Control Engineering. Stability Analysis. Hans-Petter Halvorsen

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Control Engineering. Stability Analysis. Hans-Petter Halvorsen"

Transkript

1 Control Engineering Stability Analysis Hans-Petter Halvorsen

2 Dataverktøy MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/ Implementering Reguleringsteknikk Serie, Parallel, Feedback Det komplekse plan S-planet K = Forsterkning T=Tidskonstant Transferfunksjoner Blokkdiagrammer Tilstandsrommodeller Analyse/Design Stabilitetsanalyse Det komplekse plan 2. Frekvensrespons 1. Systemets poler Bodediagram Sprangrespons 1.orden med tidsforsinkelse Diskretisering Reguleringssystem Asymptotisk stabilt system Air Heater Tidsplanet Ustabilt system Marginalt stabilt system Asymptotisk stabilt system Marginalt stabilt system Ustabilt system

3 Reguleringssystem (Tilbakekoblet) Mål: Det tilbakekoblede systemet (med regulator) må være stabilt og gi god regulering

4 Stabilitetsanalyse Hensikt: Finne ut om systemet er stabilt eller ikke. Ulike metoder: 1. Impuls-/Sprangrespons 2. Polplassering 3. Frekvensrespons (lærer om dette senere)

5 Sløyfetransferfunksjonen Loop Transfer Function MathScript: Hr =... Hp =... Hm =... L = series(series(hr, Hp), Hm) Sløyfetransferfunksjonen er definert som produktet av alle transferfunksjonene i det lukkede systemet.

6 Trackingfunksjonen Følgeforholdet MathScript: L =... T = feedback(l, 1) Følgeforholdet sier noe om hvor godt utgangen følger referansen. Reguleringssystemet har gode følgeegenskaper når

7 Det karakteristiske polynom En transferfunksjon kan skrives på følgende generelle polynomform: Der telleren til transferfunksjonen beskriver nullpunktene til systemet, mens nevneren beskriver polene til systemet. Røttene i tellerpolynomet b(s) kalles systemets eller transferfunksjonens nullpunkter Røttene i nevnerpolynomet a(s) kalles systemets eller transferfunksjonens poler Nevnerpolynomet a(s) kalles for transferfunksjonens karakteristiske polynom

8 Poler og Nullpunkter - Eksempel Gitt følgende system: Poler, Penn og papir: Finn nullpunkter og poler for dette systemet. Bruk Penn og papir samt MathScript. MathScript: num=... den= H = tf(num,den) zero(h) pole(h) eller: num=... den= H = tf(num,den) roots(num) %Zeros roots(den) %Poles

9 Poler og Nullpunkter Eksempel - Løsning MathScript: %Transfer Function num=[2,1]; den=[0.5, 2, 1]; H=tf(num,den) %Zeros z = zero(h) %roots(num) %Poles p = pole(h) %roots(den)

10 Impuls-/Sprangrespons impulse(h) step(h) Asymptotisk stabilt system: Marginalt stabilt system: Ustabilt system: [Figures: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]

11 Stabilitetsanalyse Sprangrespons MathScript - Eksempel T(s) Dette er den totale transferfunksjonen ( The Tracking transfer function ) fra referansen (r) til utgangen (y) for et gitt system. Systemet blir regulert av en P regulator (proporsjonalregulator). Implementer (transferfunksjon) og simuler (sprangrespons) systemet i MathScript. Prøv forskjellige verdier av Kp Hva blir resultatet??

12 Kp=1; MathScript Løsning num = [Kp]; den = [1, 2, 1, Kp]; H = tf(num, den); step(h) Litt mer avansert utgave: clc clear K = [1, 2, 4]; N = length(k); for i= 1:N Kp = K(i); num = [Kp]; den = [1, 2, 1, Kp]; H = tf(num, den); figure(i) step(h) end Asymptotisk stabilt Marginalt stabilt Ustabilt

13 Stabilitetsanalyse 2.ordens systemer Det er verdien på zeta som bestemmer stabilitetsegenskapene ifm 2.ordens systemer [Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]

14 Stabilitetsanalyse 2.ordens systemer - Eksempel Masse-Fjær-demper system [Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010] Implementer systemet i MathScript. Prøv ulike verdier av zeta slik at vi kan gjenskape de ulike responsene (sprangrespons) som er typisk for et 2.ordens system. Begynn med f.eks. m=1, k=1, d=1

15 Masse-Fjær-demper system MathScript kode [Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010] Prøv ulike verdier av zeta slik at vi kan gjenskape de ulike responsene som er typisk for et 2.ordens system % Mass-spring-damper clear clc clear all % Define variables m = 1; d = 1; k = 1; zeta= d/(2*sqrt(m*k)) % Define Transfer function num = 1/m ; den = [1, (d/m), (k/m)]; H = tf(num, den); % Step Response step(h)

16 Masse-Fjær-demper system MathScript kode Noen eksempler på z verdier m=1, k=1, d=1 -> z=0.5 dvs 0<z<1 -> Stabilt (Underdempet) m=1, k=1, d=-1 -> z=-0.5 dvs z<0 -> Ustabilt m=1, k=1, d=2 -> z=1 -> Stabilt (Kritisk dempet) m=1, k=1, d=0 -> z=0 -> Marginalt stabilt

17 Polplassering Eksempel: Systemets poler finner man ved å sette nevneren i transferfunksjonen lik 0 Stabilt Ustabilt MathScript: num = [3]; den = [0.5, 1]; H = tf(num, den) p = poles(h) pzgraph(h) [Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010] Studenter: Prøv ut dette scriptet!

