Emne: BIP 140, Reservoarteknikk Dato: 3. Desember Reservoaret antas å være "lukket" dvs. at HCPV er konstant under trykkavlastningen.
|
|
- Bernt Holen
- 7 år siden
- Visninger:
Transkript
1 Fakultet for teksk aturvteskapele fa Eme: BIP 40, Reservoartekkk Dato: 3. Desember 20. Td: Tllatte hjelpemdler: Ekel kalkulator Oppavesettet består av: 6 sder kludert vedle Oppave o 2 blr vektet lkt med oppave 3 Oppave. Følede data er tt for et ass kodesat reservoar: T res =50 o C, P =500 bar P d =40.8 bar Z =.2070 Z d =.0830 =0.25 S r =0.20. Brutto reservoar volum: V bulk = 2.5x0 7 m 3 Reservoaret atas å være "lukket" dvs. at HCPV er kostat uder trykkavlaste. Fludet produseres tl overflate jeom et 3-stes separator system, o data fra separatorteste er tt følede tabell: Pressure Temp Gravty Ol tetthet Bo (Bar) o C ar= /cm³ m³/sm³ M STO = 55.8
2 Flash-lee løses for hver separator, med følede verder for molfraksjo væske o damp: = = = V = V 2 = V 3 = Kompossjoe (mol%) av opprel reservoar flud er: N CO C C C C C4.370 C C C C C8.40 C C Molt. C 0+ = Molvekt av opprel reservoarflud er: (M ) res =30.44 a.. Sett opp lee som tres for å utlede Flash lee : x y K z z K V V 2. Forklar detalj ved bruk av formler hvorda e ka avede Neto-Ralphso's metode tl å beree molfraksjo damp (V) o væske () e separator. 3. Beskrv detalj med formel hvorda P b o P d ka berees fra Flash lee. b.. V at de totale GOR for separasjosprosesse er: (GOR) tot = 2442 Sm 3 /Sm Bere GOR for separator 2, (GOR) 2 Sm 3 /Sm Sksser GOR = f(p res ) år 00<P res <500 bar. G e kort kommetar. 4. Bere IGIP (Sm 3 ) o IOIP (Sm 3 ) år fludet produseres jeom att separator system. c. Bere tetthete av reservoar fludet ved P, (k/m 3 ) 2
3 d. Hva er jevs % av separator ass o STO ved trykkavlaste P tl P d? Hvorfor blr verdee lke? Oppave 2. a. Ved bruk av B- teore aveder e fraksjo-strømme av va, f =f(s ).. Utled et utrykk for f for et horsotalt leært reservoar ute kapllar krefter. 2. Dskuter forme på kurve, f =f(s ) år o varerer. k dp Gtt: Darcy`s lov: q A( ) dx b. B- lke ka avedes tl å studere hasthete tl sjokkfrote. v Sf q t A df ds Sf. Hvlke forutseter jøres ved utlede av B- le? df 2. Vs at er tt ved: ds Sf df ds Sf S f f f S r a e sksse som llustrerer utlede. 3
4 Oppave 3: a) Skrv ed Darcy's lov for e-dmesjoal strøm av e fase et homoet, porøst medum med kostat tverrstt (husk ravtasjosleddet). Deer størrelsee som år Darcy's lov. Hva er ehetee tl størrelsee som år Darcy's lov? b) Vs at SI eheter så er D µm 2 (ht: atm= Pa, cp=0 3 Pa s.) Dmesjoe på permeabltet er m 2 SI eheter, hva er de fysske tolke av dette arealet? c) V skal å se på et ladelt reservoar (se ur uder) o ass strøm las la.. Vs hvorda ma ka komme frem tl følede form på Darcy lov: q b = k A ( p 2 µ 2 p b p 2 ) 2, ta utaspukt Darcy lov på deresalform. 2. Vs at eektv permeabltet lk over er tt ved: k = h ( k h + k 2 h 2 + k 3 h 3 ). k 3 k 2 k h 3 h 2 h k h=h + h 2 + h 3 d) Bere de totale strømsrate av ass ft 3 /d ved trykk p b jeom det vste system Bredde 200 ft, ede 400 ft, p atm 5.0 psa h 5 ft, k 200 md, p 500 ps, ur over fra følede data: h 2 0 ft, k md, p out 400 ps, h 3 5 ft, k md, p b 4.65 psa, µ = cp o p psa = p ps + p atm. ps = atm o ft = cm. e) Forklar kort hvorda ma ka bruke e kapllartrykkskurve tl å s oe om udfordeler over det fre va vået før produskjo starter. Grafee ure uder er avledet fra kapllartrykkskurvee tl e ste med 000mD permeabltet o 200mD permeabltet o vser vamete som fuksjo av høyde over det fre va vået. Bruk dsse tl å skssere vafordele laee som er vst ure uder oppave c) mD 200mD heht [ft] S 4
