 Elektromagnetisme torsdag 12. desember 2002

Løsningsforslag for eksamen i FY101 Elektromagnetisme torsdag 12. desember 2002 Løsningsfoslag fo eksamen i FY Elektomagnetisme tosdag. desembe Ved sensueing vil alle delspøsmål i utgangspunktet bli gitt samme vekt (uavhengig av oppgavenumme), men vi fobeholde oss etten til justeinge.

Detaljer

Eksamen ST2303 Medisinsk statistikk Onsdag 3 juni 2009 kl

Eksamen ST2303 Medisinsk statistikk Onsdag 3 juni 2009 kl 1 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Faglig kontakt under eksamen Stian Lydersen tlf 72575428 / 92632393 Eksamen ST2303 Medisinsk statistikk Onsdag 3 juni 2009

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

Mer om hypotesetesting

Mer om hypotesetesting Mer om hypotesetesting I underkapittel 36 i læreboka gir vi en kort innføring i tankegangen ved hypotesetesting Vi gir her en grundigere framstilling av temaet Problemstilling Vi forklarer problemstillingen

Detaljer

Matematikk 3MX AA6524 / AA6526 Elever / privatister Oktober 2002

Matematikk 3MX AA6524 / AA6526 Elever / privatister Oktober 2002 E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 / AA6526 Eleve / pivatiste Bokmål Eksempeloppgave ette læeplan godkjent juli 2000 Videegående kus II Studieetning fo allmenne, økonomiske og administative

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato:

Detaljer

Innhold. 1. Innledning... 3

Innhold. 1. Innledning... 3 Risikobaset tilsyn Modul fo makeds- og kedittisiko i fosiking Evalueing av makeds- og kedittisikonivå DAO: 15.09.2010 Innhold 1. Innledning... 3 2. Makedsisiko... 4 2.1 Metodikken... 4 2.2 Renteisiko...

Detaljer

Emnenavn: Finansiering og investering. Eksamenstid: 4 timer. Faglærer: Tor Arne Moxheim

Emnenavn: Finansiering og investering. Eksamenstid: 4 timer. Faglærer: Tor Arne Moxheim EKSAMEN Emnekode: SFB6 Dato: 3. mai 9 Hjelpemidle: Godkjent kalkulato, vedlagte fomelsamling og entetabelle. Emnenavn: Finansieing og investeing Eksamenstid: 4 time Faglæe: o Ane Moxheim Om eksamensoppgaven

Detaljer

Mandag E = V. y ŷ + V ẑ (kartesiske koordinater) r sin θ φ ˆφ (kulekoordinater)

Mandag E = V. y ŷ + V ẑ (kartesiske koordinater) r sin θ φ ˆφ (kulekoordinater) Institutt fo fysikk, NTNU TFY4155/FY13: Elektisitet og magnetisme Vå 26, uke 6 Mandag 6.2.6 Beegning av E fa V [FGT 24.4; YF 23.5; TM 23.3; F 21.1; LHL 19.9; DJG 2.3.1, 1.2.2] Gadientopeatoen : V = V V

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1 ECON 0 EKSMEN 007 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom >. Oppgave. La begivenhetene BC,, være slik at og

Detaljer

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) P(B oga)+p(b ogā) P(B A)P(A)+P(B Ā)P(Ā) ST0202 Statistikk for samfunnsvitere Bo Lindqvist

Detaljer

Løsningsforslag til obligatorisk innlevering 3.

Løsningsforslag til obligatorisk innlevering 3. svar3.nb 1 Løsningsforslag til obligatorisk innlevering 3. Oppgave 1 * Vi skal sammenlikne to sensoere A og B. Begge har rettet den samme oppgaven. Hvis populasjonen er eksamensoppgavene, har vi altså

Detaljer

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:

Detaljer

Obj104. Ukentlige lekser med oppgaver knyttet til de fire regneartene, tid, omgjøring mellom ulike enheter, brøk, algebra og problemløsning

Obj104. Ukentlige lekser med oppgaver knyttet til de fire regneartene, tid, omgjøring mellom ulike enheter, brøk, algebra og problemløsning Obj104 RENDALEN KOMMUNE Fagetun skole Åsplan i matematikk fo 6. tinn 2014/15 Ukentlige lekse med oppgave knyttet til de fie egneatene, tid, omgjøing mellom ulike enhete, bøk, algeba poblemløsning TID TEMA

Detaljer

Rettelser til. Øistein Bjørnestad Tom Rune Kongelf Terje Myklebust. Alfa. Oppgaveløsninger

Rettelser til. Øistein Bjørnestad Tom Rune Kongelf Terje Myklebust. Alfa. Oppgaveløsninger Rettelse til Øistein Bjønestad Tom Rune Kongelf Teje Myklebust Alfa Oppgaveløsninge 007 Kapittel S. 7: Fasit til oppgave.9e): Slik oppgaven stå, skal svaet væe 065 (noe ha falt ut i oppgaveteksten). S.