18 Polplassering Asymptotisk stabilt system: Marginalt stabilt system: En eller flere poler ligger på den imaginære akse (har realdelen lik 0), og alle polene er forskjellige/ikke sammenfallende. Dessuten, ingen poler i høyre halvplan Alle polene ligger i venstre halvplan (negativ realdel). Ingen poler på den imaginære akse. Ustabilt system: En eller flere poler ligger i høyre halvplan (har realdel større enn 0). Eller: Det er multiple/sammenfallende poler på den imaginære akse.

19 Stabilitetsanalyse Poler MathScript - Eksempel Dette er den totale transferfunksjonen ( The Tracking transfer function ) fra referansen (r) til utgangen (y). Systemet blir regulert av en P regulator (proporsjonalregulator). Implementer (transferfunksjon) og finn polene til systemet vha MathScript. Prøv forskjellige verdier av Kp (Kp=1, Kp=2, Kp=3) Hva blir resultatet??

20 Stabilitetsanalyse Poler MathScript - Løsning MathScript: Dette er den totale transferfunksjonen ( The Tracking transfer function ) fra referansen (r) til utgangen (y). Systemet blir regulert av en P regulator (proporsjonalregulator). Kp=1 num = [Kp]; den = [1, 2, 1, Kp]; H = tf(num, den) figure(1) step(h) poles(h) Poler: figure(2) pzmap(h) [Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010]

21 Masse-Fjær-demper system Eksempel - MathScript kode % Mass-spring-damper system clear clc clear all [Figure: F. Haugen, Advanced Dynamics and Control: TechTeach, 2010] Prøv ulike verdier av zeta slik at vi kan gjenskape de ulike responsene som er typisk for et 2.ordens system. Metode 1 (Sprangrespons) Metode 2 (Polplassering) % Define variables m = 1;d = 1; k = 1; zeta= d/(2*sqrt(m*k)) % Define Transfer function num = 1/m ; den = [1, (d/m), (k/m)]; H = tf(num, den); % Step Response figure(1), step(h) % Stability Analysis p = poles(h) figure(2), pzmap(h) Studenter: Prøv ut dette!

22 Hans-Petter Halvorsen, M.Sc. University College of Southeast Norway Blog:

Stabilitetsanalyse. Hans- Pe/er Halvorsen, M.Sc.

Stabilitetsanalyse. Hans- Pe/er Halvorsen, M.Sc. Stabilitetsanalyse Hans- Pe/er Halvorsen, M.Sc. Tilstandsrom- modeller Dataverktøy Spesial@lfelle MathScript LabVIEW Differensial - likninger Tidsplanet Laplace Blokk- diagrammer Transfer- funksjoner 2.orden

Detaljer

Control Engineering. State-space Models. Hans-Petter Halvorsen

Control Engineering. State-space Models. Hans-Petter Halvorsen Control Engineering State-space Models Hans-Petter Halvorsen Dataverktøy MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/ Implementering Reguleringsteknikk Serie,

Detaljer

Control Engineering. MathScript. Hans-Petter Halvorsen

Control Engineering. MathScript. Hans-Petter Halvorsen Control Engineering MathScript Hans-Petter Halvorsen Dataverktøy MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/ Implementering Reguleringsteknikk Serie, Parallel,

Detaljer

Frequency Response and Stability Analysis

Frequency Response and Stability Analysis Control Engineering Frequency Response and Stability Analysis Hans-Petter Halvorsen Dataverktøy Spesialtilfelle MathScript LabVIEW Differensial -likninger Tidsplanet Laplace 2.orden 1.orden Realisering/

Detaljer

Tilstandsrommodeller. Hans- Pe1er Halvorsen, M.Sc.

Tilstandsrommodeller. Hans- Pe1er Halvorsen, M.Sc. Tilstandsrommodeller Hans- Pe1er Halvorsen, M.Sc. Tilstandsrom- modeller Dataverktøy Spesial>lfelle MathScript LabVIEW Differensial - likninger Tidsplanet Laplace Blokk- diagrammer Transfer- funksjoner

Detaljer

MathScript. Hans- Pe1er Halvorsen, M.Sc.

MathScript. Hans- Pe1er Halvorsen, M.Sc. MathScript Hans- Pe1er Halvorsen, M.Sc. Ja! De1e er et IA fag dvs. både AutomaFsering og InformaFkk! Arbeidslivet krever anvendt kunnskap! Tilstandsrom- modeller Dataverktøy SpesialFlfelle MathScript LabVIEW

Detaljer

Frequency Response and Stability Analysis. Hans- Pe9er Halvorsen, M.Sc.

Frequency Response and Stability Analysis. Hans- Pe9er Halvorsen, M.Sc. Frequency Response and Stability Analysis Hans- Pe9er Halvorsen, M.Sc. Tilstandsrom- modeller Dataverktøy SpesialElfelle MathScript LabVIEW Differensial - likninger Tidsplanet Laplace Blokk- diagrammer

Detaljer

Stabilitetsanalyse i MATLAB og LabVIEW

Stabilitetsanalyse i MATLAB og LabVIEW Stabilitetsanalyse i MATLAB og LabVIEW Av Finn Haugen (finn@techteach.no) TechTeach (http://techteach.no) 21.12 2002 1 2 TechTeach Innhold 1 Stabilitetsanalyse i MATLAB og LabVIEW 7 1.1 MATLAB... 7 1.1.1

Detaljer

Tilstandsestimering Oppgaver

Tilstandsestimering Oppgaver University College of Southeast Norway Tilstandsestimering Oppgaver HANS-PETTER HALVORSEN http://home.hit.no/~hansha Innholdsfortegnelse 1 Grunnlag... 3 1.1 Statistikk og Stokastiske systemer... 3 1.2

Detaljer

1 Tidsdiskret PID-regulering

1 Tidsdiskret PID-regulering Finn Haugen (finn@techteach.no), TechTeach (techteach.no) 16.2.02 1 Tidsdiskret PID-regulering 1.1 Innledning Dette notatet gir en kortfattet beskrivelse av analyse av tidsdiskrete PID-reguleringssystemer.

