Litt generelt om systemidentifikasjon.

Størrelse: px
Begynne med side:

Download "Litt generelt om systemidentifikasjon."

Transkript

1 Stavanger, 29. juni 2016 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. Innhold 1 Systemidentifikasjonsproblemet 2 2 Systemmodeller 3 3 De ulike steg i systemidentifikasjon 6 4 System Identification Toolbox Noen begreper brukt i SIT Eksempel Control System Toolbox 9 6 Simulink 10 Litt generelt om systemidentifikasjon. Dette er litt generelt om systemidentifikasjonsproblemet. Dessuten er det her med litt spesielt om de ulike verktøy i Matlab som er nyttige i denne sammenheng. For mer fullstendig beskrivelse og dokumentasjon henvises til Matlab sin omfattende dokumentasjon for System Identification Toolbox (SIT) og tilsvarende dokumentasjon for Control System Toolbox (CST). Også Matlab og SimuLink sin generelle dokumentasjon er nyttige i denne sammenheng. Karl Skretting, Institutt for data- og elektroteknikk (IDE), Universitetet i Stavanger (UiS), 4036 Stavanger. Sentralbord Direkte E-post: karl.skretting@uis.no.

2 1 Systemidentifikasjonsproblemet Problemet beskrives gjerne best med noen enkle spørsmål og svar. Hva er et system? Et system er i denne sammenheng definert som en mer eller mindre lukka enhet. Den påvirkes av et eller flere signal (innsignal) og kanskje også av andre forhold, så som intern tilstand, ukjente faktorer, eller tilfeldig støy. Her lager også systemet et eller flere nye signal (utsignal eller målesignal). Systemer er dermed alltid (i denne sammenheng) relatert til signal. Hva er systemidentifkasjon? Systemidentifikasjon gjør det mulig å lage matematiske modeller av et dynamiske system basert på målinger av inngang- og utgangssignal. Dynamisk betyr at innganger, tilstander, og utverdier for signalet endrer seg over tid. Hva kan systemidentifkasjon brukes til? Disse modellene kan så brukes til regulering av systemet, eller til prediksjon av framtidige tilstander i systemet. Det kan også gi nyttig kunnskap om systemet, som for eksempel kan brukes hvis en skal modifisere og videreutvikle systemet eller lage et nytt tilsvarende system. Sammen med en matematisk modell av systemet kan en også bruke systemidetifikasjon for estimering av tilstander som ikke blir direkte målt, (virtual measurement). Hvordan kan en identifisere et system? I sin enkleste form gjør en dette ved å velge en eller annen form for modell av systemet, og så tilpasser en noen systemparametre i modellen slik at denne passer best mulig med den observerte virkeligheten. Hvordan kan en avgjøre om en modell er god (riktig)? Det er ofte vanskelig å komme med et absolutt riktig svar. Men en god test er å bruke samme innsignal på modellen som på det virkelige systemet, vel å merke et annet innsignal enn det som ble brukt ved systemidetifikasjonen, og så sammenligne utsignalene fra systemet med utsignalene fra modellen. Datasettet en bruker kalles gjerne verifiseringsdata. Kan en vurdere kvaliteten av modellen på andre måter? Det er ofte nyttig å se på differansen mellom det virkelige utsignalet og det simulerte utsignalet. Denne differansen bør være ukorrelert med annen tilgjengelig informasjon, det vil ofte si innsignalet. Hvilke typer modeller er mest vanlig? En kan i prinsippet ha alle typer modeller i systemidentifikasjon. De vanligste er likevel modeller som kan beskrives med differanseligninger, slik som ARX og ARMAX modeller, og lineære tilstandsrommodeller. Må en anta en spesiell form på modellen? For parametriske modeller så må en angi strukturen, dette er gjerne ganske 2

3 enkelt. Hvis en kun antar lineær modell så kan en finne impulsrespons, det er en entydig måte å beskrive systemet på, ut fra korrelasjonsanalyse, eller en kan finne frekvensresponsen, det er en annen entydig måte å beskrive systemet på, med hjelp av spektralanalyse. Er det ei begrensning å kun bruke lineære modeller? Ikke egentlig. De viktigste ikke-lineære effektene er gjerne knyttet direkte til signalene, og ved å ta en ikke-lineær transformasjon av dette signalet kan en da få en lineær modell. For eksempel så kan ei punpe som styres av en innspenning gi en flyt som ikke er lineær med inngangssignalet, men ved å kompensere med en ulineær funksjon, den inverse av pumpekarakteristikken, så kan en få en lineær sammenheng mellom styresignal og flyt gjennom punpa. God kunnskap om fysikken omkring systemet er nødvendig for å gjøre dette riktig, men en kan da ofte få en lineær beskrivelse av de fleste systemer. I tillegg er det også så at alle kontinuerlige systemer kan tilnærmes ganske godt innen et begrenset arbeidsområde med en lineær modell. 2 Systemmodeller For å kunne gjøre systemidentifikasjon trenger en en del grunnleggende kunnskap om dynamiske systemer. Dette er behandlet i notat 1 og tas de første ukene i dette kurset. Jeg regner også med at dere har vært borti mye av dette tidligere i fag som Reguleringsteknikk, Signaler og systemer og Signalbehandling. Signal Et system, og dermed også en modell av systemet, er her definert som en enhet som påvirkes av et (eller flere) innsignal og gir ut et (eller flere) utsignal. Modellen beskriver dermed en sammenheng mellom ulike signal. En enkel figur som illustrere dette er e u Ukjent system y En har her kalla det målte, og dermed kjente, innsignalet for u, det ikke målte innsignalet er e som en ofte kaller forstyrrelse eller støy, og utsignalet er y. For diskrete systemer kjenner en signalverdiene for bestemte tidssteg, og da skriver en gjerne u(k), y(k) og også e(k) selv om en ikke kjenner verdien, en antar likevel ofte noen egenskaper for e(k), for eksempel at det er hvit støy. 3

