Sensorveiledning til eksamen i ECON 3610/4610 høsten 2015
|
|
- Erik Hansen
- 7 år siden
- Visninger:
Transkript
1 Sesoreiledi til eksame i ECON 360/460 høste 05 Betrakt e lukket økoomi med to produksjossektorer (beståede a mae like bedrifter) o e represetati kosumet eller husholdissektor. Husholdissektore har e yttefuksjo med stadard eeskaper oer to kosumarer itt ed ( c, c ). Sektor produserer e are i mede arbeidskraft o x med e produktfuksjo (, ), der ( c, c ), er isats a er areisats. (Produktfuksjoe atas å ha stadard eeskaper.) Sektor produserer e ae are i mede stadard eeskaper, der som homoe. Vi har derfor at husholdissektore. x med e produktfuksjo (, ), som oså har er isats a arbeidskraft o er areisats. Arbeidskrafte oppfattes, der er samlet tila a arbeidskraft tilbudt a Produktmede i sektor aedes dels til kosum i husholdissektore o dels som areisats i sektor, slik at x c, med c som husholdissektores kosum a are. Tilsarede, blir produktmede i sektor aedt dels til kosum i husholdissektore ( c ) o dels som areisats i sektor ( ); ds. i har itt, slik at, der er et itt tall. x c. Vi teker oss at samlet tila a arbeidskraft er a) Ata først at areisatse i her sektor er itt, slik at i å har x (, ) c o x (, ) c. i e beruelse for horfor de allokeri som maksimerer ( c, c ), itt de to produktfuksjoee o de itte tilae a arbeidskraft, må oppfylle betielse ( c, c ) (, ) c c. Illustrer løsie. ( c, c ) (, ) Sar: Med de opplysiee som å er itt, ser i at i ka sette i bibetielsee i yttefuksjoe o som leder til at optimeris- eller maksimerisproblemet ka skries som: Max ( (, ), (, ) ) side i å har é 0, frihetsrad. (Le merke til at i har to produktsfuksjoer, to balaserelasjoer a type x c, samt e ressursbetielse, som er fem relasjoer j j i mellom de i ariable ( x, c,,, ; i, ), me i leer å på kraee, i i i i i, slik at i elimierer tre a i utaspuktet fire frihetsrader. Det problemet i
2 i da har er å fordele de itte arbeidskraftsressurse (i dette tilfellet å bestemme, side føler år er bestemt) mellom de to produksjosaktiitetee. Dette er et problem studetee skal ha sett opptil flere aer. Det er uderforstått at de optimale bruke a arbeidskraft er bestemt som e idre løsi o bestemt a førsteordebetielse: c c (, ) (, ) ( ) 0 tekste., som ka skries slik som oppitt i Betielse i tekste uttrykker at de mariale substitusjosbrøk (MSB) mellom de to aree skal settes lik de mariale trasformasjosbrøk (MTB); med adre ord: Det atall eheter a are forbrukere er illi til å bytte bort for å få e ehet til a are, for et itt ytteiå, skal i et samfusøkoomisk optimum ære lik det mariale bytteforholdet på produksjosside. Om i skal øke tilae a are med e ehet, må dee sektore tilføres flere arbeidstimer. Dermed må, side i har full sysselsetti,, disse timee tas fra sektor som må redusere produksjoe a are med ( ) per ehets øki i tilae a are. ørsteordesbetielse utledet oer sier at i optimum bør de yttemessie erdsettie a de ehetee a are som de mariale time produserer, ære lik de yttemessie erdsettie a det atall eheter a are som dee time alteratit kue ha produsert. Disse ka illustreres på ulike måter: Ete i et badekardiaram, med bredde bestemt a de itte tilae a arbeidskraft, o måles mot de yttemessie erdsettie per mariale time las de loddrette aksee ær øye på at de bruker rikti måleehet. (Her ka oså studetee ise ha som er yttetapet om i eler e allokeri som ikke oppfyller førsteordesbetielse.) Dee ka alteratit illustreres (i eheter a are ) som.
3 3 Eller optimum ka illustreres i et diaram med produksjosmulihetskure o et sett a idiffereskurer. I e slik fiur bestemmes tilae (for direkte kosum) a de to aree ed taeri mellom produksjosmulihetskure o de høyest oppåelie idiffereskure; her er MSB = MTB. Oså her ka e illustrere yttetapet om e skulle ele e ae allokeri. (al sammeseti a produksjoe.) Vare Vare Å besare dette spørsmålet på e klar o tydeli måte må ærmest rees om et miimumskra i dette emet. De som bommer her o roter med forklarier o bereper, ute at oe a det som kommer etterpå er rikti, bør ikke oppå mer e.