Detaljer

Tilstandsestimering Oppgaver

Tilstandsestimering Oppgaver Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Tilstandsestimering Oppgaver HANS-PETTER HALVORSEN, 2012.01.27 Faculty of Technology, Postboks 203,

Detaljer

Systemidentifikasjon Oppgaver

Systemidentifikasjon Oppgaver University College of Southeast Norway Systemidentifikasjon Oppgaver HANS-PETTER HALVORSEN http://home.hit.no/~hansha Innholdsfortegnelse 1 Innledning... 3 2 Minste kvadraters metode... 4 3 Validering...

Detaljer

Reguleringsteknikk med LabVIEW og MathScript eksempler

Reguleringsteknikk med LabVIEW og MathScript eksempler Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Reguleringsteknikk med LabVIEW og MathScript eksempler HANS- PETTER HALVORSEN, 2013.11.08 Faculty

Detaljer

Systemidentifikasjon Oppgaver

Systemidentifikasjon Oppgaver Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Systemidentifikasjon Oppgaver HANS-PETTER HALVORSEN, 2012.03.16 Faculty of Technology, Postboks

Detaljer

Observer HANS-PETTER HALVORSEN, 2012.02.24. Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics

Observer HANS-PETTER HALVORSEN, 2012.02.24. Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Observer HANS-PETTER HALVORSEN, 2012.02.24 Faculty of Technology, Postboks 203, Kjølnes ring 56,

Detaljer

Reguleringsteknikk vha.

Reguleringsteknikk vha. University College of Southeast Norway Reguleringsteknikk vha. Hans-Petter Halvorsen, 2016.10.26 MathScript http://home.hit.no/~hansha Innholdsfortegnelse Innholdsfortegnelse... ii MathScript... 6 Innledning...

Detaljer

Lineær analyse i SIMULINK

Lineær analyse i SIMULINK Lineær analyse i SIMULINK Av Finn Haugen (finn@techteach.no) TechTeach (http://techteach.no) 20.12 2002 1 2 Lineær analyse i SIMULINK Innhold 1 Innledning 7 2 Kommandobasert linearisering av modeller 9

Detaljer

Simulering i MATLAB og SIMULINK

Simulering i MATLAB og SIMULINK Simulering i MATLAB og SIMULINK Av Finn Haugen (finn@techteach.no) TechTeach (http://techteach.no) 13. november 2004 1 2 TechTeach Innhold 1 Simulering av differensiallikningsmodeller 7 1.1 Innledning...

Detaljer

University College of Southeast Norway. Observer HANS-PETTER HALVORSEN.

University College of Southeast Norway. Observer HANS-PETTER HALVORSEN. University College of Southeast Norway HANS-PETTER HALVORSEN http://home.hit.no/~hansha Forord Dette dokumentet tar for seg modellbasert regulering over temaet s og tilstandsestimering. Noen forenklinger

Detaljer

Systemidentifikasjon Løsninger

Systemidentifikasjon Løsninger University College of Southeast Norway Systemidentifikasjon Løsninger HANS-PETTER HALVORSEN http://home.hit.no/~hansha Innholdsfortegnelse 1 Innledning... 3 2 Minste kvadraters metode... 7 3 Validering...

Detaljer

Tilstandsestimering Løsninger

Tilstandsestimering Løsninger Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Tilstandsestimering Løsninger HANS-PETTER HALVORSEN, 2012.01.27 Faculty of Technology, Postboks

Detaljer

Tidsdiskrete systemer

Tidsdiskrete systemer Tidsdiskrete systemer Finn Haugen TechTeach 22.juli2004 Innhold 1 Tidsdiskrete signaler 2 2 Z-transformasjonen 3 2.1 Definisjon av Z-transformasjonen... 3 2.2 Egenskaper ved Z-transformasjonen... 4 3 Differenslikninger

Detaljer

Løsningsforslag øving 6

Løsningsforslag øving 6 TTK5 Reguleringsteknikk, Vår Løsningsforslag øving Oppgave Vi setter inntil videre at τ = e τs. a) Finn først h s) gitt ved h s) = T i s T s) + T i s) ) ) ) ) + ζ s ω + s ω Vi starter med amplitudeforløpet.

Detaljer

Løsningsforslag Dataøving 2

Løsningsforslag Dataøving 2 TTK45 Reguleringsteknikk, Vår 6 Løsningsforslag Dataøving Oppgave a) Modellen er gitt ved: Setter de deriverte lik : ẋ = a x c x x () ẋ = a x + c x x x (a c x ) = () x ( a + c x ) = Det gir oss likevektspunktene

Detaljer

Løsningsforslag oppgavene (Øving 3)

Løsningsforslag oppgavene (Øving 3) D:\Per\Fag\Regtek\Oppgavebok\4 Løsning på øving\reglov3_2014.wpd Fag TELE2001 Reguleringsteknikk HIST,EDT Okt 14 PHv,DA,PG Løsningsforslag oppgavene 10-15 (Øving 3) Bare oppgave 10, 13, 14 og 15 er en

Detaljer

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 2

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 2 NTNU Norges teknisknaturvitenskapelige universitet Institutt for teknisk kybernetikk vårsemesteret 2004 TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 2 Fiskelabben G-116/G-118 Uke 16: Onsdag

Detaljer

Systemidentifikasjon

Systemidentifikasjon University College of Southeast Norway HANS-PETTER HALVORSEN http://home.hit.no/~hansha Forord Dette dokumentet brukes som forelesningsnotater i modellbasert regulering over temaet systemidentifikasjon.