Detaljer

Hesteveddeløp i 8. klasse

Hesteveddeløp i 8. klasse Andeas Loange Hesteveddeløp i 8. klasse Spillbettet. Gå det an å ha det gøy, utfoske algebaens mysteie og samtidig læe noe? Vi befinne oss i 8. klasse på Kykjekinsen skole i Begen. Jeg ha nettopp blitt

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) =P(B oga)+p(b

Detaljer

Sannsynlighet (Kap 3)

Sannsynlighet (Kap 3) Sannsynlighet (Kap 3) Medisinsk statistikk Del I 3 sept. 2008 Eirik Skogvoll, 1.amanuensis/ overlege Hva er sannsynlighet? Grunnleggende sannsynlighetsregning 1 Brystkreft (Eks. 3.1) Forekomst av brystkreft

Detaljer

( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y)

( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y) TMA415 Matematikk 2 Vå 215 Noges teknisk natuvitenskapelige univesitet Institutt fo matematiske fag Løsningsfoslag Øving 11 Alle oppgavenumme efeee til 8. utgave av Adams & Essex Calculus: A Complete Couse.

Detaljer

b) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y

b) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y MATEMATISKE METODER I Buk av egneegle: Regn ut: a ( ( b 7 c ( 7 y 8 d 8 e f 5y y Regn ut og tekk sammen: a 5a b a b a + b b y + y + + y c t t + 6 ( 6t t + 8 d s+ s + s ( s + s Multiplise ut og odne a (

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1 ECON 130 EKSAMEN 005 VÅR SENSORVEILEDNING Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom , Oppgave 1 I denne oppgaven kan du anta at

Detaljer

8 Eksamens trening. E2 (Kapittel 1) På figuren er det tegnet grafene til funksjonene f og g gitt ved

8 Eksamens trening. E2 (Kapittel 1) På figuren er det tegnet grafene til funksjonene f og g gitt ved 84 8 Eksamenstening 8 Eksamens tening Uten hjelpemidle E1 (Kapittel 1) Polynomfunksjonen P e gitt ved P ( ) = 7 + 14 8, DP = R. a Det kan vises at alle heltallige løsninge av P() = 0 gå opp i konstantleddet

Detaljer

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister.

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister. ECON230: EKSAMEN 20 VÅR - UTSATT PRØVE 2 TALLSVAR. Oppgave Da Anne var på besøk i Roma, fikk hun raskt problemer med språket. Anne snakker engelsk, men ikke italiensk, og kun av 5 italienere behersker

Detaljer

trygghet FASE 1: barnehage

trygghet FASE 1: barnehage tygghet banehage De voksnes olle Banemøte Leikeguppe Guppeaktivitet Hjemmebesøk Samlinge Måltid Påkledning Uteleik Konfliktløsning Vudeing Haug banehage 2011-2012 tygghet tygghet «Banehagen skal bistå

Detaljer

Forelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet.

Forelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet. Forelesning 4, kapittel 3. : 3.4: Betinget sannsynlighet. Eksempel 1 (begrunnelse for definisjonen av betinget sannsynlighet): Hendelse A er "sum minst 8 på kast med 2 terninger" P(A) = 15/36 P(A) < 1/2

Detaljer

Problemet. Datamaskinbaserte doseberegninger. Usikkerheter i dose konsekvenser 1 Usikkerheter i dose konsekvenser 2

Problemet. Datamaskinbaserte doseberegninger. Usikkerheter i dose konsekvenser 1 Usikkerheter i dose konsekvenser 2 Poblemet Datamaskinbasete dosebeegninge Beegne dosefodeling i en pasient helst med gunnlag i CT-bilde Eiik Malinen Sentale kilde: T. Knöös (http://www.clin.adfys.lu.se/downloads.htm) A. Ahnesjö (div. publikasjone)

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet

Detaljer

LØSNING: Eksamen 22. mai 2018

LØSNING: Eksamen 22. mai 2018 LØSNING: Eksamen 22. mai 2018 MAT110 Statistikk 1, vår 2018 Oppgave 1: ( logistikk a Sannsynlighetene p i, med i = 1, 2, 3,..., 8 utgjør en gyldig sannsynlighetsfordeling fordi: 8 p i = i=1 + 5 + 40 +

