Løsning eksamen 1T våren 2010
|
|
- Thorvald Gabrielsen
- 8 år siden
- Visninger:
Transkript
1 Løsning eksamen 1T våren 010 Oppgave 1 a) y x Nullpunktet er gitt ved f ( x) 0 x 30 x 3 3 x 1, 5 Dette ser vi stemmer med grafen. Den skjærer x-aksen i x = 1,5. b) x x 8x 15 8x15 0 x x 8 x x 5 eller x c) (43)
2 d) a a 4 a a a a 1 6 a e) Først deriverer vi funksjonen. f x x x 3 ( ) 8 4 f x x ( ) 6 8 Stigningstallet til tangenten er a f (1) Tangenten har likningen y ax b x b. Når x = 1, er y f 3 (1) Det gir 10 1b b 8 Likningen er y x 8 f) Vi faktoriserer telleren med tredje kvadratsetning og nevneren med første kvadratsetning. x 9 x3x3 x3 x x3 x3 x x x x 3 x 3 g) h) lg(x 4) 3lg lg(x 4) lg 3 lg(x 4) lg 8 x 4 8 x 4 x 1) Vi regner med at det blå feltet er 135 og det grønne 90. Da er P blå Pgrønn
3 Pblå eller grønn PblåPgrønn ) Vi antar at det gule feltet er 45. Da er 45 1 P gul Det gir P P gul og så grønn Pgrønn og så gul gul grønn grønn gul gul og så grønn eller grønn og så gul P P P P i) Først lager vi en skisse: C A 4 cm B Den tredje betingelsen gir sin B cos B AC AB BC BC AC AB BC AC og AB er dermed like lange. Begge er 4 cm. Figuren ser slik ut: C 4 cm A 4 cm B Trekanten er likebeint og rettvinklet. Da er B = C = 45.
4 Oppgave a) Fortegnslinje for gx. ( ) g(x) er positiv der grafen er over x-aksen og negativ der grafen er under x-aksen. Fortegnslinje for g ( x). g( x) er positiv der grafen vokser og negativ der grafen avtar. b) Andregradsfunksjonen har nullpunktene x = og x =. Det gir gx ( ) a x x a x x a x 4 Fra grafen ser vi at g(0) = 4. Da må a a 4 a 1 gx x x ( ) Oppgave 3 D C A B a) DAC er rettvinklet, og vi kan derfor bruke pytagorassetningen.
5 AC DC DA (5,0m) 3,0m 5m 9m 34m AC 34 m 5,8 m b) I BCD må vi bruke cosinussetningen. BD CD CB CD CB C cos (5,0 m) (5,0 m) 5,0 m 5,0 m cos10 = 5 m 5 m 50 m ( 0,5) 75 m BD 75 m = 8,7 m c) 1) Ettersom DAC er rettvinklet, er 5,0 tan CAD 3, 0 CAD 59,0 ACD , 031, 0 BAC A CAD 10059, 0 41, 0 BCA C ACD 1031, 089, 0 Sinussetningen gir AB BC sin BCA sin BAC AB 5,0 m sin89,0 sin 41,0 5,0 m AB sin89,0 7,6 m sin 41,0 Arealet av ABD er 1 1 AB AD sin A 7,6 m3,0 msin100 11,6 m Arealet av BCD er 1 1 CD CB sin C 5,0 m5,0 msin10 10,83 m Samlet areal er 11,6 m + 10,83 m =,1 m
6 ) Arealet av ACD er 1 1 3,0m5,0m 7,5m DADC Arealet av ABC er 1 1 AC BC sinbca 5,8m5,0 msin89,0 14,58m Samlet areal er 7,5 m + 14,58 m =,1 m Oppgave 4 a) Han sykler 1 time med farten 1 km/t og deretter 15 min = 1 4 t med farten 18 km/t. Strekningen blir 1 km/t 1 t + 18 km/t 1 4 t = 6 km + 4,5 km = 10,5 km b) km 15 y x min c) I de første 30 minuttene er farten 1 km/t. Det er 1 km 1 km 1 km/min = 0, km/min 1t 60min 60 På x minutter tilbakelegger han strekningen y målt i kilometer der y 0, x Dette uttrykket gjelder når 0 x 30.