Detaljer

NB! Vedlegg 2 skal benyttes i forbindelse med oppgave 3a), og vedlegges besvarelsen.

NB! Vedlegg 2 skal benyttes i forbindelse med oppgave 3a), og vedlegges besvarelsen. SLUTTPRØVE EMNE: EE407 Kybernetikk videregående LÆRER Kjell Erik Wolden KLASSE(R): IA, EL DATO: 0..0 PRØVETID, fra - til (kl.): 9.00.00 Oppgavesettet består av følgende: Antall sider (inkl. vedlegg): 0

Detaljer

Løsningsforslag øving 4

Løsningsforslag øving 4 TTK405 Reguleringsteknikk, Vår 206 Oppgave Løsningsforslag øving 4 Når k 50, m 0, f 20, blir tilstandsromformen (fra innsetting i likning (3.8) i boka) Og (si A) blir: (si A) [ ] [ ] 0 0 ẋ x + u 5 2 0.

Detaljer

SCE1106 Control Theory

SCE1106 Control Theory Master study Systems and Control Engineering Department of Technology Telemark University College DDiR, October 26, 2006 SCE1106 Control Theory Exercise 6 Task 1 a) The poles of the open loop system is

Detaljer

c;'1 høgskolen i oslo

c;'1 høgskolen i oslo c;'1 høgskolen i oslo Emne \ Emnekode Faglig veileder sa 318E Vesle møy Tyssø Bjørn EnqebretseQ ruppe(r) Dato' O, (jk.o{reksamenstid O.J 2E - 2004 -- 1ST ()~ -Ll..- j,elcsamensoppgav.ien består av Tillatte

Detaljer

Løsning til eksamen i EE4107 Kybernetikk- videregående

Løsning til eksamen i EE4107 Kybernetikk- videregående Høgskolen i elemark. Finn Haugen(finn.haugen@hit.no). Løsning til eksamen i EE4107 Kybernetikk- videregående Eksamensdato: 11.6 2009. Varighet 3 timer. Vekt i sluttkarakteren: 70%. Hjelpemidler: Ingen

Detaljer

Slik skal du tune dine PID-regulatorer

Slik skal du tune dine PID-regulatorer Slik skal du tune dine PID-regulatorer Ivar J. Halvorsen SINTEF, Reguleringsteknikk PROST temadag Tirsdag 22. januar 2002 Granfos Konferansesenter, Oslo 1 Innhold Hva er regulering og tuning Enkle regler

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING ESAMENSOPPGAVE Emne: Gruppe(r): Eksamensoppgav en består av: ybernetikk I 2E Antall sider (inkl. forsiden): 5 Emnekode: SO 38E Dato: 5. juni 2004 Antall oppgaver: 6 Faglig

Detaljer

Simuleringseksempel. Vi ønsker å simulere følgende system (vanntank) i MathScript: Matematisk modell:

Simuleringseksempel. Vi ønsker å simulere følgende system (vanntank) i MathScript: Matematisk modell: Simuleringseksempel Vi ønsker å simulere følge system (vanntank) i MathScript: Matematisk modell: Vi har funnet følge matematiske modell for systemet: [ ] der: er nivået i tanken er pådragssignalet til

Detaljer

KYBERNETIKKLABORATORIET. FAG: Kybernetikk DATO: 01.13 OPPG. NR.: R134 TEMPERATURREGULERING

KYBERNETIKKLABORATORIET. FAG: Kybernetikk DATO: 01.13 OPPG. NR.: R134 TEMPERATURREGULERING KYBERNETIKKLABORATORIET FAG: Kybernetikk DATO: 01.13 OPPG. NR.: R134 TEMPERATURREGULERING Denne øvelsen inneholder følgende momenter: a) En prosess, styring av luft - temperatur, skal undersøkes, og en

Detaljer

2003/05-001: Dynamics / Dynamikk

2003/05-001: Dynamics / Dynamikk Institutt for kjemisk prosessteknologi SIK 050: Prosessregulering 003/05-001: Dynamics / Dynamikk Author: Heinz A Preisig Heinz.Preisig@chemeng.ntnu.no English: Given the transfer function g(s) := s (

Detaljer

Tilstandsestimering Løsninger

Tilstandsestimering Løsninger University College of Southeast Norway Tilstandsestimering Løsninger HANS-PETTER HALVORSEN http://home.hit.no/~hansha Innholdsfortegnelse 1 Grunnlag... 3 1.1 Statistikk og Stokastiske systemer... 3 1.2

Detaljer

Løsningsforslag øving 8

Løsningsforslag øving 8 K405 Reguleringsteknikk, Vår 206 Oppgave Løsningsforslag øving 8 a Vi begynner med å finne M 2 s fra figur 2 i oppgaveteksten. M 2 s ω r 2 ω h m sh a sh R2 sr 2 ω K v ω 2 h m sh a sh R2 sr 2 h m sh a sh

Detaljer

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: 09.13 OPPG.NR.: DS3 MOTOR GENERATOROPPGAVE I

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: 09.13 OPPG.NR.: DS3 MOTOR GENERATOROPPGAVE I KYBERNETIKKLABORATORIET FAG: Dynamiske systemer DATO: 09.13 OPPG.NR.: DS3 MOTOR GENERATOROPPGAVE I Et reguleringssystem består av en svitsjstyrt (PWM) motor-generatorenhet og en mikrokontroller (MCU) som