4 4 b) Ata å at kosumet a are er «låst fast»; ds. c c, samtidi som de to areisatsee er ariable. Du skal bestemme de allokeri som maksimerer kosumet a are, c (, ), itt at (, ) c, o med itt tila a arbeidskraft. orklar hilke aeiier som il lie bak dee maksimerie o is at dee allokerie må oppfylle betielsee. i e tolki o forklari a disse betielsee. Sar: Med itt forbruk a are, er problemet å å fie fordelie a arbeidskraft på de to aktiitetee, størrelse på areisats i sektor (leert fra sektor ) o areisats i sektor leert fra sektor, slik at det ikke er muli å øke kosumet a are. Tilae a are for kosum ka realiseres dels ed økt arbeidsisats, økt areisats (fra sektor ) eller reduserte leeraser til sektor. Vi ka sette i for i -fuksjoe, samt for i uttrykket for c : Vi atar idre løsi o har dermed (med to frihetsrader): Max (, (, ) c ). (, ) Kaller i de fuksjoe som skal maksimeres for W(, ), il de (idre) produksjoseffektie allokerie oppfylle: W ( ) 0 år holdes kostat W 0 for fastholdt Samlet sett får i da de aeiiee som er itt i oppaetekste. De første a disse førsteordesbetielsee sier: or itte leeraser a areisats,, til sektor, il e øki i i e direkte produksjosøki a are lik. Side i har itt arbeidstilbud, il da måtte å ed, med de føle at (, ) c må å ed med per times øki i. Dermed il areisatse i sektor å ed, o isolert sett, il produksjoe a are måtte å ed med,, som da represeterer et idirekte produksjostap a at mer arbeidstid brukes i sektor. Så lee de direkte produksjosøkie a å bruke arbeidskraft i sektor
5 5 oerstier ha e da må i opp a areisats leert fra sektor, il det løe se å øke. or itt (optimal), ka dee aeiie uttrykkes som «like resekostader for are», eller like MTB er, itt ed:. Vestre side er defiert tidliere (pukt a), mes leddet på høyre side iser det atall eheter areisats (a are ) som er ødedi å frembrie e ehet til a are. De adre førsteordesbetielse holder for itt (optimal) bruk a de itte arbeidskraftressurse. Om i øker tilae a are med e ehet, ed å leere e ehet midre som areisats til sektor, il leerase a areisats fra sektor måtte å ed per ehets reduksjo i. Dette il forårsake e idirekte produksjoseda i sektor, med. Så lee de direkte eiste (lik é) oerstier kostade, eller de idirekte produksjosedae, il kosumet a are kue øke. Me i ser at dee betielse ka skries om likhet mellom to resekostader eller to MTB er:. resekostade for are, målt i det atall eheter a are som dermed fortrees, skal ære de samme uasett horda økie i c skjer. De som klarer å forklare de aeiiee som jøres her, bør få od uttelli. (Det ka lett bli litt «krolete».) c) Du er å, som samfusplaleer, satt til å ele de allokeri som maksimerer itt x (, ) c o x (, ) c, samt at, med ( c, c ) (, ) ije som ariable. Hilke ye aeiier, utoer dem som allerede er jort i puktee a o b, må å jøres? Sar: I pukt b holdt i kosumet a are kostat o utledet betielser for produksjoseffektiitet. Nå skal i bestemme de produktsammeseti blat alle produksjoseffektie allokerier som maksimerer ytte. Vi ka si at i i foreåede pukt har, ed å ariere det itte iået på kosum a are, fått fastlat de effektie produksjosmulihetee. Nå skal i plukke ut ett blat disse puktee slik at ytte maksimeres.
6 6 d) Beru o is at i ka skrie optimumsbetielsee fra pukt c som c. c Sar: Her eter i ikke at e il ree så mye; e skal kue trekke på det e har lært, ed at MSB er lik MTB mellom de to aree som er like for alle måter å frembrie e øki i tilae a are. I et samfusøkoomisk optimum skal i ha produksjoseffektiitet oppfylt, samt at produktsammesetie bestemmes a at MSB er lik MTB; eller marial betalisilje for are (i eheter a are ) skal ære lik resekostade. e) orklar kort horda dee allokerie ka realiseres som e markedslikeekt der alle aktører opptrer som prisfaste katumstilpassere, med e yttemaksimerede husholdissektor o profittmaksimerede bedrifter som eies a husholdissektore. Sar: Her bør i ikke forete full utledi (om dette jøres korrekt bra), bare at de iser at tilpasi til ekeltaktører til itte likeektspriser, a følede type: La oss måle alle priser i eheter a are ; prise på are settes til é. La derfor relati pris på are ære p o reallø w. Da har i følede idiiduelle beslutier (i atar at produktfuksjoee er slik at profittmaksimum ka beskries etydi ed førsteordesbetielser): Bedrift-type : Max p(, ) w med OB: (, ) p w 0 p Bedrift-type : Max (, ) w p med OB: (, ) w 0 p Husholdissektore: Max ( c, c ) itt pc c m : w ( p, w) ( p, w ), der m er ( c, c ) realitekte (itt som summe a arbeidsitekt o eieritekt). Tilpasie er kjeeteet ed tilpasie. (Her har i brukt at : p som samme med budsjettbetielse etydi fastleer j c.) j te å å i detalj om likeektsbetielser, profitt o budsjettbetielser, slik som i boka, er det ok her å peke på at i har følede oppfylt:
7 7 p side i har w p o w. Med adre ord, dersom disse prisee sikrer eerell likeekt, il dee oppfylle effektiitetsbetielsee fra pukt d. med adre ord: Markedslikeekte er samfusøkoomisk effekti. f) Vi ifører e offetli sektor som øsker å bruke e iss mede arbeidskraft. I e yttekostadsaalyse drøftes de samfusøkoomiske kostade ed at det offetlie leer besla på e lite mede arbeidskraft. Horda il du beree dee kostade? Sar: Om det offetlie skulle lee besla på e lite mede arbeidskraft i jeomførie a et prosjekt, il de samfusøkoomiske kostade ære de marialerdie som da fortrees. Her il dee kostade per time (i eheter a are ) ære itt ed realløa w p. Det er dee kostade som bør lees til ru i kalkyle. ) Ata å at fiasierie a det offetlie tiltaket skjer ed at det lees e skatt på forbruket a are med t per ehet. Er dette e ridede skatt? Beru saret. Sar: Det iføres e aift (i eheter a are ) på t per ehet a forbruket a are ; slik at forbrukere tilpasser se slik at MSB er lik kosumetprise; ds. som oerstier MTB p p t. Side dee skatte fører til at e eller flere a betielsee fra pukt d ikke leer er oppfylt, har i e ridede skatt. Marial erdsetti il oerstie marial kostad. (Skatte laer e kile mellom kosumetpris o produsetpris.) La oss å se bort fra at det offetlie bruker ressurser (slik som i puktee f o ). Vi skal teke oss at produksjosmulihetee i sektor påirkes positit a produktmede i sektor, slik at i å har at x (, ; x ), der x 0. or øri har i de samme sammeheee som tidliere i pukt c. h) Vis at i dette tilfellet ka de optimale allokerie beskries ed følede sett a marialbetielser:
8 8 c x x c bak disse betielsee.. i e tolki a de ulike aeiiee som lier Sar: Vi ka ete ete et sar som ku peker på at det er e positi ekster irki slik at de samfusøkoomiske akastie a å bruke ressurser i sektor il måtte ære høyere e de (ukorrierte) priatøkoomiske akastie, eller et sar som byer på direkte løsi a problemet slik som skissert edefor. Bee sar må aksepteres. Vi har her e positi ekster irki fra produksjoe a are på produksjosmulihetee i sektor. Det betyr at realløsie fies ed å maksimere følede fuksjo (på slutte a eksame ka dette fort å i stå for ekelte): W(,, ) ( (, ), (, ; (, )) ) med følede OB: W ( ) 0 x x eller x. Dee siste betielse sier at MSB på brukerside skal ære lik det som reelt sett fortrees a are om i øker produksjoe a are med mer bruk a arbeidskraft. De alteratie betielse x uttrykker at de samfusøkoomiske erdsettie a å bruke e arbeidstime til i sektor skal justeres opp som føle a de eiste som sektor høster a høyere x. Videre: W 0 x x eller x W 0
9 9 Vi ser lett at i får de tre betielsee som er itt i tekste. Disse sier at MSB skal ære lik de korrierte MTB ee, der korreksjoe faer opp de positie ekstere irkie. Tolkie er at de samfusøkoomiske resekostadee for are påirkes, o det på e slik måte at for de faktorer som brukes direkte i produksjoe a are, bør ha e laere resekostad i e samfusøkoomisk kalkyle e ha de ille ha hatt i et ureulert marked som (ormalt) il i for lite produksjo a are side produsetee a are da ikke il høste de fordelee som sektor oppår. I uttrykkee i tekste ser i at MTB mellom de to aree skal justeres ed slik at de faer opp dee positie ekstere irkie a økt produksjo a are på produksjosmulihetee i sektor. Dette betyr at MTB for hh arbeidskraft o bruk a are som isatsfaktor i sektor skal ha e laere resekostad e i e priatøkoomisk kalkyle, eller at marialerdsettie a disse faktoree brukt i sektor skal justeres opp slik at e får faet opp de positie ekstere irkie. i) Skisser kort ha det offetlie ka jøre for å få realisert dee optimale allokerie som e markedslikeekt. Sar: Her ka i ku ete et kort sar om at produksjoe i sektor bør subsidieres o det på e slik måte at markedsløsie med subsidie skal lede til e allokeri som oppfyller betielsee fra pukt h, emli høyere produksjo a are. Kort fortalt, o ute å å ærmere i på horda e stykksubsidie fiasieres, ka i la bedrift tilpasse se til e realpris på are som p s, med s som e (korrekt utformet) stykksubsidie (i eheter a are ), slik at de å maksimerer ( p s) (, ) w, samtidi som bedrift tilpasser se til prisee ( wp, ) o kosumetee (med y realitekt) til prise p. Bedrift il da tilpasse se som: ( ) p s w 0 ( p s), samtidi som i har p. Vi ser da at om i setter s w 0, utreet i de optimale løsie, il x aktøree på ee håd ledes til de allokeri i har i pukt h. p, o
10 0 Veiledi til sesorer: Dette er e omfattede o arbeidskreede oppae, litt krolete på ekelte pukter, me burde ære jekjeeli i form o ihold for de studetee som har jobbet jet o trutt jeom semesteret (Det ye er at tilae på produksjosfaktorer er ariabel ellers er problemet ærmest stadard) Vi bør beløe kadidater som iser at de har forstått oe; sel om e ikke skulle komme jeom hele oppae, ka e mode kadidat kue få B (kaskje A) om edkommede iser forståelse, klarhet o od isikt. De som iser at de ku ka ree ute å ise forståelse bør ikke hooreres for mye. Som påpekt tidliere, de som faller ut allerede uder pukt a, bør ikke passere det er så stadard at de bør kue jeomføre resoemetet raskt o tydeli, om de har forstått problemet. Vi bør oså beløe tolki o formidli a rikti tolki a de mariale aeiiee. (Husk oså at dee eiledie ormalt il lie oer det e ali kadidat il kue prestere det som her er skreet er mer som hjelp til dere sesorer håper je.)