Detaljer

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene

Detaljer

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2

betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2 ECON30: EKSAMEN 06v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: STK Sannsynlighetsregning og statistisk modellering Eksamensdag: Mandag 4. mars 26 Tid for eksamen: 5. 7. Oppgavesettet er

Detaljer

Løsningsforslag Til Statlab 5

Løsningsforslag Til Statlab 5 Løsningsforslag Til Statlab 5 Jimmy Paul September 6, 007 Oppgave 8.1 Vi skal se på ukentlige forbruk av søtsaker blant barn i et visst område. En pilotstudie gir at standardavviket til det ukentige forbruket

Detaljer

DEL 1 GRUNNLEGGENDE STATISTIKK

DEL 1 GRUNNLEGGENDE STATISTIKK INNHOLD 1 INNLEDNING 15 1.1 Parallelle verdener........................... 18 1.2 Telle gunstige.............................. 20 1.3 Regneverktøy og webstøtte....................... 22 1.4 Oppgaver................................

Detaljer

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde 1 E DAG PÅ HELSESTASJOE Lises klassevenninnner Lise er veldig liten Hva gjør at du sier at hun er liten? Du har en hypotese om vanlig høyde Du har en hypotese om vanlig høyde Du sammenligner Lises høyde

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

14.1 Doble og itererte integraler over rektangler

14.1 Doble og itererte integraler over rektangler Kapittel Mltiple Integals I dette apitlet sal i se på integale a fnsjone a to aiable f og a te aiable f z.. Doble og iteete integale oe etangle Vi ønse å integee en ontinelig fnsjon f oe et etangel. :

Detaljer

Løsningsforslag til Øvingsoppgave 5

Løsningsforslag til Øvingsoppgave 5 Oppgve 5.1 ) Figu 5.1 vise et foenklet tilstndsdigm fo det metstbile system jen-kbon, Fe-C. Skiv på digmmet stuktuelementene og fsene som tilhøe de enkelte flte. Mek v eutektisk og eutektoidisk eksjon

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Kapittel 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to

Detaljer

Bernoulli forsøksrekke og binomisk fordeling

Bernoulli forsøksrekke og binomisk fordeling Bernoulli forsøksrekke og binomisk fordeling Bernoulli forsøksrekke i) gjentar et forsøk n ganger ii) hvert forsøk gir enten suksess eller fiasko iii) sannsynligheten for suksess er p i alle forsøkene

Detaljer

Eksamen i. MAT110 Statistikk 1

Eksamen i. MAT110 Statistikk 1 Avdeling for logistikk Eksamen i MAT110 Statistikk 1 Eksamensdag : Tirsdag 22. mai 2018 Tid : 09:00 13:00 (4 timer) Faglærer/telefonnummer : Molde + Kristiansund: Per Kristian Rekdal / 924 97 051 Hjelpemidler

Detaljer

Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel ST1101 (Gunnar Taraldsen) :19

Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel ST1101 (Gunnar Taraldsen) :19 Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel 2.1-2.7 ST1101 (Gunnar Taraldsen) 2019-01-12 17:19 Sentrale definisjoner og regneregler Definisjoner: Stokastisk forsøk, utfallsrom, hendelser (snitt,

Detaljer

FFI RAPPORT FORDAMPING FRA OVERFLATER OG DRÅPER. BUSMUNDRUD Odd FFI/RAPPORT-2005/03538

FFI RAPPORT FORDAMPING FRA OVERFLATER OG DRÅPER. BUSMUNDRUD Odd FFI/RAPPORT-2005/03538 FFI RAPPORT FORDAMPING FRA OVERFLATER OG DRÅPER BUSMUNDRUD Odd FFI/RAPPORT-5/58 FORDAMPING FRA OVERFLATER OG DRÅPER BUSMUNDRUD Odd FFI/RAPPORT-5/58 FORSVARETS FORSKNINGSINSTITUTT Nowegian Defence Reseach

Detaljer

UNIVERSITETET I OSLO Matematisk Institutt

UNIVERSITETET I OSLO Matematisk Institutt UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper

Detaljer

Statistikk og dataanalyse

Statistikk og dataanalyse Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Tirsdag 2. juni 2009. Tid for eksamen: 14.30 17.30. Oppgavesettet

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

Ferdig før tiden 4 7 Ferdig til avtalt tid 12 7 Forsinket 1 måned 2 6 Forsinket 2 måneder 4 4 Forsinket 3 måneder 6 2 Forsinket 4 måneder 0 2

Ferdig før tiden 4 7 Ferdig til avtalt tid 12 7 Forsinket 1 måned 2 6 Forsinket 2 måneder 4 4 Forsinket 3 måneder 6 2 Forsinket 4 måneder 0 2 Besvar alle oppgavene. Hver deloppgave har lik vekt. Oppgave I En kommune skal bygge ny idrettshall og vurderer to entreprenører, A og B. Begge gir samme pristilbud, men kommunen er bekymret for forsinkelser.