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi C:\Per\Fag\Regtek\Eksamen\Eksamen11\LX2011DesEDT212T.wpd HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Eksamensdato Fag 20.desember 2011 LØSNINGSFORSLAG EDT212T Reguleringsteknikk grunnkurs Dato: 11.11.12

Detaljer

Contents. Oppgavesamling tilbakekobling og stabilitet. 01 Innledende oppgave om ABC tilbakekobling. 02 Innledende oppgave om Nyquist diagram

Contents. Oppgavesamling tilbakekobling og stabilitet. 01 Innledende oppgave om ABC tilbakekobling. 02 Innledende oppgave om Nyquist diagram Contents Oppgavesamling tilbakekobling og stabilitet... Innledende oppgave om ABC tilbakekobling... Innledende oppgave om Nyquist diagram... 3 Bodeplott og stabilitet (H94 5)... 4 Bodediagram og stabilitet

Detaljer

Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler: Kun standard enkel kalkulator, HP 30S

Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler: Kun standard enkel kalkulator, HP 30S DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

Forelesning nr.13 INF 1410

Forelesning nr.13 INF 1410 Forelesning nr.3 INF 4 Komplekse frekvenser og Laplace-transform Oversikt dagens temaer Me Mer om sinusformede signaler om komplekse frekvenser Introduksjon til Laplace-transform Løsning av kretsligninger

Detaljer

Simuleringsalgoritmer

Simuleringsalgoritmer Simuleringsalgoritmer Finn Aakre Haugen, dosent Høgskolen i Telemark 14. september 2015 1 Innledning 1.1 Hva er simulering? Simulering av et system er beregning av tidsresponser vha. en matematisk modell

Detaljer

Kalmanfilter HANS-PETTER HALVORSEN, 2012.02.24

Kalmanfilter HANS-PETTER HALVORSEN, 2012.02.24 Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics HANS-PETTER HALVORSEN, 2012.02.24 Faculty of Technology, Postboks 203, Kjølnes ring 56, N-3901 Porsgrunn,

Detaljer

Dette er et utdrag fra kapittel 6 i boka: Reguleringsteknikk, skrevet av. Per Hveem og Kåre Bjørvik

Dette er et utdrag fra kapittel 6 i boka: Reguleringsteknikk, skrevet av. Per Hveem og Kåre Bjørvik Dette er et utdrag fra kapittel 6 i boka: Reguleringsteknikk, skrevet av Per Hveem og Kåre Bjørvik Kapittelnummering og eksempelnummering stemmer ikke overens med det står i boka. 1 5.1 Fra overføringsfunksjon

Detaljer

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 1

TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 1 NTNU Norges teknisknaturvitenskapelige universitet Institutt for teknisk kybernetikk vårsemesteret 2004 TTK 4140 Reguleringsteknikk m/elektriske kretser Dataøving 1 Veiledning : Fiskelabben G-116/G-118

Detaljer

Sammenlikningav simuleringsverktøyfor reguleringsteknikk

Sammenlikningav simuleringsverktøyfor reguleringsteknikk Presentasjon ved NFA-dagene 28.-29.4 2010 Sammenlikningav simuleringsverktøyfor reguleringsteknikk Av Finn Haugen (finn.haugen@hit.no) Høgskolen i Telemark Innhold: Eksempler på min egen bruk av simuleringsverktøy

Detaljer

Øving 1 ITD Industriell IT

Øving 1 ITD Industriell IT Utlevert : uke 37 Innlevert : uke 39 (senest torsdag 29. sept) Avdeling for Informasjonsteknologi Høgskolen i Østfold Øving 1 ITD 30005 Industriell IT Øvingen skal utføres individuelt. Det forutsettes

Detaljer

Reguleringsteknikk. Finn Aakre Haugen. 16. juni 2014

Reguleringsteknikk. Finn Aakre Haugen. 16. juni 2014 Reguleringsteknikk Finn Aakre Haugen 16. juni 2014 1 2 F. Haugen: Reguleringsteknikk Innhold 1 Innledning til reguleringsteknikk 15 1.1 Grunnleggende begreper..................... 15 1.2 Hvaerreguleringgodtfor?...

Detaljer

Emnekode: sa 318E. Pensumlitteratur ( se liste nedenfor), fysiske tabeller, skrivesaker og kalkulator

Emnekode: sa 318E. Pensumlitteratur ( se liste nedenfor), fysiske tabeller, skrivesaker og kalkulator I I ~ høgskolen i oslo Emne: Gruppe(r): Eksamensoppgav en består av: Kybernetikk 2EY Antall sider (inkl. forsiden): 5 Emnekode: sa 318E Dato: 15. iuni 2004 Antall OPfgaver: Faglig veileder: Vesle møy Tyssø

Detaljer

LABORATORIEØVELSE C FYS LINEÆR KRETSELEKTRONIKK 1. TILBAKEKOBLING AV 2-ORDENS SYSTEM 2. KONTURANALYSE OG NYQUISTDIAGRAMMER

LABORATORIEØVELSE C FYS LINEÆR KRETSELEKTRONIKK 1. TILBAKEKOBLING AV 2-ORDENS SYSTEM 2. KONTURANALYSE OG NYQUISTDIAGRAMMER FYS322 - LINEÆR KRETSELEKTRONIKK LABORATORIEØVELSE C 1. TILBAKEKOBLING AV 2-ORDENS SYSTEM 2. KONTURANALYSE OG NYQUISTDIAGRAMMER 3. PI REGULATOR 4. FILTRE Maris Tali(maristal) maristal@student.matnat. uio.no

Detaljer

Finn Haugen. Oppgaver i reguleringsteknikk 1. Nevn 5 variable som du vet eller antar kan være gjenstand for regulering i industrianlegg.