7 I de neste 30 minuttene er farten 18 km/t. Det er 18 km 18 km 1 km/min = 0,3 km/min 1t 60min 60 Strekningen må da være gitt ved y = 0,3x + b der b er en ukjent konstant. Men vi vet at han hadde syklet 6 km etter 30 minutter. Når x = 30, er da y = 6. Det gir 6 = 0, b 6 = 9 + b b = 3 Strekningen er y 0,3x 3 Dette uttrykket gjelder når 30 x 60. Oppgave 5 a) Vi kan lage et Venn-diagram. briller kontaktlilnser 14,3 % 9,7 % 7, % Vi kan også lage en tabell. Vi utnytter at det er 14,3 % + 9,7 % + 7, % = 31, % som bruker briller eller kontaktlinser. Det er da 100 % 31, % = 68,8 % som verken bruker briller eller kontaktlinser.
8 Kontaktlinser Ikke kontaktlinser Sum Briller 9,7 % 14,3 % 4,0 % Ikke briller 7, % 68,8 % 76,0 % Sum 16,9 % 83,1 % 100 % b) Det er 9,7 % + 14,3 % = 4,0 % som bruker briller. Det er dermed 100 % 4,0 % = 76,0 % Sannsynligheten er 0,760 (76,0 %). c) Sannsynligheten er P(linser briller) 9,7 % P(linser briller) = 0,404 P(briller) 4, 0 % Sannsynligheten er 0,404 (40,4 %). Oppgave 6 a) y x -4 b) Nullpunkter: f ( x) 0 0,5x x 0 x 4x 0 x( x4) 0 x = 0 eller x 4 = 0 x = 0 eller x = 4
9 Vi deriverer funksjonen og lager fortegnslinje for den deriverte. f ( x) 0,5x x Funksjonen har et bunnpunkt for x =. Da er y f () 0,5 4 Funksjonen har bunnpunktet (, ). c) Stigningstallet til tangenten i punktet (1, f(1)) er f (1) 1 1 d) Tangenten må ha likningen y 1xb x b. Når stigningstallet til en tangent er 1, er f ( x) 1 x 1 x 3 y-koordinaten er da y 0, ,5 Tangeringspunktet er (3, 1,5). Det må passe i likningen for tangenten. 1,5 = 3 + b b = 4,5 Likningen er y = x 4,5 Oppgave 7 Alternativ I a) Når a = 6 er likningssettet yx x 6 yx 3 1) Den andre likningen gir y x 3
10 Innsatt i den første gir det x3 x x 6 x x x xx 6 0 x(6 x) 0 x 0 eller 6 x 0 x 0 eller x 6 Når x = 0, er y = = 3 Når x = 6, er y = = 15 Løsningen er x = 0 og y = 3 eller x = 6 og y = 15. ) Vi omformer den første likningen. y x x6 1 3 y x x Vi tegner så denne kurven sammen med linja y x 3 i ett koordinatsystem. 15 y x -5 Vi har skjæringspunktene (0, 3) og (6, 15). Løsningen er x = 0 og y = 3 eller x = 6 og y = 15.
11 b) Hvis x = 1 og y = 5 skal være en løsning, må tallene passe i den første liknngen. y x x a a 10 1 a a 11 c) Vi kan løse oppgaven ved regning. Den andre likningen gir y x 3. Innsatt i den første likningen gir det 3 x x x a 4 6 x x x a x 6x6a ( 1) 6 a x a x a x 6 604a x Vi har én løsning hvis 60 4a 0 4a 60 a 15 Vi har to løsninger hvis 60 4a 0 4a 60 a 15 Vi har ingen løsninger hvis 60 4a 0 4a 60 a 15
12 Vi kan også løse oppgaven grafisk ved for eksempel GeoGebra. Da legger vi inn parameteren a = 10, samt uttrykkene en glider for a som går fra 0 til 0. 1 og x 3. Vi lager så x x a Vi ser at det er to skjæringspunkter, og dermed to løsninger, når a = 10. Vi får to løsninger alle verdier for a helt opp til denne situasjonen oppstår: Når a = 15, blir den rette linja en tangent til andregradskurven. Vi har bare én løsning. Når a > 15, skjer dette: Vi har ingen skjæringspunkter og dermed ingen løsninger. Vi har én løsning når a = 15, to løsninger nå a < 15 og ingen løsning når a > 15.