Sensorveiledning eksamen ECON 3610 Høst 2017
J; oember 07 a) Sesoreiledig eksame ECON 360 Høst 07 I dette problemet skal plalegger maksimere (, ) gitt at c G( ) og. i har tre ariable (,, ), og to bibetigelser; dermed har i é frihetsgrad som muliggjør
DetaljerECON 3610/4610 Veiledning til oppgaver seminaruke 43. Planleggingsproblemet for en planlegger med en utilitaristisk velferdsfunksjon er her
Jo Vislie; oktober 07 CON 360/460 Veiledig til oppgaer semiaruke 43 Oppgae Plaleggigsproblemet for e plalegger med e utilitaristisk elferdsfuksjo er her rett frem, med de atakelsee som er gjort: Max H
DetaljerVeiledning til obligatoriske oppgave ECON 3610 høsten 2012
1 Veiledig til obligatoriske oppgave CON 361 høste 212 Oppgave 1. Betrakt, i første omgag, e lukket økoomi med e stor gruppe like kosumeter som kosumerer e kosumvare i megde og eergi, målt ved. Vi atar
DetaljerECON 3610/4610 høsten 2012 Veiledning til seminaroppgave 2 uke 37
Jon Vislie ECO 360/460 høsten 0 Veiledning til seminaroppgae uke 37 I de første forelesningene har i sett på følgende problemstilling (modell): Velg den allokering a arbeidskraft til fremstilling a to
Detaljerf '( x) 28x 6x 2 ( 2) x x 4(3t 2 s) 6s 2x 6(3t 2 s) 2t ln x 2ln y med bibetingelsen 2x y m. Her er m 0
Fsit obligtorisk oppgve Oppgve (9 poeg) Deriver følgede fuksjoer med hes på lle rgumeter ) f ( ) 7 f '( ) 8 6 svr: b) Svr: g ( ) ( ) ( ) g ( ) ( ) ( ) c) h( ) f ( )( ) Svr: h( ) f '( )( ) f ( ) d) Svr:
DetaljerLØSNING: Eksamen 17. des. 2015
LØSNING: Eksame 17. des. 2015 MAT100 Matematikk, 2015 Oppgave 1: økoomi a I optimum av T Rx er dt Rx 0 1 som gir d Ix Kx 0 2 dix dix dkx dkx 0 3 4 dvs. greseitekt gresekostad, q.e.d. 5 b Gresekostad ekstrakostade
DetaljerDetaljert løsningsveiledning til ECON1310 seminaroppgave 9, høsten der 0 < t < 1
Detaljert løsigsveiledig til ECON30 semiaroppgave 9, høste 206 Dee løsigsveiledige er mer detaljert e det et fullgodt svar på oppgave vil være, og mer utfyllede e e valig fasit. De er met som e guide til
DetaljerUNIVERSITETET I OSLO
UIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: ST 105 - Iførig i pålitelighetsaalyse Eksamesdag: 8. desember 1992 Tid til eksame: 0900-1500 Tillatte hjelpemidler: Rottma: "Matematische
DetaljerOppgave 1 IS-RR-PK- modellen Ta utgangspunkt i følgende modell for en lukket økonomi. der 0 < t < 1
Fasit Oppgaveverksted 3, ECON 1310, H15 Oppgave 1 IS-RR-PK- modelle Ta utgagspukt i følgede modell for e lukket økoomi (1) = C + I + G (2) C e C z c1( T) c2( i ), der 0 < c 1 < 1 og c 2 > 0, (3) I ( e
DetaljerEksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)
Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy
DetaljerI dag: Produktfunksjoner og kostnadsfunksjoner
ECON2200 Avedt økoomisk aalyse Diderik Lud, 8. februar 2010 Hva er dekket i disse otatee? Seks forelesiger av meg i ECON2200 våre 2010 8. og 22. februar, 2., 9. og 15. mars og 3. mai Legges ut på emeside
DetaljerKapittel 10 fra læreboka Grafer
Forelesigsotat i Diskret matematikk torsdag 6. oktober 017 Kapittel 10 fra læreboka Grafer (utdrag) E graf er e samlig pukter (oder) og kater mellom puktee (eg. odes, vertex, edge). E graf kalles rettet
Detaljerf(x) = x 2 x 2 f 0 (x) = 2x + 2x 3 x g(x) f(x) = f 0 (x) = g(x) xg0 (x) g(x) 2 f(x; y) = (xy + 1) 2 f 0 x = 2(xy + 1)y f 0 y = 2(xy + 1)x
Ogave a) f() = f 0 () = + 3 ) f() = g() f 0 () = g() g0 () g() c) f(; y) = (y + ) f 0 = (y + )y f 0 y = (y + ) d) f(; y) = ( y + ) ( y ) f 0 = ( y + ) r y ( y ) + ( y + ) ( y ) r y = ( y + )( r y y ) ((
DetaljerForelesning Elkraftteknikk 1, 17.08.2004 Oppdatert 23.08.2004 Skrevet av Ole-Morten Midtgård. HØGSKOLEN I AGDER Fakultet for teknologi
Forelesig Elkrafttekikk, 7.08.004 Oppdatert 3.08.004 Skreet a Ole-Morte Midtgård HØGSKOEN I AGDER Fakultet for tekologi Komplekse tall og isere Komplekse tall er sært yttige i aalyse a elkraftsystemer.