Finn Haugen. Oppgaver i reguleringsteknikk 1. Nevn 5 variable som du vet eller antar kan være gjenstand for regulering i industrianlegg. Finn Haugen. Oppgaver i reguleringsteknikk 1 Oppgave 0.1 Hvilke variable skal reguleres? Nevn 5 variable som du vet eller antar kan være gjenstand for regulering i industrianlegg. Oppgave 0.2 Blokkdiagram

Detaljer

Motor - generatoroppgave II

Motor - generatoroppgave II KYBERNETIKKLABORATORIET FAG: Kybernetikk DATO: 01.17 OPPG.NR.: R113 Motor - generatoroppgave II Et reguleringssyste består av en svitsjstyrt (PWM) otor-generatorenhet og en ikrokontroller (MCU) so åler

Detaljer

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side av 4 STE 629 Digital signalbehandling Løsning til kontinuasjonseksamen Tid: Fredag 03.08.2007, kl: 09:00-2:00

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Emne: Gruppe(r): Eksamensoppgaven består av: Kybernetikk I E Antall sider (inkl. forsiden): 7 Emnekode: SO 8E Dato: 7. juni Antall oppgaver: Faglig veileder:

Detaljer

Løsningsforslag MAT 120B, høsten 2001

Løsningsforslag MAT 120B, høsten 2001 Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()

Detaljer

Frekvensanalyse av likestrømsmotor med diskret regulator og antialiasing filter

Frekvensanalyse av likestrømsmotor med diskret regulator og antialiasing filter C:\Per\Fag\Styresys\SANNOV\13LØSØV2.wpd Fag SO507E Styresystemer HIST-AFT Feb 2012 PHv Løsning heimeøving 2 Sanntid Revidert sist: 8/2-13 NB! Matlab har vært under endring de siste årene. Mer og mer baserer

Detaljer

EDT211T Reguleringsteknikk PC-øving nr 1. NB: Det lønner seg å kjøre gjennom leksjonen før du tar fatt på selve øvingen på siste side.

EDT211T Reguleringsteknikk PC-øving nr 1. NB: Det lønner seg å kjøre gjennom leksjonen før du tar fatt på selve øvingen på siste side. Høgskolen i Sør-Trøndelag Avdeling for Teknologi Institutt for Elektroteknikk Klasse 2EA Studieretning for automatisering EDT211T Reguleringsteknikk PC-øving nr 1 NB: Det lønner seg å kjøre gjennom leksjonen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT1100 Kalkulus Eksamensdag: Fredag 14. oktober 2016 Tid for eksamen: 13.00 15.00 Oppgavesettet er på 5 sider. Vedlegg: Svarark,

Detaljer

2.2.1 Framgangsmåte for matematisk modellering Modellering av massesystemer. Modellbegreper... 15

2.2.1 Framgangsmåte for matematisk modellering Modellering av massesystemer. Modellbegreper... 15 Innhold 1 Innledning 9 2 Matematisk modellering 13 2.1 Innledning... 13 2.2 Utviklingavdynamiskemodeller... 14 2.2.1 Framgangsmåte for matematisk modellering...... 14 2.2.2 Modellering av massesystemer.

Detaljer

HIN, MASTERSTUDIER Inklusive lösningsförslag: Eksamen i STE 6215, Reguleringsteknikk I. Figure 1: Reguleringssytem

HIN, MASTERSTUDIER Inklusive lösningsförslag: Eksamen i STE 6215, Reguleringsteknikk I. Figure 1: Reguleringssytem HIN, MSTERSTUDIER Inklusive lösningsförslag: Eksamen i STE 625, Reguleringsteknikk I Oppgavesettet består av 4 oppgaver på 7 sider Varighet: 3 timer. Dato: Tillatte hjelpemidler: lle kalkulatortyper. lle

Detaljer

Emne 11 Differensiallikninger

Emne 11 Differensiallikninger Emne 11 Differensiallikninger Differensiallikninger er en dynamisk beskrivelse av et system eller en prosess, basert på de balanselikningene vi har satt opp for prosessen. (Matematisk modellering). Vi

Detaljer

,QQOHGQLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ

,QQOHGQLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ,QQOHGQLQJ Der det er angitt referanser, er det underforstått at dette er til sider, figurer, ligninger, tabeller etc., i læreboken, dersom andre

Detaljer

Reguleringsteknikk Sammendrag REVISJON ØRJAN LANGØY OLSEN

Reguleringsteknikk Sammendrag REVISJON ØRJAN LANGØY OLSEN 2015 Reguleringsteknikk Sammendrag REVISJON 1.1.1 ØRJAN LANGØY OLSEN Innhold Ordliste... 2 PID (Proporsjonal Integral Derivasjon) regulator... 3 Ziegler-Nichols Closed-loop tuning... 3 Ziegler-Nichols

Detaljer

Fagnr: SO318E. Veslemøy Tyssø Eksamenstid, I fra - til: Eksamensoppgaven består av Tillatte hjelpemidler: Antall oppgaver: 5

Fagnr: SO318E. Veslemøy Tyssø Eksamenstid, I fra - til: Eksamensoppgaven består av Tillatte hjelpemidler: Antall oppgaver: 5 Fag: Kybernetikk l Fagnr: SO318E Faglig veileder: Bjørn Engebretsen, Klasse(r): 2EY Dato: 5/6-02 Veslemøy Tyssø Eksamenstid, I fra - til: 0900-1400 Eksamensoppgaven består av Tillatte hjelpemidler: Antall