13 Oppgave 7 Alternativ II a a a a a a + a =3a a) Grunnflaten av huset består av et kvadrat med sider a og et rektangel med grunnlinje 3a og høyde 10 a. Arealet blir f ( a) a 3a 10a a 30a3a 30a a Når a = 5, er arealet f (5) Arealet er 100 m. b) Arealet er 11 m når 30aa 11 a 30a11 0 Vi bruker lommeregner eller annet digitalt hjelpemiddel og får løsningen a = 7 eller a = 8 c) Vi deriverer arealfunksjonen og lager fortegnslinje for den deriverte. f ( a) 30 4a Arealet er størst når a = 7,5. Da er arealet f (7,5) 307,57,5 11,5 Det største arealet er 11,5 m.
14 d) Arealet er større enn 7 m når 30aa 7 a 30a 7 0 Et digitalt hjelpemiddel gir nullpunktene a = 3 og a = 1. Dermed er ulikheten ( a3)( a1) 0 Vi lager nå fortegnslinje der vi husker på at a må være et tall mellom 0 og 10. Arealet er større enn 7 m når 3 a 10.
Eksamen 1T, Våren 2010
Eksamen 1T, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Funksjonen f er gitt ved f x x 3 Tegn grafen
Løsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen
Løsningsforslag eksamen T våren 00 DEL Oppgave a) Funksjonen f er gitt ved f 3. Tegn grafen og finn nullpunktene for f f 3 Grafen y 0 8 6 4-4 -3 - - 3 4 - -4 Nullpunkt 3 0 3 Nullpunkt når 3 b) Løs likningen
Eksamen 1T våren 2011
Eksamen 1T våren 011 Oppgave 1 a) 1) ) 7 6 00 000 =,6 10 0,04 10 =,4 10 4 b) c) x x + 6x= 16 + 6x 16 = 0 6 ± 6 4 1 ( 16) 6 ± 6 + 64 6 ± 100 6 ± 10 x = = = = = ± 5 1 x = 8 eller x = x x xx > 0 ( 1) > 0
Løsningsforslag heldagsprøve våren 2010 1T
Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y
Eksamen 1T høsten 2015
Eksamen 1T høsten 015 DEL 1 Uten hjelpemidler Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 1,8 10 0,0005 = 1,8 10 5,0 10 = 9,0 10 1 1 4 8 Oppgave Vi bruker
Eksamen MAT1013 Matematikk 1T Va ren 2014
Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig
Løsning eksamen R1 våren 2008
Løsning eksamen R våren 008 Oppgave a) f ( ) ln f ( ) ( ) ln (ln ) ln ln b) c) d) e) ( 4 6) : ( ) 4 6 6 0 64 ( 8) ( 8) 8 8 8 6 lim lim lim 8 8 6 8 ( 8) 8 lg( y ) lg y lg lg lg y lg y lg lg y lg lg y y
Eksamen 1T våren 2016 løsning
Eksamen T våren 06 løsning Oppgave ( poeng) Regn ut og skriv svaret på standardform,8 0 0,0005,8 0,8 0 3,6 0 0,5 0 0,5 3 3 5 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket
Løsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22.