4 I kontinuerlige system, de fleste fysiske systemer er kontinuerlige, skriver en u(t), y(t) og e(t). Har en flere inn- og utsignal er det vanlig å nummerere disse: u 1 (k), u 2 (k), u 3 (k),..., og y 1 (k), y 2 (k), y 3 (k),.... Det er ofte hensiktsmessig å samle disse i en kolonnevektor, for eksempel u(k) = [u 1 (k), u 2 (k),...] T og en skriver også ofte denne uten fet skrift, da betyr u(k) et eller flere diskrete utsignal. Dynamisk diskret modell For et fysisk system har en ofte ei eller flere differensialligninger som beskriver sammenhengen mellom de ulike signal. Ved å sample signalene kommer en fram til noen differanseligninger som beskriver den tilsvarende dynamiske diskrete modellen. For en lineær modell har en lineære differanseligninger, et eksempel er y(k) 1.5y(k 1) + 0.7y(k 2) = 0.9u(k 2) + 0.5u(k 3). (1) Dette er en ARX-modell. En kan nå finne y verdien ved et tidsteg ut fra y og u verdier ved tidligere tidssteg. y(k) = 1.5y(k 1) 0.7y(k 2) + 0.9u(k 2) + 0.5u(k 3). (2) Vi ser da at resultatet er en lineær kombinasjon av tidligere utverdier og innverdier. Koeffisientene i denne lineære ligningen er parametrene i modellen Utenom ARX-modellen er det flere andre lineære modeller som kan brukes, vi skal komme tilbake til noen av dissse senere i kurset. Lineær tilstandsrommodell Spesielt viktig i systemidentifikasjon er den diskrete lineære tilstandsrommodellen. I en tilstandsrommodell har en i tillegg til inn- og utsignalene også noen interne signal eller tilstander, i den diskrete form skrives disse som x 1 (k), x 2 (k), x 3 (k),... eller bare x(k) der det betyr en enkel tilstand eller en vektor der flere tilstander er samlet. Den lineære tilstandsrommodellen (uten støy/forstyrrelser) skrives x(k + 1) = Φx(k) + Γu(k) (3) y(k) = Dx(k) + Eu(k). (4) I de fleste systemer er E = 0. Denne modellen i ulike varianter skal vi bruke mye. Figuren 1 viser en oversikt over hvordan ulike systembeskrivelser henger sammen. 4

5 Kontinuerlig Diskret u(t) h(s), x(t) u(s) y(t) y(s) Diskretisering u(k) h(z), x(k) u(z) y(k) y(z) Modell Fysisk system ẋ = f(...) y = g(...) ẋ = Ax + Bu y = Dx + Eu Matematisk modellering D 1 Linearisering D 2 x(k + 1) = f(...) y(k) = g(...) x(k + 1) = Φx(k) + Γu(k) y(k) = Dx(k) + Eu(k) L L 1 Z Z 1 D 3 h(s) = y(s)/u(s) Eksperiment h(z) = y(z)/u(z) Observerte signal, u og y Generell Tilstandsrommodell Lineær Transferfunksjon Figur 1: Oversikt over ulike systembeskrivelser og overganger. Det å forstå disse ulike måtene å beskrive systemer på, og ikke minst overganger mellom disse, er viktig i systemidentifikasjon. Her er signalet u pådraget, signalet y er (målt) utgang, systemets transferfunksjon er h, og systemets tilstand er x. En kan ofte forenkle med å måle tilstanden(e) direkte og da har en y = x. 5

6 3 De ulike steg i systemidentifikasjon 1. Sette opp et eksperimet og samle inn et sett med data, inn- og utsignal. 2. Undersøke data for eksempel ved å plotte signalene. Utføre eventuell forbehandling av data så som glatting (fjerning av utliggere), filtrering, resampling, og valg av område en vil bruke. 3. Definere en eller flere modellstrukturer en vil teste, og hvor mange parametre en vi ha. 4. For hver modell finner en så beste sett med parametre. Noen av modellene er gjerne gode nok, og disse tar en med videre. 5. Egenskaper for de ulike modeller undersøkes. Spesielt testes de mot valideringsdata. 6. Den beste modellen velges og hvis den er god nok avsluttes prosessen. Hvis ikke går en tilbake til steg 3, eller kanskje til og med til steg 1 eller 2. 4 System Identification Toolbox Matlab med verktøykasser og Simulink er viktige verktøy i faget ELE620. Det er så at eksempler, øvinger og oppgaver har blitt utviklet over tid, og de kan derfor inneholde kommandoer eller funksjoner som nå er utgått eller (mer vanlig) som brukes noe annerledes i nyere versjoner. Matlab kommer nå med 2 oppdateringer per år. Stort sett takler nye versjoner av Matlab kode utviklet for eldre versjoner rimelig godt, men problemer kan forkomme. Et typisk eksempel er at hjelptekst er tilpasset siste versjon av kommandoen, og at argumenter som kunne brukes tidligere (og spom nå er forelda, men som virker fortsatt) dermed er udokumentert. Jeg bruker nå Matlab versjon 8.3 (R2014a) på min kontor PC. System Identification Toolbox (SIT) er et verktøy som utvider funksjonaliteten i Matlab. Målet er å gjøre det enklere å tilpasse en matematisk modell til gitte inn- og utsignaler. I lista over er det punkt 2 til 5 som kan gjøres med SIT. Jeg har ulike versjoner av Matlab installert på de PCene jeg bruker, og dere kan gjerne ha en annen versjon. Det kommer ny versjon av Matlab en til to ganger i året, og det er ofte lite (eller ingen) endringer i de fleste toolbox -ene, men innimellom skjer det store oppdateringer i noen av disse. SIT i versjon 9.0 (R2014a) er ganske lik tidligere versjoner. Den viktigste delen i SIT er det grafiske brukergrensesnittet, ident. Derfra kan en gjøre det aller meste i SIT 6