Detaljer

Spørretime / Oppsummering

Spørretime / Oppsummering MAS107 Reguleringsteknikk Spørretime / Oppsummering AUD F 29. mai kl. 10:00 12:00 Generell bakgrunnsmateriale Gjennomgang av eksamen 2006 MAS107 Reguleringsteknikk, 2007: Side 1 G. Hovland Presentasjon

Detaljer

Løsningsforslag til sluttprøven i emne IA3112 Automatiseringsteknikk

Løsningsforslag til sluttprøven i emne IA3112 Automatiseringsteknikk Høgskolen i Telemark. Emneansvarlig: Finn Aakre Haugen (finn.haugen@hit.no). Løsningsforslag til sluttprøven i emne IA3 Automatiseringsteknikk Sluttprøvens dato: 5. desember 04. Varighet 5 timer. Vekt

Detaljer

Dagens temaer. Definisjon av z-transformasjonen. Tema. Time 5: z-transformasjon og frekvens transformasjon. Fra forrige gang

Dagens temaer. Definisjon av z-transformasjonen. Tema. Time 5: z-transformasjon og frekvens transformasjon. Fra forrige gang Dagens temaer Time 5: z-transformasjon og frekvens transformasjon Andreas Austeng@ifi.uio.no, NF3470 fi/uio September 2009 Fra forrige gang Kausalitet, stabilitet og inverse systemer Z 1 { }: nvers z-transformasjon

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. systemidentifikasjon fra sprangrespons.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. systemidentifikasjon fra sprangrespons. Stavanger, 29. september 2016 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Detaljer

Formelark for eksamen i TE 559 Signaler og systemer Kontinuerlig tid Diskret tid Beskrivelse Dierensialligning Dieranseligning y(t) =y (t) +3u(t) +5u (t) y[k] =,y[k, ] + u[k] Beskrivelse Impulsrespons,

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 15.desember 2014 Varighet/eksamenstid: 0900-1400 Emnekode: Emnenavn: TELE2001-A Reguleringsteknikk Klasse: 2EL 2FE Studiepoeng:

Detaljer

Tidsdomene analyse (kap 3 del 2)

Tidsdomene analyse (kap 3 del 2) INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 2) Sverre Holm 3.9 Diskret konvolusjon Metode for å finne responsen fra et filter med 0 initialbetingelser, fra impulsresponsen h[n] Enkelt

Detaljer

EMAR2101 Reguleringssystemer 1: Løsning til øving 3

EMAR2101 Reguleringssystemer 1: Løsning til øving 3 Høgskolen i Buskerud Finn Haugen (finn.haugen@hibu.no) 6.10 2008 EMAR2101 Reguleringssystemer 1: Løsning til øving 3 Løsning til oppgave 1 Eksempler på anvendelser: Produktkvalitet: Regulering av slipekraft

Detaljer

2-Tank System. Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics

2-Tank System. Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics 2-Tank System Hans- Petter Halvorsen, 2013.06.20 Faculty of Technology, Postboks 203, Kjølnes ring

Detaljer

Emnekode: LO 358E. OYAo~~ Alle skrevne og trykte hjelpemidler, skrivesaker og kalkulator

Emnekode: LO 358E. OYAo~~ Alle skrevne og trykte hjelpemidler, skrivesaker og kalkulator ~ h øgskolen i oslo Emne: Kybemetikk Emnekode: LO 358E Gruppe(r): Dato: \? 2E OYAo~~ Eksamensoppgav Antall sider (inkl. Antall oppgaver en består av: forsiden): 6 5 Faglig veileder: Veslemøy Tyssø Bjørn

Detaljer

University College of Southeast Norway. Kalmanfilter HANS-PETTER HALVORSEN,

University College of Southeast Norway. Kalmanfilter HANS-PETTER HALVORSEN, University College of Southeast Norway HANS-PETTER HALVORSEN, 2016.11.01 http://home.hit.no/~hansha Forord Dette dokumentet tar for seg grunnleggende modellbasert regulering over temaet. Noen forenklinger

Detaljer

Eksperimentell innstilling av PID-regulator

Eksperimentell innstilling av PID-regulator Kapittel 4 Eksperimentell innstilling av PID-regulator 4.1 Innledning Dette kapitlet beskriver noen tradisjonelle metoder for eksperimentell innstilling av regulatorparametre i P-, PI- og PID-regulatorer,

Detaljer

EMAR2101 Reguleringssystemer 1: Øving 3

EMAR2101 Reguleringssystemer 1: Øving 3 Høgskolen i Buskerud Finn Haugen (finn.haugen@hibu.no) 6.10 2008 EMAR2101 Reguleringssystemer 1: Øving 3 Oppgave 1 I underkapittel 1.1 i læreboken er det listet opp syv forskjellige formål for reguleringsteknikken,

Detaljer

Operasjonsforsterkeren

Operasjonsforsterkeren Operasjonsforsterkeren En kort innføring og oversikt Forelesningsnotat for SIE3040 Reguleringsteknikk med elektriske kretser ved Odd Pettersen. utgave pril 2000 (noen korreksjoner mars 2003) NORGES TEKNISK-NTURVITENSKPELIGE

Detaljer

Emnekode: Faglig veileder: Veslemøy Tyssø Bjørn Ena~bretsen. Gruppe(r): I Dato: Alle skrevne og trykte hjelpemidler, skrivesaker og kalkulator