5 Tabell : PVT data p/psa B o R s B N p /MMSTB f) Sksser følede kurver som fuksjo av vamet:. e (olje-va) mbberskurve for et vavått system 2. e (olje-va) mbberskurve for et system med bladet fuktpreferase dker på rafee hvor resduell vamet (S r ) o resduell oljemet (S or ) er. V skal å se ærmere på et oljereservoar med e asskappe. V deer følede volumer: Reservor Surface V R V, S + Vo, S Vo R Vo,o S + V,o S. På vestre sde er det reservoarvolum av ass ( V R blr tatt tl overatebetelser blr det produsert et volum olje ( V S o,o var oppløst olje ( V S,o V S o, = 0. R ) o olje ( Vo ). Når e volumehet av olje ) o et volum ass som ). Tlsvarede for assfase. V ser vekk fra oppløst olje ass, dvs. ) Deer oppløst ass olje forholdet R s. Sksser R s som fuksjo av trykk, dker på rafe hvor boblepuktstrykket for olje er. Forklar kort med ord hvorfor rafe har de forme som de har. kee for materalbalase er tt som: Symbolee lke over er deert: F = N(E o + m E + E c ) + W e B. () F E o E E c = N p [B o + (R p R s )B ] + W p B = (B o B o ) + (R s R s )B ( ) B = B o B = B o ( + m)( c S + c p S ) p. (2) h) Opprel reservoartrykk var 750 psa o boblepuktstrykk på 4500 psa. Opprel estmat basert på volumetrske betrakter vste at reservoaret eholdt 650 MMSTB olje. Estmer e verd for N ved bruk av materal balase etter at trykket hadde suket tl 6600 ps o etter at trykket hadde suket tl 4500 ps. Du ka elsjere strøm o produksjo av va, PVT data er tt tabell o S = 0.43, c p = /ps, c = /ps. ) Hva mees med traset strøm o semstabl strøm uder e trykk avlaststest? 5
6 Vedle. Importat formula/correlatos PVT-Aalyss. Temperature: o K = o C o F =.8 x o C + 32 o R = o F Pressure: atm = mbar = bar = kpa = MPa = psa psa = ps atm = mmh at 0 o C Desty: /cm 3 = lb/ft 3 = lb/bbl lb/ft 3 = k/m 3 = /cm 3 = /cm 3 (60 o F, atm) (5 o C, atm) Specfc desty: For lquds: Determed relatve to ater at sc. For ases: Determed relatve to ar at sc. o 4.5 o 3.5 o API o API 4.5 o 3.5 Craoe`s formula (emprcal formula v molecular eht of hydrocarbos): 6084 M o o API 5.9 M M M ar Volume: bbl = 5.65 ft 3 = m 3 ft 3 = m 3 US Gallo = ltre Imp. Gallo = ltre Molar volume of as at stadard codtos: V m = SCF/lb mole (60 o F ad psa) V m = cm 3 / mole = m 3 /k mole (5 o C ad kpa) Ar: Z ar = (60 o F, psa) M ar = Gas costat: R = (psa, ft 3, o R, lb mole) R = (atm, ltre, o K, mole) R = (kpa, m 3, o K, k mole)
Emne: BIP 140, Reservoarteknikk Dato: 4. Desember 2010.
1 Fakultet for teknisk naturvitenskapelige fag Emne: BIP 140, Reservoarteknikk Dato: 4. Desember 2010. Tid: 09.00-13.00 Tillatte hjelpemidler: Enkel kalkulator Oppgavesettet består av: 8 sider inkludert
DetaljerEmne: BIP 140, Reservoarteknikk Dato: 12. desember 2012
Fakultet fr teknisk naturvitenskapelige fag Emne: BIP 140, Reservarteknikk Dat: 12. desember 2012 Tid: 09.00-13.00 Tillatte helpemidler: Enkel kalkulatr Oppgavesettet består av: 5 sider pluss 2 vedlegg.