7 på en brukervennlig måte. Alternativt kan en bruke SIT objekter, metoder og funksjoner på samme måte som i Matlab kommandolinje grensesnittet. 4.1 Noen begreper brukt i SIT Modell Det er viktig å vite hvordan SIT bruker modeller. Dette er forklart i SIT dokumentasjonen i del Introduction to System Identification Toolbox Models. De ulike klassene som er med i SIT er listet i del Types of Model Objects, de viktgste er idproc, idpoly og idss. Se figur 2. Estimeringsdata Det er det datasettet, inn- og utsignal, som en bruker for velge en modell og å tilpasse parametrene til. I det grafiske grensesnittet (GUI) til SIT er dette det samme som working data. Valideringsdata Det er det datasettet, inn- og utsignal, som en bruker for å kontrollere modellen med. Dette bør være et annet datasett enn estimeringsdata, men det bør være data tatt opp under samme forhold. Modell visninger (model views) Dette er ulike måter å vise modellen på. En viser da ulike egenskaper for modellen, det kan være slik som poler og nullpunkt, impuls-, steg- og frekvensrespons. Data visninger (data views) Dette er ulike måter å vise data, det vil si inn- og utsignalene, på. En kan glatte data og fjerne utliggere eller datadeler som er målt feil. Frekvensinnhold, gjerne vist i form av periodogrammer, er ofte også interessant. Modell sett For estimeringsdata lager en gjerne et sett med modeller, gjerne delt inn i ulike strukturer. En kan for eksempel ha noen ARX-modeller, der orden varierer, og noen ARMAX-modeller der både orden og antall parametre i MA-delen kan variere, samt noen andre typer modeller. En kan så først finne de beste paramtrene for hver modell, og så videre finne den besten modellen innen hver familie og gjerne også totalt sett, ved å se på avviket mellom simulert og virkelig utsignal, estimeringsfeilen. Modell validering Her prøver en å oppnå tillit til at den modellen en har funnet er god, passer med det virkelige systemet. En særs viktig test her er om modellen er i stand til å gjenskape utsignal i valideringsdata ut fra innsignal i valideringsdata. 7

8 Figur 2: (Fra Matlab dokumentasjon) The following diagram illustrates the relationships between the types of model objects in Control System Toolbox, Robust Control Toolbox, and System Identification Toolbox software. Model types that begin with id require System Identification Toolbox software. Model types that begin with u require Robust Control Toolbox software. All other model types are available with Control System Toolbox software. The diagram illustrates the following two overlapping broad classifications of model object types: Dynamic System Models vs. Static Models In general, Dynamic System Models represent systems that have internal dynamics, while Static Models represent static input/output relationships. Numeric Models vs. Generalized Models Numeric Models are the basic numeric representation of linear systems with fixed coefficients. Generalized Models represent systems with tunable or uncertain components. 8

9 4.2 Eksempel SIT dokumentasjonen inneholder flere eksempler. Før en starter å bruke funksjoner en ikke kjenner så er det nyttig å kjøre gjennom eksempel der funksjonen brukes. Getting started delen av SIT dokumentasjonen inneholder tre eksempler, hvorav to er særlig nyttige. Forhåpentligvis får vi tid til å se på disse i forelesningene, hvis ikke er de såpass enkle å gjennomføre at de kan gjøres på egenhånd. Hvis en kan Matlab kommandolinje grensesnittet godt er det gjerne greiest å starte med eksempelet Estimating Linear Models in the MATLAB Command Window der en bruker datasettet co2data. Eksempelet Estimating Linear Models Using the System Identification Tool kan i så fall tas deretter. Ellers kan en ta eksemplene i en annen rekkefølge. 5 Control System Toolbox Control System Toolbox (CST) er en verktøykasse med funksjoner som utvider Matlab med klasser, algoritmer eller metoder og funksjoner spesielt retta mot reguleringsteknikk og systemteori. Noen generelle oppgaver i CST er også tilgjengelige via grafisk brukergrensesnitt (GUI), men mye er også kun tilgjengelig fra Matlab kommandolinje grensesnittet. CST er mer generell enn SIT, men disse verktøykassene er tildels overlappende i funksjonalitet. CST er mer omfattende enn SIT, og dokumentasjonen større, mange av delene her er mest for spesialister i systemteori. For vår del er kapitlene Getting Started og Creating and Manipulating Models i CST dokumentasjonen mest aktuelle. CST i versjon 9.7 (R2014a) er ganske lik tidligere versjoner, men det ble gjort ganske omfattende endringer for 5-6 år siden. Mange av de gamle funksjonene er nå blitt foreldet, og jeg skal nå etter hvert ha fjernet de fra notater og eksempler, men enkelte spor kan fortsatt henge igjen. Modeller eller systemer i CST kan opprettes og representeres på flere ulike måter, og en kan ofte gå direkte fra en representasjonsform til en annen. Forklaring og eksempel på hvordan en kan lage modeller er i delen Building Models i Getting Started i CST dokumentasjonen. Lineære system kan lages på flere måte, her er eksempler klippet fra dokumentasjonen sys = tf(num,den) % Transfer function sys = zpk(z,p,k) % Zero/pole/gain sys = ss(a,b,c,d) % State-space sys = frd(response,frequencies) % Frequency response data De lager da typisk et Matlab-objekt med navn sys og klasse (datatype) med samme navn som funksjonen. 9

10 6 Simulink Simulink er også en utvidelse av Matlab, det er et grafisk system for modellering velegnet for å bygge, teste, simulere og verifisere systemmodeller. Vi vil bruke denne litt i systemidentifikasjonsfaget, selv om denne pakken brukes helst etter at systemidentifikasjon er gjort. 10

Litt generelt om systemidentifikasjon.