Emnekode: Faglig veileder: Veslemøy Tyssø Bjørn Ena~bretsen. Gruppe(r): I Dato: Alle skrevne og trykte hjelpemidler, skrivesaker og kalkulator G høgskolen i oslo Emne: Kybemetikk Emnekode: to 358E Faglig veileder: Veslemøy Tyssø Bjørn Enabretsen. Gruppe(r): Dato: Eksamenstid: ST - 2E i 7. juni 2005 ' Eksamensoppgaven består av: forsiden): 7 5

Detaljer

Kompendium i. Monovariable systemer og signaler. Trond Andresen

Kompendium i. Monovariable systemer og signaler. Trond Andresen 95-56-X Kompendium i Monovariable systemer og signaler Trond Andresen Institutt for teknisk kybernetikk NTNU høst 998 (leses sammen med Signals and Systems av Oppenheim, Willsky, Young) I Residueregning,

Detaljer

Operasjonsforsterkeren

Operasjonsforsterkeren Operasjonsforsterkeren En kort innføring og oversikt Forelesningsnotat for TTK440 Reguleringsteknikk med elektriske kretser ved Odd Pettersen 2. utgave Mars 2004 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET

Detaljer

LABORATORIEØVELSE C. Kurs: FYS3220 Lineær kretselektronikk. Gruppe: Utført dato: Gruppe-dag: Oppgave:

LABORATORIEØVELSE C. Kurs: FYS3220 Lineær kretselektronikk. Gruppe: Utført dato: Gruppe-dag: Oppgave: Kurs: FYS30 Lineær kretselektronikk Gruppe: Gruppe-dag: Utført dato: Oppgave: LABORATORIEØVELSE C Omhandler: 1 TILBAKEKOBLING AV -ORDENS SYSTEM... 3 KONTURANALYSE OG NYQUIST DIAGRAMMER... 8 3 PID REGULATOR...

Detaljer

Oppgaver til Dynamiske systemer 1

Oppgaver til Dynamiske systemer 1 Oppgaver til Dynamike ytemer Oppgave 0. Lineariering av ulineær modell Likning (2.28) i læreboka er en dynamik modell av en tank med gjennomtrømning og oppvarming. Modellen gjengi her: cρv T (t) P (t)+cw(t)[t

Detaljer

Forelesning nr.12 INF 1410

Forelesning nr.12 INF 1410 Forelesning nr.12 INF 1410 Komplekse frekvenser analyse i frekvensdomenet 20.04. INF 1410 1 Oversikt dagens temaer Intro Komplekse tall Komplekse signaler Analyse i frekvensdomenet 20.04. INF 1410 2 Intro

Detaljer

HØGSKOLEN - I - STAVANGER. Institutt for elektroteknikk og databehandling

HØGSKOLEN - I - STAVANGER. Institutt for elektroteknikk og databehandling HØGSKOLEN - I - STAVANGER Institutt for elektroteknikk og databehandling EKSAMEN I: TE 559 Signaler og systemer VARIGHET: 5 timer TILLATTE HJELPEMIDLER: Kalkulator, K. Rottmanns formelsamling OPPGAVESETTET

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING ESAMENSOPPGAVE Emne: Gruppe(r): Eksamensoppgaven består av: ybernetikk I 2E Antall sider (inkl. forsiden): Emnekode: SO 318E Dato: Antall oppgaver: 6 Faglig veileder: Veslemøy

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

Artikkelserien Reguleringsteknikk

Artikkelserien Reguleringsteknikk Finn Haugen (finn@techteach.no) 18. november, 2008 Artikkelserien Reguleringsteknikk Dette er artikkel nr. 7 i artikkelserien Reguleringsteknikk: Artikkel 1: Reguleringsteknikkens betydning og grunnprinsipp.

Detaljer

FYS3220 Forelesningsnotat AC-respons uke 39 H.Balk

FYS3220 Forelesningsnotat AC-respons uke 39 H.Balk FYS3 Forelesningsnotat uke 39 H.Balk Repetisjon...3 Etabler reglene for å tegne bode plot....7 Normalisering og eksempel på Bodeplot for sammensatt reell funksjon...9 Resonans og komplekskonjugerte -punkter,

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2012 2/30 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

Reg tek final exam formelsamling

Reg tek final exam formelsamling Reg tek final exam formelsamling Andreas Klausen 6. september 202 Brukes som vanlig på eget ansvar :) Innhold Bode plot stuff 3. Kryssfrekvens........................................... 3.2 Fasemargin............................................

Detaljer

Prosess-systemteknikk fordypningsemne PROSJEKTTITTEL: Stabiliserende regulering av kompressor. Atle Andreassen

Prosess-systemteknikk fordypningsemne PROSJEKTTITTEL: Stabiliserende regulering av kompressor. Atle Andreassen NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for kjemi og biologi Institutt for kjemisk prosessteknologi FORDYPNINGSEMNE HØST 2001 SIK 2092P1 Prosess-systemteknikk fordypningsemne PROSJEKTTITTEL:

Detaljer

Litt generelt om systemidentifikasjon.

Litt generelt om systemidentifikasjon. Stavanger, 29. juni 2016 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Detaljer

Inst. for elektrofag og fornybar energi

Inst. for elektrofag og fornybar energi Inst. for elektrofag og fornybar energi Fag TELE2001 Reguleringsteknikk Simulink øving 3 Utarbeidet: PHv Revidert sist Fredrik Dessen 2015-09-11 Hensikten med denne oppgaven er at du skal bli bedre kjent

Detaljer

y(t) t

y(t) t Løsningsforslag til eksamen i TE 559 Signaler og Systemer Høgskolen i Stavanger Trygve Randen, t.randen@ieee.org 3. mai 999 Oppgave a) Et tidsinvariant system er et system hvis egenskaper ikke endres med

Detaljer