Detaljerσ cosθ φ (1) Forklar kort de størrelser som inngår, deres benevning i et konsistent sett av enheter og hva J-funksjonen brukes til.
AVDELING FOR TEKNISK - NATURVITENSKAPELIGE FAG EKSAMEN I: TE 195 Reservoarteknikk 1 VARIGHET: kl 09.00 14.00 TILLATTE HJELPEMIDLER: Kalkulator OPPGAVESETTET BESTÅR AV: 7 sider MERKNADER: Ingen DATO: 3.JUNI
Detaljerd) Beregn trykket i brønnen ved bruk av data fra tabell 1.
HØGSKOLEN I STAVANGER AVDELING FOR TEKNISK - NATURVITENSKAPELIGE FAG DATO: 21. SEPTEMBER 1998 EKSAMEN I: TE 195 Reservoarteknikk 1 VARIGHET: kl 09.00 14.00 TILLATTE HJELPEMIDLER: Kalkulator OPPGAVESETTET
DetaljerEmne: PET 120, Reservoarteknikk Dato: 12. juni 2014 Tid:
Fakultet fr teknisk naturvitenskapelie fa Emne: PET 120, eservarteknikk Dat: 12. juni 2014 Tid: 09.00-13.00 Tillatte hjelpemidler: Enkel kalkulatr Oppavesettet består av: 8 sider inkludert 2 vedle Oppave
Detaljera) Anta først at drivmekanismen er oppløst gassdriv, uten gasskappe, og estimer oljevolum opprinnelig tilstede i reservoaret.
ResTek1 Øving 9 Oppgave 1 Følgende data er hentet fra et oljereservoar: p N p R p B o R s B g psia 10 6 stb scf/stb rb/stb scf/stb rb/scf 3330 - - 1.2511 510 0.00087 3150 1.024 1050 1.2353 477 0.00092
DetaljerMakroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende:
B. Makroøkoom Oppgave: Forklar påstades hold og drøft hvlke alteratv v står overfor: Fast valutakurs, selvstedg retepoltkk og fre kaptalbevegelser er kke forelg på samme td. Makroøkoom Iledg Mudells trlemma
Detaljerhvor s er målt langs strømningsretningen. Velges Darcy enheter så har en
Skisse til løsning Eksamen i Reservoarteknikk. september, 998 Oppgave a) v k dφ s µ ds ; () hvor s er målt langs strømningsretningen. Velges Darcy enheter så har en v s : volumhastighet, cm/s k : permeabilitet,
DetaljerEmne: BIP 140, Reservoarteknikk Dato: 2. Desember 2009.
Fakultet fr teknisk naturvitenskapelige fag Emne: BIP 140, Reservarteknikk Dat: 2. Desember 2009. Tid: 09.00-13.00 Tillatte hjelpemidler: Enkel kalkulatr Oppgavesettet består av: 6 sider inkludert 1 vedlegg
DetaljerFormler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler
Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:
Detaljeri kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2
Repetsjon 4 (16.09.06) Regler for oksdasjonstall 1. Oksdasjonstall for alle fre element er 0 (O, N, C 60 ). Oksdasjonstall for enkle monoatomske on er lk ladnngen tl onet (Na + : +1, Cl - : -1, Mg + :
DetaljerEmne: BIP 140, Reservoarteknikk Dato: 15. Desember 2008.