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. 1 ECON130: EKSAMEN 014 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variason i vanskelighetsgrad. Svarene er gitt i >. Oppgave 1 Fra en eldre

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: MEK3220/MEK4220 Kontinuumsmekanikk Eksamensdag: Onsdag 2. desembe 2015. Tid fo eksamen: 09.00 13.00. Oppgavesettet e på 7 side.

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.8: Bayes regel 3.1: Stokastisk variabel 3.2: Diskrete sannsynlighetsfordelinger 3.3: Kontinuerlige sannsynlighetsfordelinger Mette Langaas Foreleses onsdag 1. september 2010

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren

ÅMA110 Sannsynlighetsregning med statistikk, våren ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren

Detaljer

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25 1 ECON21: ESAEN 215v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i > Grensen til bestått bør ligge på ca

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00 EKSAMENSOPPGAVE - Skoleeksamen MET 11803 Matematikk Institutt fo Samfunnsøkonomi Utleveing: 17122014 Kl 0900 Innleveing: 17122014 Kl 1400 Vekt: 70% av MET 1180 Antall side i oppgaven: Antall vedleggsfile:

Detaljer

Eksamen TFY 4240: Elektromagnetisk teori

Eksamen TFY 4240: Elektromagnetisk teori NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Ola Hundei, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektomagnetisk teoi 8 desembe 2007 kl. 09.00-13.00

Detaljer

Betinget bevegelse

Betinget bevegelse Betinget bevegelse 1.0.013 innleveing på fonte FYS-MEK 1110 1.0.013 1 Innleveinge aksenavn! enhete! kommente esultatene utegninge: skitt fo skitt, ikke bae esultatet vi tenge å fostå hva du ha gjot sett

Detaljer

Løsning midtveiseksamen H12 AST1100

Løsning midtveiseksamen H12 AST1100 Løsning midtveiseksamen H AST00 Aleksande Seland Setembe 5, 04 Ogave Vi se at kuven fo adiell hastighet e eiodisk og minne om en hamonisk funksjon. Vi kan defo anta at denne stjenen gå i bane undt et felles

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30 Statistikk UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 03.06.06 Sensur kunngjøres: 4.06.06 Tid for eksamen: kl. 09:00 :00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

Løsningsforslag kapittel 3

Løsningsforslag kapittel 3 Løsningsoslg kpittel 3 3.1 ) Uttykket o (den konigusjonelle) entopien S e gitt ved S k ln W, de W uttykke ntll skillbe mikotilstnde. Siden kystllen inneholde n vknse odelt ove N N! N! tomplsse e W og S

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newtons love i to og te dimensjone 7..13 innleveing: buk iktige boks! FYS-MEK 111 7..13 1 Skått kast kontaktkaft: luftmotstand langtekkende kaft: gavitasjon initialbetingelse: () v() v v cos( α ) iˆ +

Detaljer

Midtsemesterprøve onsdag 7. mars 2007 kl

Midtsemesterprøve onsdag 7. mars 2007 kl Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 2007 Midtsemestepøve onsdag 7. mas 2007 kl 1300 1500. Svatabellen stå på side 11. Sett tydelige kyss. Husk å skive

Detaljer

Eksamen i TFY4205 Kvantemekanikk Mandag 8. august :00 13:00

Eksamen i TFY4205 Kvantemekanikk Mandag 8. august :00 13:00 NTNU Side 1 av 9 Institutt fo fysikk Faglig kontakt unde eksamen: Pofesso Ane Bataas Telefon: 73593647 Eksamen i TFY405 Kvantemekanikk Mandag 8. august 005 9:00 13:00 Tillatte hjelpemidle: Altenativ C

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren

Detaljer

Oppgave 1: Feil på mobiltelefoner

Oppgave 1: Feil på mobiltelefoner Oppgave 1: Feil på mobiltelefoner a) Sannsynlighetene i oppgaven blir P (F 1 F 2 ) P (F 1 ) + P (F 2 ) P (F 1 F 2 ) P (F 1 ) + 1 P (F2 C ) P (F 1 F 2 ) 0.080 + 0.075 0.006 0.149 P (F 1 F 2 ) P (F 1 F 2