Litt generelt om systemidentifikasjon. Stavanger, 31. juli 2018 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2018. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Innhold

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. 1 Øving med systemidentifikasjon.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. 1 Øving med systemidentifikasjon. Stavanger, 23. juni 2017 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2017. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Innhold

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Stavanger, 26. juni 2017 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2017. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Innhold

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. 1 Stokastiske system og prosesser 2

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. 1 Stokastiske system og prosesser 2 Stavanger, 4. august 016 Det teknisknaturvitenskapelige fakultet ELE60 Systemidentifikasjon, 016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Detaljer

Eksamen i MIK130, Systemidentifikasjon

Eksamen i MIK130, Systemidentifikasjon DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK30, Systemidentifikasjon Dato: Fredag 4. desember 2007 Lengde på eksamen: 4 timer Tillatte hjelpemidler: ingen

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning. 1 En kort oppsummering Adaptiv filtrering 2. 3 Prediksjon 4

Generell informasjon om faget er tilgjengelig fra It s learning. 1 En kort oppsummering Adaptiv filtrering 2. 3 Prediksjon 4 Stavanger, 13. august 2013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 2013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 1 En kort oppsummering. 1 2 Adaptiv

Detaljer

Dato: fredag 14 desember 2007 Lengde på eksamen: 4 timer Tillatte hjelpemidler: ingen. 1 Diskret tilstandsrommodell 2. 2 Stående pendel 4

Dato: fredag 14 desember 2007 Lengde på eksamen: 4 timer Tillatte hjelpemidler: ingen. 1 Diskret tilstandsrommodell 2. 2 Stående pendel 4 DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Løsningsforslag Eksamen i MIK30, Systemidentifikasjon Dato: fredag 4 desember 2007 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk. Løsningsforslag Eksamen i MIK130, Systemidentifikasjon (10 sp)

DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk. Løsningsforslag Eksamen i MIK130, Systemidentifikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Løsningsforslag Eksamen i MIK3, Systemidentifikasjon ( sp) Dato: torsdag 6 desember Lengde på eksamen: 4 timer Tillatte

Detaljer

4.1 Diskretisering av masse-fjær-demper-system. K f m. x m u m y = x 1. x m 1 K d. Dette kan skrives på matriseform som i oppgaven med 0 1 A =

4.1 Diskretisering av masse-fjær-demper-system. K f m. x m u m y = x 1. x m 1 K d. Dette kan skrives på matriseform som i oppgaven med 0 1 A = Stavanger, 5. september 08 Det teknisknaturvitenskapelige fakultet ELE60 Systemidentifikasjon, 08. Innhold 4 Løsningsforslag og kommentarer, noen regneoppgaver. 4. Diskretisering av masse-fjær-demper-system...........

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Stavanger, 26. juni 2017 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2017. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Innhold

Detaljer

Eksamen i MIK130, Systemidentifikasjon

Eksamen i MIK130, Systemidentifikasjon DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon Dato: 21 februar 2007 Lengde på eksamen: 4 timer Tillatte hjelpemidler: ingen Bokmål

Detaljer

6 Modellering av smelteovn Modellering Tilstandsromform Diskretisering Observerbarthet Tidssteg...

6 Modellering av smelteovn Modellering Tilstandsromform Diskretisering Observerbarthet Tidssteg... Stavanger, 28. mai 2019 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2019. Innhold 6 Modellering av smelteovn. 1 6.1 Modellering............................. 1 6.2 Tilstandsromform..........................

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. med Kalman-filter og RLS.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. med Kalman-filter og RLS. Stavanger, 9. august 2016 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. systemidentifikasjon fra sprangrespons.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. systemidentifikasjon fra sprangrespons. Stavanger, 29. september 2016 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Detaljer

MIK-130 Systemidentifikasjon Løsningsforslag eksamen 28 mai 2004

MIK-130 Systemidentifikasjon Løsningsforslag eksamen 28 mai 2004 MIK-130 Systemidentifikasjon Løsningsforslag eksamen 28 mai 2004 Oppgave 1 a Energibalanse: Endring i energi = sum av tilført energi - sum av avgitt energi. Her får en da for vannet E t = (m vc pv T v

Detaljer

Eksamen i MIK130, Systemidentifikasjon (10 sp)

Eksamen i MIK130, Systemidentifikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon (10 sp) Dato: onsdag 24 november 2010 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning.

Generell informasjon om faget er tilgjengelig fra It s learning. Stavanger, 6. august 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 5.1 Implementering av IIR filter....................

Detaljer

Simulering i MATLAB og SIMULINK

Simulering i MATLAB og SIMULINK Simulering i MATLAB og SIMULINK Av Finn Haugen (finn@techteach.no) TechTeach (http://techteach.no) 13. november 2004 1 2 TechTeach Innhold 1 Simulering av differensiallikningsmodeller 7 1.1 Innledning...

Detaljer

Eksamen i MIK130, Systemidentifikasjon (10 sp)

Eksamen i MIK130, Systemidentifikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksaen i MIK130, Systeidentifikasjon (10 sp) Dato: Torsdag 17 deseber 2009 Lengde på eksaen: 4 tier Tillatte hjelpeidler:

Detaljer

Eksamen i MIK130, Systemidentikasjon (10 sp)

Eksamen i MIK130, Systemidentikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK3, Systemidentikasjon ( sp) Dato: onsdag 23 november 2 Lengde på eksamen: 4 timer Tillatte hjelpemidler: Kun

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning. 7.1 Stokastisk prosess Lineær prediktor AR-3 prosess...

Generell informasjon om faget er tilgjengelig fra It s learning. 7.1 Stokastisk prosess Lineær prediktor AR-3 prosess... Stavanger, 1. september 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 7.1 Stokastisk prosess..........................

Detaljer

Eksamen i MIK130, Systemidentifikasjon (10 sp)

Eksamen i MIK130, Systemidentifikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon (10 sp) Dato: Mandag 8 desember 2008 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk.

MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk. Stavanger, 25. januar 2012 Det teknisknaturvitenskapelige fakultet MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk. Vi skal i denne øvinga se litt på brytere, lysdioder og

Detaljer

Kalmanfilter på svingende pendel

Kalmanfilter på svingende pendel Kalmanfilter på svingende pendel Rolf Henriksen og Torbjørn Houge Institutt for teknisk kybernetikk NTNU 2005 Vi skal se på hvordan Kalmanfilteret fungerer på et velkjent eksempel, den svingende pendel

Detaljer

Lineær analyse i SIMULINK

Lineær analyse i SIMULINK Lineær analyse i SIMULINK Av Finn Haugen (finn@techteach.no) TechTeach (http://techteach.no) 20.12 2002 1 2 Lineær analyse i SIMULINK Innhold 1 Innledning 7 2 Kommandobasert linearisering av modeller 9

Detaljer

Tilstandsestimering Oppgaver

Tilstandsestimering Oppgaver University College of Southeast Norway Tilstandsestimering Oppgaver HANS-PETTER HALVORSEN http://home.hit.no/~hansha Innholdsfortegnelse 1 Grunnlag... 3 1.1 Statistikk og Stokastiske systemer... 3 1.2

Detaljer

Løsningsforslag Eksamen i MIK130, Systemidentifikasjon (10 sp)

Løsningsforslag Eksamen i MIK130, Systemidentifikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Løsningsforslag Eksamen i MIK3, Systemidentifikasjon ( sp) Dato: Mandag 8 desember 28 Lengde på eksamen: 4 timer Tillatte

Detaljer

1 Tidsdiskret PID-regulering

1 Tidsdiskret PID-regulering Finn Haugen (finn@techteach.no), TechTeach (techteach.no) 16.2.02 1 Tidsdiskret PID-regulering 1.1 Innledning Dette notatet gir en kortfattet beskrivelse av analyse av tidsdiskrete PID-reguleringssystemer.

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. Stavanger, 30. juni 2016 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. 1 Adaptiv filtrering 2.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. 1 Adaptiv filtrering 2. Stavanger, 23. juni 2017 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2017. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Innhold

Detaljer

Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler: Kun standard enkel kalkulator, HP 30S

Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler: Kun standard enkel kalkulator, HP 30S DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

Del 1: Leksjon Det anbefales å kjøre igjennom denne før dere begynner med oppgaven.

Del 1: Leksjon Det anbefales å kjøre igjennom denne før dere begynner med oppgaven. SO526E Multivariable Reguleringssystemer Øving 5 HiST-AFT aug 29 Pål Gisvold Innlevering: se framdriftsplan Tema: Matlab Identification Toolbox Del 1: Leksjon Det anbefales å kjøre igjennom denne før dere

Detaljer

Eksamen i MIK130, Systemidentifikasjon

Eksamen i MIK130, Systemidentifikasjon DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for elektroteknikk og databehandling Eksamen i MIK130, Systemidentifikasjon Dato: Mandag 28. november 2005 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

Tidsdiskrete systemer

Tidsdiskrete systemer Tidsdiskrete systemer Finn Haugen TechTeach 22.juli2004 Innhold 1 Tidsdiskrete signaler 2 2 Z-transformasjonen 3 2.1 Definisjon av Z-transformasjonen... 3 2.2 Egenskaper ved Z-transformasjonen... 4 3 Differenslikninger

Detaljer

Eksamen i ELE620, Systemidentikasjon (10 sp)

Eksamen i ELE620, Systemidentikasjon (10 sp) DE EKNISK - NAURVIENSKAPEIGE FAKUE Institutt for data- og elektroteknikk Eksamen i EE620, Systemidentikasjon (0 sp) Dato: Fredag 3 mars 207 engde på eksamen: 4 timer illatte hjelpemidler: Kun standard

Detaljer

Eksamen i MIK130, Systemidentifikasjon

Eksamen i MIK130, Systemidentifikasjon DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF347/447 Digital signalbehandling Eksamensdag:. desember 5 Tid for eksamen: 9. 3. Oppgavesettet er på 7 sider. Vedlegg: Ingen

Detaljer

Eksamen i ELE620, Systemidentikasjon (10 sp)

Eksamen i ELE620, Systemidentikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i ELE620, Systemidentikasjon (0 sp) Dato: Tirsdag 5 desember 205 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 29. mars 2007 Tid for eksamen: 09.00 2.00 Oppgavesettet er på 5 sider. Vedlegg: INF 3470 / INF 4470 Digital Signalbehandling

Detaljer

Quo vadis prosessregulering?

Quo vadis prosessregulering? Quo vadis prosessregulering? Morten Hovd PROST industrimøte Granfos, 24. Januar 2001 PROST Industrimøte, Granfos, 24. januar 2001 Hvor står vi? Et subjektivt bilde PROST Industrimøte, Granfos, 24. januar

Detaljer

Øving 1 ITD Industriell IT

Øving 1 ITD Industriell IT Utlevert : uke 37 Innlevert : uke 39 (senest torsdag 29. sept) Avdeling for Informasjonsteknologi Høgskolen i Østfold Øving 1 ITD 30005 Industriell IT Øvingen skal utføres individuelt. Det forutsettes

Detaljer

Eksamen i ELE620, Systemidentikasjon (10 sp)

Eksamen i ELE620, Systemidentikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for ata- og elektroteknikk Eksamen i ELE620, Systemientikasjon (10 sp) Dato: Manag 15 esember 2014 Lenge på eksamen: 4 timer Tillatte hjelpemiler: Kun

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING ESAMENSOPPGAVE Emne: Gruppe(r): Eksamensoppgav en består av: ybernetikk I 2E Antall sider (inkl. forsiden): 5 Emnekode: SO 38E Dato: 5. juni 2004 Antall oppgaver: 6 Faglig

Detaljer

Systemidentifikasjon Oppgaver

Systemidentifikasjon Oppgaver University College of Southeast Norway Systemidentifikasjon Oppgaver HANS-PETTER HALVORSEN http://home.hit.no/~hansha Innholdsfortegnelse 1 Innledning... 3 2 Minste kvadraters metode... 4 3 Validering...