Fakultet fr teknisk naturvitenskapelige fag Emne: BIP 140, Reservarteknikk Dat: 15. Desember 2008. Tid: 09.00-13.00 Tillatte hjelpemidler: Enkel kalkulatr Oppgavesettet består av: 8 sider inkludert 2 vedlegg
DetaljerSeminaroppgaver for uke 13
1 ECON 2130 2016 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver) La X og Y være to uavhegge
DetaljerEcon 2130 uke 19 (HG) Inferens i enkel regresjon og diskrete modeller
Eco 3 uke 9 (HG) Iferes ekel regresjo og dskrete modeller De ekle regresjosmodelle. Resultater fra 5m og 5m for me fra EM på skøyter Heerevee 4. ( er 5m-tde og y 5m-tde sekuder for løper.) Spredgdagram
DetaljerSeminaroppgaver for uke 13 (Oppgave (1), (2), og (3))
1 ECON 2130 2017 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 (Oppgave (1), (2), og (3)) (1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver)
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : STK1000 Innførng anvendt statstkk Eksamensdag: Trsdag 12. desember 2017 Td for eksamen: 14.30 18.30 Oppgavesettet er på 5 sder Tllatte
DetaljerAnalyse av sammenhenger
Kapttel 7.-7.3: Aalyse av sammeheger Korrelasjo og regresjo E vktg avedelse av statstkk er å studere sammeheger mellom varabler: Avgjøre om det er sammeheger. Beskrve hvorda evetuelle sammeheger er. Eksempler:
DetaljerForelesning 19 og 20 Regresjon og korrelasjons (II)
STAT111 Statstkk Metoder Yushu.L@ub.o Forelesg 19 og 0 Regresjo og korrelasjos (II) 1. Kofdestervall (CI) og predksjostervall (PI) I uka 14, brukte v leær regresjo for å fage leær sammehege mellom Y og
DetaljerLøsningskisse seminaroppgaver uke 17 ( april)
HG Aprl 14 Løsgsksse semaroppgaver uke 17 (.-5. aprl) Oppg. 5.6 (begge utgaver) La X = atall bar utvalget som har lærevasker. Adel bar med lærevasker populasjoe av bar atas å være p.15. Utvalgsstørrelse
DetaljerAvdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007
Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 9. ma 7 EKSAMEN I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).
DetaljerForelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011
Forelesg 3 MET359 Økoometr ved Davd Kreberg Vår 0 Dverse oppgaver Oppgave. E vestor samler følgede formasjo om markedsavkastge og avkastge på det som ser ut tl å være et attraktvt aksjefod År Aksjefodets
DetaljerSIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper
Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 6 Faglg kontakt under eksamen: Bo Lndqvst 73 59 35 20 EKSAMEN I FAG SIF5072 STOKASTISKE PROSESSER Mandag 13. august 2001 Td:
DetaljerRegler om normalfordelingen
1 HG Revdert mars 013 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg
DetaljerDet anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
ECON 3 EKSAMEN VÅR TALLSVAR Det abefales at de 9 deloppgavee merket med A, B, teller lkt uasett varasjo vaskelghetsgrad. Svaree er gtt
DetaljerTMA4245 Statistikk Eksamen mai 2016
Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Lar X være kvadratprse. Har da at X N(µ, σ 2 ), med µ 30 og σ 2 2, 5 2. P (X < 30) P (X < µ) 0.5 ( X 30 P (X > 25)
DetaljerUNIVERSITETET I OSLO.
UNIVERSITETET I OSO. Det matematsk - naturvtenskapelge fakultet. Eksamen : FY-IN 204 Eksamensdag : 13 jun 2001 Td for eksamen : l.0900-1500 Oppgavesettet er på 5 sder. Vedlegg Tllatte hjelpemdler : ogartmepapr
DetaljerTMA4245 Statistikk Eksamen august 2014
Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Y 5 PY > 53) PY 53) P ) 53 5 Φ5) 933 668 Vekte av e fylt flaske, X + Y, er e leærkombasjo av uavhegge ormalfordelte
DetaljerEksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS
Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen : ECON13 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 11.8.16 Sensur kunngjøres senest: 6.8.16 Td for eksamen: kl. 9: 1: Oppgavesettet er på 4 sder Tllatte hjelpemdler:
DetaljerSTK1100 våren Konfidensintevaller