DetaljerDer oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.
Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning - Obligatorisk oppgave 1310, v15
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sesorveiledig - Obligatorisk oppgave 30, v5 Ved sesure tillegges oppgave vekt 20%, oppgave 2 vekt 60%, og oppgave 3 vekt 20%. For å bestå eksame, må besvarelse
Detaljer2T kapittel 3 Modellering og bevis Utvalgte løsninger oppgavesamlingen
T kapittel 3 Modellerig og bevis Utvalgte løsiger oppgavesamlige 301 a Sitthøyde i 1910 blir 170,0 171, 4 170,7. I 1970 blir de 177,1 179, 4 178,3. b Med som atall år etter 1900 og y som sitthøyde i cetimeter
DetaljerEksamen REA3028 S2, Våren 2011
Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l
DetaljerKapittel 7: Noen viktige sannsynlighetsfordelinger
Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe av
DetaljerEksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:
DetaljerFaglærer går normalt én runde gjennom lokalet. Ha evt. spørsmål klare!
Side 1 av 6 Noe viktige pukter: (i) (ii) (iii) (iv) Les hele eksamessettet øye før du begyer! Faglærer går ormalt é rude gjeom lokalet. Ha evt. spørsmål klare! Skriv svaree die i svarrutee og levér i oppgavearket.
DetaljerEksamen R2, Høsten 2010
Eksame R, Høste 00 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (6 poeg) a) Deriver fuksjoee ) f l f ( ) l l (l ) ) g( ) si cos f si
DetaljerFØLGER, REKKER OG GJENNOMSNITT
FØLGER, REKKER OG GJENNOMSNITT Espe B. Lagelad realfagshjoret.wordpress.com espebl@hotmail.com 9.mars 06 Iledig E tallfølge er e serie med tall som kommer etter hveradre i e bestemt rekkefølge. Kvadrattallee
DetaljerOppgave 1 IS-RR-PK- modellen Ta utgangspunkt i følgende modell for en lukket økonomi. der 0 < t < 1
Oppgaveverksted 4, ECON 30, H5 Oppgave IS-RR-PK- modelle Ta utgagspukt i følgede modell for e lukket økoomi () = C + I + G (2) C e C = z + c( T) c2( i π ), der 0 < c < og c 2 > 0, (3) I ( e I = z + b )
DetaljerFagdag 2-3mx 24.09.07
Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.
DetaljerOPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER
OPPGAVE 4 LØSNINGSFORSLAG Tallfølge i f) rektageltallee. Her er de eksplisitte formele R = ( +1) eller R = +. Dette er e adregradsfuksjo. I figurtallsammeheg forutsetter vi at de legste side er (øyaktig)
DetaljerLøsningsforslag til prøveeksamen i MAT1110, våren 2012
Løsigsforslag til prøveeksame i MAT, våre Oppgave : Vi har A = 3 III+I I+II 3 ( )II 3 3 Legg merke til at A er de utvidede matrise til ligigssystemet. Vi ser at søyle 3 og 4 i de reduserte trappeforme
DetaljerInnhold og forelesningsplan Eksempler på LP Begreper Løsning av enkelt eksempel Praktisk relevans Leksjon 2: Simpleksmetoden for løsning av LP
Lekso 2 Mål for kurset teoretisk forståelse, gruleggede optimerig løsigsmetoder LP og utvidelser algoritmisk forståelse avedelser LP og utvidelser modellerig og løsig v.h.a. verktøy Ihold og forelesigspla
DetaljerOM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z
OM TAYLOR POLYNOMER I dette otatet, som utfyller avsitt 6. i Gullikses bok, skal vi se på Taylor polyomer og illustrere hvorfor disse er yttige. Det å berege Taylor polyomer for håd er i prisippet ikke
DetaljerLøsning eksamen S2 våren 2010
Løsig eksame S våre 010 Oppgave 1 a) 1) f( ) l 1 f ( ) l l l l ( l 1) ) g ( ) 3e g( ) 3e 3e 6e b) Rekke er geometrisk med Rekke kovergerer. Summe er a1 1 1 s 1 k 1 1 1 1 1 k og oppfller dermed kravet 1
DetaljerRente og pengepolitikk. 8. forelesning ECON 1310 21. september 2015
Rete og pegepolitikk 8. forelesig ECON 1310 21. september 2015 1 Norge: lav og stabil iflasjo det operative målet for pegepolitikke, ær 2,5 proset i årlig rate. Iflasjosmålet er fleksibelt, dvs. at setralbake
DetaljerTerminprøve R2 Høsten 2014 Løsning
Termiprøve R Høste 04 Løsig Del Tid: 3 timer Hjelpemidler: Skrivesaker Oppgave (6 poeg) E flate i rommet er gitt ved likige: x 4x y 6y z 8z 0 0 a) Vis at puktet P3, 5, ligger på flate Puktet P3, 5, ligger
DetaljerTid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt.