Detaljer

Eksamen i ELE620, Systemidentifikasjon (10 sp)

Eksamen i ELE620, Systemidentifikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i ELE620, Systemidentifikasjon (10 sp) Dato: tirsdag 17 desember 2013 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

Stabilitetsanalyse i MATLAB og LabVIEW

Stabilitetsanalyse i MATLAB og LabVIEW Stabilitetsanalyse i MATLAB og LabVIEW Av Finn Haugen (finn@techteach.no) TechTeach (http://techteach.no) 21.12 2002 1 2 TechTeach Innhold 1 Stabilitetsanalyse i MATLAB og LabVIEW 7 1.1 MATLAB... 7 1.1.1

Detaljer

Control Engineering. MathScript. Hans-Petter Halvorsen

Control Engineering. MathScript. Hans-Petter Halvorsen Control Engineering MathScript Hans-Petter Halvorsen Dataverktøy MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/ Implementering Reguleringsteknikk Serie, Parallel,

Detaljer

Løsningsforslag øving 8

Løsningsforslag øving 8 K405 Reguleringsteknikk, Vår 206 Oppgave Løsningsforslag øving 8 a Vi begynner med å finne M 2 s fra figur 2 i oppgaveteksten. M 2 s ω r 2 ω h m sh a sh R2 sr 2 ω K v ω 2 h m sh a sh R2 sr 2 h m sh a sh

Detaljer

Eksamensoppgave i TELE2001 Reguleringsteknikk

Eksamensoppgave i TELE2001 Reguleringsteknikk Fakultet for teknologi Eksamensoppgave i TELE2001 Reguleringsteknikk Faglig kontakt under eksamen: Fredrik Dessen Tlf.: 48159443 Eksamensdato: 7. juni 2016 Eksamenstid (fra-til): 09:00 til 14:00 Hjelpemiddelkode/Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: mai 2002 IN 155 Digital Signalbehandling Tid for eksamen: 6. mai 9.00 21. mai 12.00 Oppgavesettet er på 5 sider.

Detaljer

Løsningsforslag Eksamen i MIK130, Systemidentikasjon (10 sp)

Løsningsforslag Eksamen i MIK130, Systemidentikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Løsningsforslag Eksamen i MIK3, Systemidentikasjon ( sp) Dato: onsdag 23 november 2 Lengde på eksamen: 4 timer Tillatte

Detaljer

Control Engineering. State-space Models. Hans-Petter Halvorsen

Control Engineering. State-space Models. Hans-Petter Halvorsen Control Engineering State-space Models Hans-Petter Halvorsen Dataverktøy MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/ Implementering Reguleringsteknikk Serie,

Detaljer

Forkunnskapskrav. Hva handler kurset om. Kontaktinformasjon. Kurset er beregnet på en student som kan

Forkunnskapskrav. Hva handler kurset om. Kontaktinformasjon. Kurset er beregnet på en student som kan Velkommen til INF4, Digital signalbehandling Hilde Skjevling (Kursansvarlig) Svein Bøe (Java) INSTITUTT FOR INFORMATIKK Kontaktinformasjon E-post: hildesk@ifi.uio.no Telefon: 85 4 4 Kontor: 4 i 4.etasje,

Detaljer

Høgskoleni østfold EKSAMEN. Emnekode: Emne: ITD30005 Industriell IT. Dato: Eksamenstid: kl til kl. 1300

Høgskoleni østfold EKSAMEN. Emnekode: Emne: ITD30005 Industriell IT. Dato: Eksamenstid: kl til kl. 1300 Høgskoleni østfold EKSAMEN Emnekode: Emne: ITD30005 Industriell IT Dato: 15.12.2014 Eksamenstid: kl. 0900 til kl. 1300 Hjelpemidler: Faglærer: Tre A4-ark (seks sider) med egne notater. Robert Roppestad

Detaljer

Løsningsforslag Dataøving 2

Løsningsforslag Dataøving 2 TTK45 Reguleringsteknikk, Vår 6 Løsningsforslag Dataøving Oppgave a) Modellen er gitt ved: Setter de deriverte lik : ẋ = a x c x x () ẋ = a x + c x x x (a c x ) = () x ( a + c x ) = Det gir oss likevektspunktene

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning.

Generell informasjon om faget er tilgjengelig fra It s learning. Stavanger,. oktober 3 Det teknisknaturvitenskapelige fakultet ELE5 Signalbehandling, 3. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 4. Frekvensrespons for system.....................

Detaljer

EKSAMEN STE 6219 Digital signalbehandling

EKSAMEN STE 6219 Digital signalbehandling HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side 1 av 4 EKSAMEN STE 6219 Digital signalbehandling Tid: Tirsdag 07.03.2006, kl: 09:00-12:00 Tillatte hjelpemidler:

Detaljer

Systemidentifikasjon

Systemidentifikasjon University College of Southeast Norway HANS-PETTER HALVORSEN http://home.hit.no/~hansha Forord Dette dokumentet brukes som forelesningsnotater i modellbasert regulering over temaet systemidentifikasjon.

Detaljer

ELE610 Prosjekter i robotteknikk, vår 2017.