STK00 våre 07 Kofdestevaller Svarer tl avstt 8. læreboka Ørulf Borga Matematsk sttutt Uverstetet Oslo Eksempel E kjemker er teressert å bestemme kosetrasjoe µ av et stoff e løsg Hu måler kosetrasjoe fem
DetaljerFølgende kapillartrykksdata ble oppnådd ved å fortrenge vann med luft fra to vannmettede
ResTek1 Øving 5 Oppgave 1 Følgende kapillartrykksdata ble oppnådd ved å fortrenge vann med luft fra to vannmettede kjerneplugger: 1000 md prøve 200 md prøve P c psi S w P c psi S w 1.0 1.00 3.0 1.00 1.5
DetaljerForelesning 3 mandag den 25. august
Forelesg adag de 5 august Merkad 171 For å bevse e propossjo o heltall so volverer to eller flere varabler, er det typsk ye lettere å beytte duksjo på e av varablee e duksjo på oe av de adre Det er for
DetaljerIT1105 Algoritmer og datastrukturer
Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:
DetaljerEKSAMEN ny og utsatt løsningsforslag
8.. EKSAMEN n og utsatt løsnngsorslag Emnekode: ITD Dato:. jun Hjelpemdler: - To A-ark med valgrtt nnhold på begge sder. Emnenavn: Matematkk ørste deleksamen Eksamenstd: 9.. Faglærer: Chrstan F Hede -
DetaljerForelesning 25 og 26 Introduksjon til Bayesiansk statistikk
Yushu.@hh.o Forelesg 5 og 6 Itroduksjo tl Bayesask statstkk 1. Itroduksjo Fortsatt atar v har stokastsk varabel X (X ka være stokastsk varabel vektor) kommer fra e fordelg med parametere ( ka være parameter
Detaljersom vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,,
HG Eco30 07 9/3-07 Supplemet tl forelesg uke 0 (6 mars) (Det jeg kke rakk å ta på forelesg) Termolog (estmerg) Data (kokrete tall), x, x, er ervasjoer av stokastske varable, X, X, De statstske modelle
DetaljerExamination paper for TPG4145 Reservoir Fluids and Flow
Department of Geoscience and Petroleum Examination paper for TPG4145 Reservoir Fluids and Flow Academic contact during examination: Curtis Hays Whitson Phone: 9132 9691 Examination date: May 23, 2017 Examination
DetaljerOppgave 3. Skisse til løsning Eksamen i Reservoarteknikk 14. desember, a) Se forelesningene. b) Fra Darcys lov,
Skisse til løsning Eksamen i Reservoarteknikk 14 desember 2006 Oppgave 3 a) Se forelesningene b) Fra Darcys lov u = k dp µ dr Darcy-hastigheten u er uttrykt ved u r = q/a hvor tverrsnittsarealet A er gitt
DetaljerEcon 2130 uke 15 (HG)
Eco 130 uke 15 (HG) Kofdestervall Løvås: 6.1., 6.3.1 3. (Avstt 6.3.4 6 leses på ege håd. Se også overskt over kofdestercvall ekstra otat på ettet.) 1 Defsjo av kofdestervall La θ være e ukjet parameter
DetaljerOm enkel lineær regresjon II
ECON 3 HG, aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel som v kaller resposvarabele
DetaljerAvdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007
Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).
DetaljerSide 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK august 2016 Tid:
Sde 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 19. august
DetaljerForelesning Ordnings observatorer
Yushu.L@ub.o Forelesg 6 + 7 Ordgs observatorer. Oppsummerg tl Forelesg 4 og 5.) Fuksjoer (trasformasjoer) av flere S.V...) Smultafordelg tl to ye S.V. Ata at v har to S.V., med smultafordelg f ( x, x )
DetaljerEKSAMEN Ny og utsatt Løsningsforslag
. jun 0 EKSAMEN Ny og utsatt Løsnngsorslag Emnekode: ITD50 Dato:. jun 0 Emne: Matematkk, deleksamen Eksamenstd: 09.00.00 Hjelpemdler: To A-ark med valgrtt nnhold på begge sder. Formelhete. Kalkulator er
DetaljerARBEIDSHEFTE I MATEMATIKK
ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består
DetaljerSTK1110 høsten Lineær regresjon. Svarer til avsnittene i læreboka (med unntak av stoffet om logistisk regresjon)
TK høste 9 Eksempel.5 (CO og vekst av furutrær Leær regreso varer tl avsttee..4 læreboka (med utak av stoffet om logstsk regreso Ørulf Borga Matematsk sttutt Uverstetet Oslo V vl bestemme sammehege mellom
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.