Tid: 3 timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (3 poeg) Deriver fuksjoee a) f( ) cos5 f 5 si5 0 si5 g e si Vi bruker produktregele for derivasjo,
DetaljerEksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksame 6.05.010 REA304 Matematikk R Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del : Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer: Del 1 skal leveres
DetaljerTotalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21%
TMA4100 Høste 2007 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Kommetarer til eksame Dette dokumetet er e oppsummerig av erfarigee fra sesure av eksame i TMA4100 Matematikk
DetaljerLeica Lino Presis selvhorisonterende punkt- og linjelaser
Impex Produkter AS Verkseier Furuluds vei 15 0668 OSLO Tel. 22 32 77 20 Fax 22 32 77 25 ifo@impex.o www.impex.o Leica Lio Presis selvhorisoterede pukt- og lijelaser Still opp, slå på, klar! Med Leica Lio
DetaljerAVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE
AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Statistikk Gruppe(r): Alle ( 2. årskull) Eksamesoppgav Atall sider (ikl. e består av: forside): 5 Tillatte hjelpemidler: Emekode: LO070A Dato: 11.06.2004
DetaljerForkunnskaper i matematikk for fysikkstudenter. Derivasjon.
Defiisjo av derivert Vi har stor ytte av å vite hvor raskt e fuksjo vokser eller avtar Mer presist: Vi øsker å bestemme stigigstallet til tagete til fuksjosgrafe P Q Figure til vestre viser hvorda vi ka
Detaljerx n = 1 + x + x 2 + x 3 + x x n + = 1 1 x
Potesrekker Forelest: 29. Sept, 2004 Vi lærte fra de geometriske rekkee at x = 1 + x + x 2 + x 3 + x 4 + + x + = 1 1 x så lege x < 1. For uttrykket til høyre er ikke oe aet e sum-formele for geometriske
DetaljerAVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE
AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Eksamesoppgave består av: Atall sider (ikl forside): 5 Emekode: FO 9A Dato: 69 Atall oppgaver: Fagasvarlig: Ulf Uttersrud
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel
DetaljerKapittel 8: Estimering
Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som
DetaljerResponsiv design i Muse. Merete Jåsund, IGM AS. making. d e s i
Resposiv desi i Muse Merete Jåsud, IGM AS maki d e s i maki maki Resposiv desi i Muse OPPRETTE EN RESPONSIV SITE For å opprette e resposiv ettside, se kapittelet «Opprette e y site» på side 10. Opprett
Detaljer8 + 2 n n 4. 3n 4 7 = 8 3.
Seksjo 4. Oppgave (). Fi greseverdiee: 8 a) 4 + 4 7 b) 4 +7 5 c) + 7 4 ( ) d) 5 4 44 + 5 4 e) 5 + si() e +6 5 Løsig. Vi vil bruke samme metode som i Eksempel 4..5 fra boke i disse oppgavee. Når vi skal
DetaljerLøsningsveiledning, Seminar 9
Løsningsveiledning, Seminar 9 Econ 3610/4610, Høst 2016 Oppgave 1 (oppg. 3 eksamen H11 med noen små endringer) Vi betrakter en aktør på to tidspunkter, 1 og 2. Denne aktøren representerer mange aktører
DetaljerEksamen REA3028 S2, Våren 2010
Eksame REA308 S, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (6 poeg) a) Deriver fuksjoee: 1) f x x lx f x x lx x x f
DetaljerKap. 9: Inferens om én populasjon
2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)
DetaljerRente og pengepolitikk 1. Innhold. Forelesningsnotat 9, februar 2015
Forelesigsotat 9, februar 2015 Rete og pegepolitikk 1 Ihold Rete og pegepolitikk...1 Hvorda virker Norges Baks styrigsrete?...3 Pegemarkedet...3 Etterspørselskaale...4 Valutakurskaale...4 Forvetigskaale...5
DetaljerUkeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1
Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable
DetaljerUke 12 IN3030 v2019. Eric Jul PSE-gruppa Ifi, UiO
Uke 12 IN3030 v2019 Eric Jul PSE-gruppa Ifi, UiO Oblig 5 Kovekse Ihylliga Itroduksjo De kovekse ihylliga til pukter Oblig 5 Hva er det, defiisjo Hvorda ser de ut Hva brukes de til? Hvorda fier vi de? 24
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning ECON 1310, h15
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sesorveiledig ECON 30, h5 Ved sesure tillegges oppgave vekt /6, oppgave 2 vekt 2/3, og oppgave 3 vekt /6. For å få godkjet besvarelse, må de i hvert fall: Oppgave
DetaljerKap. 9: Inferens om én populasjon
2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)
DetaljerLøsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan
Løsigsforslag for adre obligatoriske oppgave i STK11 Våre 27 Av Igu Fride Tvete (ift@math..uio.o) og Ørulf Borga (borga@math.uio.o). NB! Feil ka forekomme. NB! Sed gjere e mail hvis du fier e feil! Oppgave
DetaljerAVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE
AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Emekode: FO 019A Dato: 12.12.200 Faglig veileder: Ulf Uttersrud Eksamestid: 9-14 Eksamesoppgave består av: Atall sider
DetaljerSensorveiledning ECON 1410: Internasjonal Økonomi; vår a) NORD har absolutt fortrinn i produksjonen av begge varer siden A < a og
1 Sesorveiledig ECO 1410: Itersjol Økoomi; vår 2004 ) ORD hr solutt fortri i produksjoe v egge vrer side < og < ; det rukes færre timer per ehet produsert v hver vre i ORD e i SØR. Komprtive fortri er
DetaljerKap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren
2 Kap. 9: Iferes om é populasjo I Kapittel 8 brukte vi observatore z = x μ σ/ for å trekke koklusjoer om μ. Dette krever kjet σ (urealistisk). ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for
DetaljerILLUSTRATOR enklere enn noensinne. Merete Jåsund, IGM. making. d e s i
ILLUSTRATOR eklere e oesie Merete Jåsud, IGM maki maki Illustrator eklere e oesie I de siste versjoe av Illustrator er eda flere ti blitt redierbare til siste slutt - e trekk som mer e oe aet som har preet
Detaljer1. Egenverdiproblemet.