ELE610 Prosjekter i robotteknikk, vår 2017. Stavanger, 23. januar 2017 Det teknisknaturvitenskapelige fakultet ELE610 Prosjekter i robotteknikk, vår 2017. Bildefangst-del, oppgave 2. Hensikten med denne øvingen er å kunne bruke et ueye XS kamera

Detaljer

HØGSKOLEN - I - STAVANGER. Institutt for elektroteknikk og databehandling

HØGSKOLEN - I - STAVANGER. Institutt for elektroteknikk og databehandling HØGSKOLEN - I - STAVANGER Institutt for elektroteknikk og databehandling EKSAMEN I: TE 559 Signaler og systemer VARIGHET: 5 timer TILLATTE HJELPEMIDLER: Kalkulator, K. Rottmanns formelsamling OPPGAVESETTET

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Eksamensdato: 19.5.211 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2EE Studiepoeng: 1 Faglærer(e): Håkon Grønning

Detaljer

ELE610 Prosjekter i robotteknikk, vår 2017.

ELE610 Prosjekter i robotteknikk, vår 2017. Stavanger, 30. november 2016 Det teknisknaturvitenskapelige fakultet ELE610 Prosjekter i robotteknikk, vår 2017. RobotStudio-del, oppgave 3. For denne tredje RobotStudio oppgaven skal dere etter hvert

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF/ Signalbehandling Eksamensdag: 9. desember Tid for eksamen:. 7. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

Oppgave 1.1. Den første er en klassiker. Studer figur A4.1 i vedlegg 1. Finn overføringsfunksjonen ved hjelp av manuelle, grafiske metoder.

Oppgave 1.1. Den første er en klassiker. Studer figur A4.1 i vedlegg 1. Finn overføringsfunksjonen ved hjelp av manuelle, grafiske metoder. Inst. for teknisk kybernetikk TELE2001 Reguleringsteknikk Øving 4 Revidert sist Fredrik Dessen 2017-10-12 Del 1. En klassiker, og en litt mer utfordrende Du skal her finne overføringsfunksjonen representert

Detaljer

Systemidentifikasjon Oppgaver

Systemidentifikasjon Oppgaver Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Systemidentifikasjon Oppgaver HANS-PETTER HALVORSEN, 2012.03.16 Faculty of Technology, Postboks

Detaljer

Eksamen i ELE620, Systemidentikasjon (10 sp)

Eksamen i ELE620, Systemidentikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i ELE620, Systemidentikasjon (10 sp) Dato: Fredag 15 desember 2017 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

Inst. for elektrofag og fornybar energi

Inst. for elektrofag og fornybar energi Inst. for elektrofag og fornybar energi Fag TELE2001 Reguleringsteknikk Simulink øving 3 Utarbeidet: PHv Revidert sist Fredrik Dessen 2015-09-11 Hensikten med denne oppgaven er at du skal bli bedre kjent

Detaljer

Tilstandsestimering Oppgaver

Tilstandsestimering Oppgaver Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Tilstandsestimering Oppgaver HANS-PETTER HALVORSEN, 2012.01.27 Faculty of Technology, Postboks 203,

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG Eksamensdato Fag Dato: 11.12.14 \\hjem.hist.no\pgis\mine dokumenter\backup\fag\reguleringsteknikk\2014\eksamen\lx2014des_korrigert.wpd HØGSKOLEN I SØR-TRØNDELAG AVD. FOR INGENIØR OG NÆRINGSMIDDELFAG INSTITUTT

Detaljer

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side av 4 STE 629 Digital signalbehandling Løsning til kontinuasjonseksamen Tid: Fredag 03.08.2007, kl: 09:00-2:00

Detaljer

y(t) t

y(t) t Løsningsforslag til eksamen i TE 559 Signaler og Systemer Høgskolen i Stavanger Trygve Randen, t.randen@ieee.org 3. mai 999 Oppgave a) Et tidsinvariant system er et system hvis egenskaper ikke endres med

Detaljer

Fasit, Eksamen. INF3440/4440 Signalbehandling 9. desember c 0 + c 1z 1 + c 2z 2. G(z) = 1/d 0 + d 1z 1 + d 2z 2

Fasit, Eksamen. INF3440/4440 Signalbehandling 9. desember c 0 + c 1z 1 + c 2z 2. G(z) = 1/d 0 + d 1z 1 + d 2z 2 Fasit, Eksamen INF/ Signalbehandling 9. desember Oppgave : Strukturer To systemfunksjoner, G(z) og H(z), er gitt som følger: G(z) = c + c z + c z /d + d z + d z og H(z) = /d + dz + d z c + c z + c z. Figur

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Side 1 av 4 HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Tid: Fredag 11.03.2005, kl: 09:00-12:00 Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: xx. desember 007 Tid for eksamen: Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

EDT211T-A Reguleringsteknikk PC øving 5: Løsningsforslag

EDT211T-A Reguleringsteknikk PC øving 5: Løsningsforslag EDT2T-A Reguleringsteknikk PC øving 5: Løsningsforslag Til simuleringene trengs en del parametre som areal i tanken, ventilkonstanter osv. Det er som oftest en stor fordel å forhåndsdefinere disse i Matlab,

Detaljer

FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf

Detaljer

Sammenlikningav simuleringsverktøyfor reguleringsteknikk

Sammenlikningav simuleringsverktøyfor reguleringsteknikk Presentasjon ved NFA-dagene 28.-29.4 2010 Sammenlikningav simuleringsverktøyfor reguleringsteknikk Av Finn Haugen (finn.haugen@hit.no) Høgskolen i Telemark Innhold: Eksempler på min egen bruk av simuleringsverktøy

Detaljer

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: OPPG.NR.: DS4E. FREKVENS OG SPRANGRESPONSANALYSE Med ELVIS

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: OPPG.NR.: DS4E. FREKVENS OG SPRANGRESPONSANALYSE Med ELVIS KYBERNETIKKLABORATORIET FAG: Dynamiske systemer DATO: 09.12 OPPG.NR.: DS4E FREKVENS OG SPRANGRESPONSANALYSE Med ELVIS BESVARELSE: Protokollen skal besvare alle spørsmål. Diagrammene skal ha definerte akser

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. 1 Parameterestimering med LS og RLS 2

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. 1 Parameterestimering med LS og RLS 2 Stavanger, 3 november 2016 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2016 Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning

Detaljer

MIK 200 Anvendt signalbehandling, 2012. Prosjekt 2, Diskret kosinus-transformasjon.