ECON: EKSAMEN 6 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt
DetaljerEksamen Prosessteknikk 8.desember 2004 løsningsforslag
Eksame Prosesstekikk 8.desember 4 løsigsforslag Oppgave dag = 4 timer (godtar også beregiger basert på 8 timer eller timer ute trekk). x to/dag = = 5466.67 kg/time 4 5466.67 Molvekt N = 7 = 86.7 kmol/time
DetaljerTMA4240 Statistikk Høst 2016
TMA440 Statstkk Høst 06 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg 0 Løsgssksse Oppgave a Estmatore for avstade a er gjeomsttet av uavhegge detsk fordelte målger, x; a,
DetaljerOm enkel lineær regresjon II
ECON 3 HG, revdert aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som v kaller
DetaljerNotat 1: Grunnleggende statistikk og introduksjon til økonometri
Notat : Gruleggede statstkk og troduksjo tl økoometr Gruleggede statstkk Populasjo vs. utvalg Statstsk feres gjør bruk av formasjoe et utvalg tl å trekke koklusjoer (el. slutger) om populasjoe som utvalget
DetaljerOm enkel lineær regresjon II
1 ECON 13 HG, revdert aprl 17 Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som
Detaljer, tilsvarende terskeltrykket p d
HØGSKOLEN I STAVANGER AVDELING FOR TEKNISK - NATURVITENSKAPELIGE FAG DATO: 3. SEPTEMBER 1999 EKSAMEN I: TE 195 Reservoarteknikk 1 VARIGHET: kl 09.00 14.00 TILLATTE HJELPEMIDLER: Kalkulator OPPGAVESETTET
DetaljerOppgave 1 ECON 2130 EKSAMEN 2011 VÅR
ECON 30 EKSAMEN 0 VÅR Oppgave E bedrf øsker å fordele koraker e vesergsprosjek hel lfeldg på 3 frmaer, A, B og C. Uvelgelse skjer ved loddrekg. Loddrekge er slk a hver av frmaee A, B og C, har e mulghe
DetaljerOBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005
OBLIGATORISK OPPGAVE INF 0/0/90 HØSTEN 005 Levergsfrst: 0. september 005 Arbedsform: Løses dvduelt Ileverg tl: Aja Bråthe Krstofferse (ajab@f.uo.o Levergskrav: Det forutsettes at du er kjet med holdet
DetaljerOppgave 1 Det er oppgitt i oppgaveteksten at estimatoren er forventningsrett, så vi vet allerede at E(ˆµ) = µ. Variansen til ˆµ er 2 2 ( )
Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg Løsgssksse Oppgave Det er oppgtt oppgavetekste at estmatore er forvetgsrett, så v vet allerede at Eˆµ µ. Varase tl ˆµ er τ Varˆµ
DetaljerStatistikk med anvendelse i økonomi
A-6 og A-6-G, 6. ma 08 Emekode: Emeav: A-6 og A-6-G tatstkk med avedelse økoom Dato: 6. ma 08 Varghet: 0900-300 Atall sder kl. forsde 0 Tllatte hjelpemdler: erkader: Kalkulator med tømt me og ute kommukasjosmulgheter.
DetaljerUNIVERSITETET I OSLO
UIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: ST 105 - Iførig i pålitelighetsaalyse Eksamesdag: 8. desember 1992 Tid til eksame: 0900-1500 Tillatte hjelpemidler: Rottma: "Matematische
DetaljerRegler om normalfordelingen
1 HG mars 2009 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette
DetaljerX ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0.
UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : Eksamensdag: 7. jun 2013. Td for eksamen: 14.30 18.30. Oppgavesettet er på 8 sder. Vedlegg: Tllatte hjelpemdler: STK2120 LØSNINGSFORSLAG
DetaljerOversikt over tester i Econ 2130
1 HG Revdert aprl 217 Overskt over tester Eco 213 La være e ukjet parameter (populasjos-størrelse) e statstsk modell. Uttrykket ukjet parameter betyr at de sae verde av populasjoe er ukjet. Når v setter
DetaljerRegler om normalfordelingen
HG mars 0 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset.
DetaljerDet ble orientert i plenum under eksamensdagen om følgende endringer i forhold til oppgaven:
LØSNINGSFORSLAG EKSAMEN 4 MAI 007 MET00 STATISTIKK GRUNNKURS Det ble oretert pleum uder eksamesdage om følgede edrger forhold tl oppgave: Oppgave b går ut. Det vl da bl 9 oppgaver og alle oppgaver teller
DetaljerC(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse)
Fyskk / ermodynamkk Våren 2001 5. ermokjem 5.1. ermokjem I termokjemen ser v på de energendrnger som fnner sted kjemske reaksjoner. Hver reaktant og hvert produkt som nngår en kjemsk reaksjon kan beskrves
DetaljerEksamensoppgave. Fag: Tverrfaglig eksamen i vg2 brønnteknikk. Fagkode: BRT 2004. Eksamensdato: 2.12.2013. Eksamensdato: Eksamenstype: Skriftlig
Eksaensogave Fag Tvrfaglg eksaen vg brønnteknkk Fagkoe BRT 004 Eksaensato..03 Eksaensato Eksaenstye Skrftlg Utannngsrogra Teknkk og nustrell rouksjon Prograoråe Brønnteknkk Eksaensnforasjon Eksaenst Hjeleel
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Deleksamen MAT-INF Modellerng og beregnnger. Eksamensdag: Onsdag 7. oktober 29. Td for eksamen: 5: 7:. Oppgavesettet er på 6 sder. Vedlegg:
DetaljerForelesning 21 og 22 Goodness of fit test and contingency table ( 2 test og krysstabell)
STAT111 Statstkk Metoder Yushu.L@ub.o Forelesg 1 Goodess of ft test ad cotgecy table ( test krysstabell 1.Goodess of ft test ( test Ata at v har et utvalg med observasjoee fra e stokastsk varabel X. Goodess-of-ft
DetaljerDer oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.
Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
ECON: EKAMEN TALLVAR. et abefales at de 9 deloppgavee merket med A, B, teller lkt uasett varasjo vaskelghetsgrad. varee er gtt
DetaljerTMA4245 Statistikk Eksamen 21. mai 2013
TMA445 Statstkk Eksame ma 03 Korrgert 0 ju 03 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave Et plott av sasylghetstetthee er gtt fgur Vdere har v og PX = Φ = 08849
DetaljerStrøm av olje og vann i berggrunnen matematisk model, simulering og visualisering
Strøm av olje og vann i berggrunnen matematisk model, simulering og visualisering Hans Fredrik Nordhaug Matematisk institutt Faglig-pedagogisk dag, 01.02.2000. Oversikt 1 Oversikt Introduksjon. Hva er
DetaljerØVINGER 2017 Løsninger til oppgaver
ØVINGER 017 Løsnnger tl oppgaver Øvng 1 7.1. Med utgangspunkt de n 5 observasjonsparene (x 1, y 1 ), (x, y ),..., (x 5, y 5 ) beregner v først mddelverdene x 1 5 Estmert kovarans blr x 3. ȳ 1 5 s XY 1
DetaljerLøsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall.
Løsgsforslag Eksame Statstkk Nov 00 Oppgave a) Det fs 8 mulge kombasjoer. Dsse fes ved å utelate ett og ett tall. Atall utvalg av størrelse 7 blat m er ( m 7 ). b) Prs Atall Rekker 3 kr. ( 7 ) 3 kr....
DetaljerRandi Johannessen. Mikroindeksformel i konsumprisindeksen. 2001/64 Notater 2001
2/64 Notater 2 Rad Johaesse Mkrodeksformel kosumprsdekse Avdelg for økoomsk statstkk/sekso for økoomske dkatorer Emegruppe: 8.2. Ihold. Bakgru og kokluso...3 2. Levekostadsdekser...4 2.. Kosumetes tlpasg...4
DetaljerSeleksjon og uttak av alderspensjon fra Folketrygden
ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.
DetaljerProsjekt. Troll Antall sider
o Stato Den norske stats ojeseskap as AVDELNG FOR RESERVOAREVALUERNG Denne rapport thører L&U DOK. SENTER L NR. ^O S qq 00 f S KODE \M«.U 3/.V T Returneres etter bruk Ttte Hstore-tpasnng, brønn 3/3-2 Oppdragsgver
DetaljerPositive rekker. Forelest: 3. Sept, 2004
Postve rekker Forelest: 3. Sept, 004 V skal tde utover fokusere på å teste om e rekke kovergerer, og skyve formler for summerg bakgrue. Dette er gje ford det første målet vårt er å lære hvorda v ka fe
DetaljerSensorveiledning til eksamen i ECON 3610/4610 høsten 2015
Sesoreiledi til eksame i ECON 360/460 høste 05 Betrakt e lukket økoomi med to produksjossektorer (beståede a mae like bedrifter) o e represetati kosumet eller husholdissektor. Husholdissektore har e yttefuksjo
DetaljerStrøm av olje og vann i berggrunnen matematisk model, simulering og visualisering
Strøm av olje og vann i berggrunnen matematisk model, simulering og visualisering Hans Fredrik Nordhaug Matematisk institutt Faglig-pedagogisk dag, 01.02.2000. Oversikt 1 Oversikt Introduksjon. Hva er
DetaljerLøsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n.