Forelesigsotater i matematikk Egeerdier og egeektorer Side Egeerdiproblemet De gruleggede problemstillige Fra de gruleggede matriseregige husker du sikkert at år e ektor multipliseres med e kadratisk matrise
DetaljerECON 2200 VÅREN 2014: Oppgaver til plenumsøvelse den 12.mars
Jo Vislie; mars 04 Ogave ECO 00 VÅRE 04: Ogaver til leumsøvelse de.mars E bedrift har rodutfusjoe = - b, der b er e ositiv ostat. Sisser grafe til dee og agi egesaee til rodutfusjoe (ved gjeomsittsrodutivitet,
DetaljerEKSAMEN Løsningsforslag
..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:
DetaljerKapittel 7: Noen viktige sannsynlighetsfordelinger
Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig (e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe
DetaljerStatistikk og økonomi, våren 2017
Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet
DetaljerKraftens moment er: Om A: r Om B: r' som har vektorene r. ' fra B. Det samlede kraftmomentet om A er da
yikk or igeiører. Litt tatikk. Side Litt tatikk. etigeer or ikeekt. Vi ka å ette opp etigeer or at et egeme ka ære i ro. Vi et aerede at ektorumme a de kretee om irker på egemet må ære ik u or at maeeteret
DetaljerDEL 1. Uten hjelpemidler 500+ er x
DEL 1 Ute hjelpemidler Oppgave 1 (18 poeg) 500 = + 8 er a) Vis at de deriverte til fuksjoe ( ) O O ( ) = 500+ 16 b) Deriver fuksjoee 1) f( ) = l( ) ) g( ) = e c) Vi har gitt polyomfuksjoe f( ) = 1 + 15
Detaljer«Uncertainty of the Uncertainty» Del 5 av 6
«Ucertaity of the Ucertaity» Del 5 av 6 v/rue Øverlad, Traior Elsikkerhet AS Dette er femte del i artikkelserie om «Ucertaity of the Ucertaity». Jeg skal vise deg utledig av «Ucertaity of the Ucertaity»-formele:
DetaljerKommentarer til oppgaver;
Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe
DetaljerNoen vanlige. Indikatorfordeling: 1, dersom suksess. I mange situasjoner kan fenomenet vi ser på. 0, dersom ikke suksess
Kapittel 5: Noe valige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighets- fordelig (e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe
DetaljerFysikk for ingeniører. 4. Arbeid og energi. Løsninger på blandede oppgaver. Side 4-1
4 rbeid o eneri Løsniner på blandede oppaer Side 4 - Løsniner på blandede oppaer Oppae 4: a) Je et at når riksjonstallet er µ, er størrelsen a riksjonskraten = µ N der N er normalkraten ra underlaet Siden
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir
DetaljerLøsningsforslag: Deloppgave om heuristiske søkemetoder
Løsigsforslag: Deloppgave om heuristiske søkemetoder 6. mai 00 Iledig Vi skal betrakte det såkalte grafdeligsproblemet (graph partitioig problem). Problemet ka ekelt formuleres som følger: Gitt e graf
DetaljerOppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?
ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt
DetaljerTMA4245 Statistikk Eksamen mai 2017
TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee
DetaljerMA1101 Grunnkurs Analyse I Høst 2017
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs Aalyse I Høst 07 Løsigsforslag Øvig..b) Vi skriver om 7 = 4 4 7 Korollar.. gir at 7 4 er irrasjoal (side vi vet 7 4 er
Detaljer«Uncertainty of the Uncertainty» Del 4 av 6
«Ucertaity of the Ucertaity» Del 4 av 6 v/rue Øverlad, Traior Elsikkerhet AS Iledig Dette er del fire i artikkelserie om «Ucertaity of the Ucertaity». I dag skal jeg vise deg utledige av formele: σ m s,
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksame i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: 6.05.017 Sesur kugøres: 16.06.017 Tid for eksame: kl. 14:30 17:30 Oppgavesettet er på 6 sider Tillatte helpemidler: Alle
DetaljerH 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2
TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4
DetaljerLøsning TALM1005 (statistikkdel) juni 2017
Løsig TALM1005 statistikkdel jui 2017 Oppgave 1 a Har oppgitt at sasyligte for at é harddisk svikter er p = 0, 037. Ifører hedelsee A : harddisk 1 svikter B : harddisk 2 svikter C : harddisk 3 svikter
DetaljerLøsningsveiledning, Seminar 10 Econ 3610/4610, Høst 2014
Løsningsveiledning, Seminar 10 Econ 3610/4610, Høst 014 Oppgave 1 (oppg. 3 eksamen H11 med noen små endringer) Vi betrakter en aktør på to tidspunkter, 1 og. Denne aktøren representerer mange aktører i
DetaljerEksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)
Eksempeloppgave 04 REA306 Matematikk S Eksempel på eksame våre 05 etter y ordig Ny eksamesordig Del : 3 timer (ute hjelpemidler) Del : timer (med hjelpemidler) Mistekrav til digitale verktøy på datamaski:
DetaljerObligatorisk oppgave nr. 3 i Diskret matematikk
3. obligatoriske oppgave i Diskret matematikk høste 08. Obligatorisk oppgave r. 3 i Diskret matematikk Ileverigsfrist. ovember 08 Oppgave er frivillig og tregs ikke leveres, me hvis dere leverer de ie
DetaljerMatematikk for IT. Oblig 7 løsningsforslag. 16. oktober
Matematikk for IT Oblig 7 løsigsforslag. oktober 7..8 a) Vi skal dae kodeord som består av sifree,,,, 7. odeordet er gldig dersom det ieholder et like atall (partall) -ere. Dee løses på samme måte som..:
DetaljerTermodynamikk og statistisk fysikk Oblig 3
FYS160 Termodyamikk og statistisk fysikk Oblig 3 Sidre Raem Bilde 19. september 015 Oppgave 0.3 - ikevekt i et spisystem a Fi multiplisitete til e krystall med atomer og vakaser. Svar: Jeg tolker oppgave
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Eksamensoppgave 1310, v15
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesoppgave 1310, v15 Ved sesure tillegges oppgave 1 vekt 20%, oppgave 2 vekt 60%, og oppgave 3 vekt 20%. For å bestå eksame, må besvarelse i hvert fall: Ha
DetaljerObligatorisk øvelsesoppgave ECON 3610/4610 HØST 2007 (Begge oppgaver bør fortrinnsvis besvares individuell besvarelse.)