MIK 200 Anvendt signalbehandling, 2012. Prosjekt 2, Diskret kosinus-transformasjon. Stavanger, 25. januar 2012 Det teknisknaturvitenskapelige fakultet MIK 200 Anvendt signalbehandling, 2012. Prosjekt 2, Diskret kosinus-transformasjon. Vi skal i dette miniprosjektet se litt på bruk av

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG Eksamensdato Fag Dato: 17.11.10 C:\Per\Fag\Regtek\Eksamen\Eksamen10\LX2011jan.wpd HØGSKOLEN I SØR-TRØNDELAG AVD. FOR INGENIØR OG NÆRINGSMIDDELFAG INSTITUTT FOR ELEKTROTEKNIKK 7. januar 2011 LØSNINGSFORSLAG

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

MIK 200 Anvendt signalbehandling, 2012.

MIK 200 Anvendt signalbehandling, 2012. Stavanger, 25. januar 202 Det teknisknaturvitenskapelige fakultet MIK 200 Anvendt signalbehandling, 202. Lab. 6, CIC-filter. Dette er første del av øvinger om CIC-filter. Andre del kommer i øving 7. Før

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2012 2/30 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 14.5.213 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT24T Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):

Detaljer

TMA Matlab Oppgavesett 2

TMA Matlab Oppgavesett 2 TMA4123 - Matlab Oppgavesett 2 18.02.2013 1 Fast Fourier Transform En matematisk observasjon er at data er tall, og ofte opptrer med en implisitt rekkefølge, enten i rom eller tid. Da er det naturlig å

Detaljer

Control Engineering. Stability Analysis. Hans-Petter Halvorsen

Control Engineering. Stability Analysis. Hans-Petter Halvorsen Control Engineering Stability Analysis Hans-Petter Halvorsen Dataverktøy MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/ Implementering Reguleringsteknikk Serie,

Detaljer

Eksamen i ELE620, Systemidentikasjon (10 sp)

Eksamen i ELE620, Systemidentikasjon (10 sp) DE EKNISK - NAURVIENSKAPELIGE FAKULE Institutt for data- og elektroteknikk Eksamen i ELE620, Systemidentikasjon (0 sp) Dato: Onsdag 4 desember 206 Lengde på eksamen: 4 timer illatte hjelpemidler: Kun standard

Detaljer

Eksamen i SEKY3322 Kybernetikk 3

Eksamen i SEKY3322 Kybernetikk 3 Høgskolen i Buskerud. Finn Haugen(finn.augen@ibu.no). Eksamen i SEY3322 ybernetikk 3 Tid: 27. mai 2009. Variget 5 timer. Vekt i sluttkarakteren: 70% Hjelpemidler: Ingen trykte eller åndskrevne jelpemidler.

Detaljer

7 Tilstandsestimering for smelteovn.

7 Tilstandsestimering for smelteovn. Stavanger, 9. august 2016 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk Eksamensdag: Torsdag 2. desember 2010. Tid for eksamen: 09.00 13.00. Oppgavesettet er på

Detaljer

c;'1 høgskolen i oslo

c;'1 høgskolen i oslo c;'1 høgskolen i oslo Emne \ Emnekode Faglig veileder sa 318E Vesle møy Tyssø Bjørn EnqebretseQ ruppe(r) Dato' O, (jk.o{reksamenstid O.J 2E - 2004 -- 1ST ()~ -Ll..- j,elcsamensoppgav.ien består av Tillatte

Detaljer

TTK4180 Stokastiske og adaptive systemer. Datamaskinøving 2 - Parameterestimering

TTK4180 Stokastiske og adaptive systemer. Datamaskinøving 2 - Parameterestimering Institutt for teknisk kybernetikk Norges teknisk-naturvitenskapelige universitet 27.10.98 EWR TTK4180 Stokastiske og adaptive systemer Datamaskinøving 2 - Parameterestimering Tid og sted: -Utdeling av

Detaljer

ELE610 Prosjekter i robotteknikk, vår 2016.

ELE610 Prosjekter i robotteknikk, vår 2016. Stavanger, 1. desember 2015 Det teknisknaturvitenskapelige fakultet ELE610 Prosjekter i robotteknikk, vår 2016. Lab. 2, Logikk og Notch-filter. Innhold 0 Introduksjon 3 2 Oppgaver 4 2.1 Logisk funksjon...........................

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 27 Tid for eksamen: 14.3 17.3 Oppgavesettet er på 5 sider. Vedlegg: INF 347 / INF 447 Digital Signalbehandling

Detaljer

STE 6146 Digital signalbehandling. Løsningsforslag til eksamen avholdt

STE 6146 Digital signalbehandling. Løsningsforslag til eksamen avholdt HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT STE 6146 Digital signalbehandling Løsningsforslag til eksamen avholdt 06.02.03 Oppgaver 1. Forklar hva som er

Detaljer

c;'1 høgskolen i oslo

c;'1 høgskolen i oslo I c;'1 høgskolen i oslo lemne: I I Gruppe(r) Kvbem~ti!

Detaljer

Dette kan selvfølgelig brukes direkte som en numerisk tilnærmelse til den deriverte i et gitt punkt.

Dette kan selvfølgelig brukes direkte som en numerisk tilnærmelse til den deriverte i et gitt punkt. Numerisk derivasjon Anne Kværnø Problemstilling Gitt en tilstrekkelig glatt funksjon. Finn en tilnærmelse til i et gitt punkt. Den deriverte av (https://wiki.math.ntnu.no/tma4100/tema/differentiation?

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: 11. desember 006 Tid for eksamen: 15.30 18.30 Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

pdf

pdf FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf

Detaljer