Løsgsforslag ST20/ST620 205, kotuasjoseksame. a Rmelghetsfuksjoe blr Logartme Derverer Løser lgge Løsge er SME: L = 2 e l L = 2 l X X. X + l X. l L = 2 + 2 X = 2. ˆ = 2 X. X. b Her ka ma beytte trasformasjosformele,
DetaljerFigur 1: Skisse av den ene armen til en sentrifuge; kjerne i beholder. dp = ρω 2 Z 2 1. rdr; = 1 2 ρω2 (r 2 2 r2 1):
Skisse til løsning Eksamen i Reservoarteknikk 3. september, 999 Oppgave Figur : Skisse av den ene armen til en sentrifuge; kjerne i beholder. a Akselerasjonen er ω r. Kraftbidraget df fra masse dm i volumelement
DetaljerEksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:
DetaljerAppendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:
Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk
ÅMA0 Sasylghetsregg med statstkk, våre 00 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estmerg målemodelle (kp. 5.3)
Detaljerv a~iii~ raitaii. ij ~ Kontaktperson i eksamensdag: Eugenia Sandru
NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITE~ INSTITUTr FOR KJEMI Faglg kontakt under eksamen: Insttutt for kjem, Realfagbygget ~ fl...,.i:. T~ Cfl C~ LVI v a~~ rata. j ~ Kontaktperson eksamensdag: Eugena
DetaljerForelesning nr.3 INF 1411 Elektroniske systemer
Forelesnng nr.3 INF 4 Elektronske systemer 009 04 Parallelle og parallell-serelle kretser Krchhoffs strømlov 30.0.04 INF 4 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt
DetaljerKJ1042 Øving 5: Entalpi og entropi
KJ1042 Øving 5: Entalpi og entropi Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hva er varmekapasitet og hva er forskjellen på C P og C? armekapasiteten til et stoff er en målbar fysisk størrelse
DetaljerRepetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og Repetisjon; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10
Repetisjo; 9.1, 9.2, 9.3, 9.4, 9.5, og 9.10 og Geerell defiisjo av : Situasjo: Data x 1,...,x ;utfallav:x 1,...,X ; u.i.f. tilfeldige variable Ukjet parameter i fordelige til X i ee: θ Dersom L og U L
DetaljerOversikt over tester i Econ 2130
1 HG Revdert aprl 213 Overskt ver tester Ec 213 La θ være e ukjet parameter (ppulasjs-størrelse) e statstsk mdell. Uttrykket ukjet parameter betyr at de sae verde av θ ppulasje er ukjet. Når v setter pp
DetaljerTMA4240/4245 Statistikk Eksamen august 2016
Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA44/445 Statstkk Eksamen august 6 Løsnngssksse Oppgave a) Ved kast av to ternnger er det 36 mulge utfall: (, ),..., (6, 6). La Y
DetaljerMOT310 Statistiske metoder 1, høsten 2011
MOT310 Statistiske metoder 1, høste 2011 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 24. august, 2011 Bjør H. Auestad Itroduksjo og repetisjo 1 / 32 Repetisjo; 9.1,
Detaljer01. Til hvilke deler av naturen benyttes kvantefysikk som beskrivende verktøy?
Ka Kvatefykk. Tl vlke deler av ature beytte kvatefykk o bekrvede verktøy?. Nev oe etrale ateatkk-eer o går kvatefykke.. Hva kalle de eleetee Hlbert-roet o bekrver tltader tl et yte?. Hva kalle de ateatke
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.
ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt
DetaljerIngen forhåndspreparerte hjelpemiddler er tillatt på eksamen. Ingen bøker er tillatt untatt standard godkjent formelsamling. Kalkulator er tillatt.
Midtsemester Eksame FYS340 30.03.009 Varighet: 3 timer Ige orhådspreparerte hjelpemiddler er tillatt på eksame. Ige bøker er tillatt utatt stadard godkjet ormelsamlig. Kalkulator er tillatt. Dee eksame
Detaljer2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r
I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 1 0 O r d i n æ r g e n e r a l f o r s a m l i n g i, a v h o l d e s m a n d a g 3. m ai 2 0 1 0, k l. 1 8 0 0 p å T r e
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer
DetaljerEKSAMEN I FAG FASTE STOFFERS FYSIKK 2 Fakultet for fysikk, informatikk og matematikk Fredag 16. januar 1998 Tid:
Side av 4 Norges tekisk-aturviteskapelige uiversitet Istitutt for fysikk Faglig kotakt uder eksae: Nav: Ola Huderi Tlf.: 934 EKSAMEN I FAG 74435 - FASTE STOFFERS FYSIKK Fakultet for fysikk, iforatikk og
Detaljer