Obligatorisk øvelsesoppgave ECON 36/46 HØST 7 (Begge oppgaver bør fortrinnsvis besvares individuell besvarelse.) Oppgave. Betrakt en lukket økonomi der det produseres en vare, i mengde x, kun ved hjelp
DetaljerEksamen REA3028 S2, Våren 2010
Eksame REA308 S, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (6 poeg) a) Deriver fuksjoee: 1) f xx lx ) gx 3 e x b) Gitt
DetaljerFakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Diskret matematikk
Fakultet for tekologi, kust og desig Tekologiske fag Eksame i: Diskret matematikk Målform: Bokmål Dato: 9. ovember 017 Tid: Atall sider (ikl. forside): 9 Atall oppgaver: 6 Tillatte hjelpemidler: Forhådsgodkjet
DetaljerEksamen S2, Høsten 2013
Eksame S, Høste 013 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler. Oppgave 1 (4 poeg) Deriver fuksjoee 1 x a) fx b) gx 5x 1 5 c) hx x e x 3 Oppgave (5 poeg)
DetaljerRealavkastning. Investeringsanalyse og inflasjon. Realavkastning av finansinvesteringer
Ivesteigsaalyse og iflasjo Nomiell avkastig og ealavkastig Reell låeete (ealete) Realivesteige og iflasjo Kotatstøm i omielle og faste pise Iflasjo og skatt Omløpsmidle og iflasjo Joh-Eik Adeasse 1 Høgskole
DetaljerAVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE
AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Eksamesoppgave består av: Atall sider (ikl forside): 5 Emekode: FO 9A Dato: 57 Atall oppgaver: Fagasvarlig: Ulf Uttersrud
DetaljerEcon 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering
Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON00 Matematikk 1 / Mikro 1 Eksamensdag: 14.06.01 Tid for eksamen: kl. 09:00 1:00 Oppgavesettet er på sider Tillatte hjelpemidler: Ingen tillatte
DetaljerEcon 2130 Forelesning uke 11 (HG)
Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig
DetaljerPrøveeksamen 2. Elektronikk 24. mars 2010
Prøveeksame 2 Elektroikk 24. mars 21 OPPGAVE 1 E 8 bit D/A-omformer har et utspeigsområde fra til 8 V V 1LSB, der V 1LSB er de aaloge speige som svarer til det mist sigifikate bit (LSB). a) Hvor stor er
DetaljerEksamen INF3350/INF4350 H2006 Løsningsforslag
Eksame INF3350/INF4350 H2006 Løsigsforslag Oppgave. Score (eller bit score) S' er e statistisk idikator på hvor sigifikat e match er. Høyere bit score svarer til høyere sigifikas. Idikatore er uavhegig
DetaljerARBEIDSHEFTE I MATEMATIKK
ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består
DetaljerVeiledning oppgave 3 kap. 2 i Strøm & Vislie (2007) ECON 3610/4610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk
1 Jon Vislie; august 27 Veiledning oppgave 3 kap. 2 i Strøm & Vislie (27) ECON 361/461 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Vi betrakter en lukket økonomi der vi ser utelukkende på bruk av
Detaljer2. Bestem nullpunktene til g.
Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).
DetaljerFaglærer går normalt én runde gjennom lokalet. Ha evt. spørsmål klare!
Side 1 av 7 Noe viktige pukter: (i) (ii) (iii) (iv) Les hele eksamessettet øye før du begyer! Faglærer går ormalt é rude gjeom lokalet. Ha evt. spørsmål klare! Skriv svaree die i svarrutee og levér i oppgavearket.
DetaljerVi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall
Kapittel 8 Oppsummerig-Rekker Rekker er summe til edelig eller uedelig mage ledd i e tallfølge. Potesrekker ka beyttes til å uttrykke vaskelige fuksjoer om et pukt. Ma ka skreddesy potesfuksjoer ved hjelp
DetaljerHøgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008
Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:
Detaljer