Detaljer

Løsningsforslag til seminar 4 Undervisningsfri uke

Løsningsforslag til seminar 4 Undervisningsfri uke Løsningsforslag til seminar 4 Undervisningsfri uke Iman Ghayoornia February 22, 2016 Oppgave 2.1 Se Excel-filen som er tilgjengelig på emnesiden. Hvis du lurer på hvordan jeg fikk verdiene i cellene så

Detaljer

Kapittel 2: Sannsynlighet

Kapittel 2: Sannsynlighet Kapittel 2: Sannsynlighet 2.1, 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel Eirik Mo Institutt for matematiske fag,

Detaljer

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet 1 8-1: Oversikt 2 8-2: Grunnleggende hypotesetesting 3 Section 8-3: Å teste påstander om andeler 4 Section 8-5: Teste en påstand om gjennomsnittet Definisjoner Hypotese En hypotese er en påstand om noe

Detaljer

Tips for prosjektoppgaven i FYS-MEK/F 1110 V2006

Tips for prosjektoppgaven i FYS-MEK/F 1110 V2006 1 Tips fo posjektoppgaven i FYS-MEK/F 1110 V2006 Utfosking av et telegeme-system Ant Inge Vistnes, vesjon 0605141330 Det e ikke nødvendig å lese dette skivet fo å løse posjektoppgaven, men de fleste vil

Detaljer

Øving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.

Øving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt. Institutt fo fysikk, NTNU TFY455/FY003: lektisitet og magnetisme Vå 2008 Øving 8 Veiledning: 04.03 i R2 25-400, 05.03 i R2 25-400 Innleveingsfist: Fedag 7. mas kl. 200 (Svatabell på siste side.) Opplysninge:

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet

Detaljer

Regler i statistikk STAT 100

Regler i statistikk STAT 100 TORIL FJELDAAS RYGG - VÅREN 2010 Regler i statistikk STAT 100 Innhold side Sannsynlighetsregning 3 - Uttrykk 3 - Betinget sannsynlighet 4 - Regler for sannsynlighet 4 - Bayes teorem 4 - Uavhengige begivenheter

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 5, blokk I Løsningsskisse Oppgave 1 X og Y er uavhengige Poisson-fordelte stokastiske variable, X p(x;5 og Y p(y;1.

Detaljer

EKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002/MNFFY101 GENERELL FYSIKK II Lørdag 6. desember 2003 kl Bokmål

EKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002/MNFFY101 GENERELL FYSIKK II Lørdag 6. desember 2003 kl Bokmål ide av 0 NORGE TEKNIK- NATURVITENKAPELIGE UNIVERITET INTITUTT FOR FYIKK Faglig kontakt unde eksamen: Føsteamanuensis Knut Ane tand Telefon: 73 59 34 6 EKAMEN FAG TFY460 ØLGEFYIKK OG FAG FY00/MNFFY0 GENERELL

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

Pytagoreiske tripler og Fibonacci-tall

Pytagoreiske tripler og Fibonacci-tall Johan F. Aanes Pytagoeiske tiple og Fibonai-tall Pytagoas og Fibonai siamesiske tvillinge? Me enn 700 å skille dem i tid, men matematisk e de på en måte uadskillelige. Pytagoas (a. 585 500 f.k.) og Leonado

Detaljer

Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf:

Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: Hypotesetesting Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400 www.aschehoug.no 1 Oversikt Sannsynlighetsregning og statistikk

Detaljer

Løsningsforslag eksamen H12 AST1100

Løsningsforslag eksamen H12 AST1100 øsningsfoslag eksamen H AST00 Aleksande Seland Decembe 6, 04 Oppgave Anta at en fjen stjene ha blitt obsevet ove et lengee tidsom (flee tusen å) og adien til stjena vise seg å væe konstant med tiden. Fokla

Detaljer

Eksamensoppgave i TMA4240 / TMA4245 Statistikk

Eksamensoppgave i TMA4240 / TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 / TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato: 10. august 2017 Eksamenstid (fra til): 09.00-13.00

Detaljer

Oppsummering Fysikkprosjekt

Oppsummering Fysikkprosjekt Tekno-/Realstat høsten 011 MTFYMA, BFY, LUR Oppsummeing Fysikkposjekt m? F? v m p a F v? a? p? Lineæ bevegelse Rotasjonsbevegelse Navn: Symbol: Navn: Symbol: distanse masse hastighet akseleasjon kaft bevegelsesmengde,

Detaljer