c) Løs likningen 6 4 x 4 x 6 4 x 4 x Løsningsforslag heldagsprøve 1T 19.05.011 DEL 1 OPPGAVE 1 a1) Regn ut 10 8 3 3 10 8 3 3 10 8 1 10 3 a) 3 5 4 5 3 5 5 4 5 3 5 5 3 5 5 4 5 1 3 5 1 5 1 1 3 1 5 1 3 3 5
Eksamen 1T, Høsten 2012
Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer
Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 19.05.010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: Veiledning om vurderingen: 5 timer: Del 1 skal
Eksamen MAT1013 Matematikk 1T Høsten 2014
Eksamen MAT1013 Matematikk 1T Høsten 01 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 50000000000,0005 10 10 ( ) 6 7,510 5,010,55,010 1,510 1,510 Oppgave (1 poeng) Løs likningen 16 lg lg16
Eksamen MAT1013 Matematikk 1T Våren 2012
Eksamen MAT1013 Matematikk 1T Våren 01 DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Regn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Regn ut og skriv svaret på standardform
1T eksamen høsten 2017 løsning
1T eksamen høsten 017 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform. 105000 0,15
Løsningsforslag 1T Eksamen Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag 1T Eksamen 6 Vår 19.05.010 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
Eksamen MAT1013 Matematikk 1T Våren 2013
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgave (1 poeng) Løs likningssystemet x3y7 5xy8 Velger å løse likningen
Eksempeloppgave 1T, Høsten 2009
Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne
Eksamen våren Fag: MAT1006 Matematikk 1T-Y. Eksamensdato: 7. mai Kunnskapsløftet. Videregående trinn 1. Yrkesfag.
Eksamensoppgave for følgende fylker: Akershus, Oslo, Buskerud, Vestfold, Østfold, Oppland, Hedmark, Telemark, Aust-Agder, Vest-Agder, Rogaland, Hordaland, Sogn og Fjordane Eksamen våren 013 Fag: MAT1006
Eksamen REA3022 R1, Våren 2009
Eksamen REA0 R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonene ) f x x 4 4 8 f x x x x x ) g x x
Løsningsforslag heldagsprøve våren 2012 1T
Løsningsforslag heldagsprøve våren 01 1T DEL 1 OPPGAVE 1 a1) Skriv så enkelt som mulig x 9 x 6 Vi må faktorisere både teller og nevner. Så kan vi forkorte felles faktorer. Da får vi: x 9 x x 6 a) 4a4 b
Heldagsprøve i matematikk. Svar og løsningsforslag
Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være
1T eksamen våren 2018 løsningsforslag
1T eksamen våren 018 løsningsforslag DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1
Oppgaver i funksjonsdrøfting
Oppgaver i funksjonsdrøfting To av oppgavene er merket med *. Det betyr at de er ekstra interessante. Oppgave 1 Gitt funksjonen f(x) = x + 4. a) Finn nullpunktene til funksjonen. b) Bruk definisjonen på
Løsning eksamen S1 våren 2010
Løsning eksamen S1 våren 010 Oppgave 1 a) 1) f ( x) x x f (1) 1 1 1 1 f ( x) 6x x f (1) 6 1 1 6 4 ) Grafen går gjennom punktet (1, 1) og har vekstfarten 4. Det betyr at tangenten i punktet har stigningstallet
Geometri 1T, Prøve 2 løsning
Geometri 1T, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Gitt trekanten til høyre. a) Bestem sin B, cos B og tanb. 4,9 sinb 0,70, 7,0 5,0 cosb 0,71, 7,0 Du får oppgitt at sinb i
1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4
3/8/06 T 0 høst LØSNING - matematikk.net T 0 høst LØSNING Contents Diskusjon av denne oppgaven Løsning av del Matteprat spørsmål om oppgave 6 del DEL EN Oppgave 5000000000 0, 0005 =, 5 0 0 5 0 =, 5 0 6
Eksamen REA3022 R1, Høsten 2010
Eksamen REA30 R1, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Deriver funksjonene 1) f x x e x e x
Eksamen R1 høsten 2014 løsning
Eksamen R1 høsten 014 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Deriver funksjonene 3 a) f x x x 5 5 f x 15x 4x
Løsning eksamen R1 våren 2009
Løsning eksamen R1 våren 009 Oppgave 1 a) 1) f( ) ( 1) 4 f ( ) 4( 1) ( 1) 4( 1) 8 ( 1) ) g ( ) e 3 3 3 g( ) e ( e ) 1 e e ( ) 1e e (1) e b) ( ) lim lim lim ( ) 4 4 4 ( ) ( ) ( ) ( ) c) ( ) ( ) ( ) ( )
Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 2
Løsning av utvalgte øvingsoppgaver til Sigma R kapittel B. a Da ABC er 90, blir AC + 8. Siden CAE er 90, blir CE + 8 7. b Vinkelen mellom CE og grunnflata blir vinkel ACE. tan ACE som gir at vinkelen blir
Eksamen 1T, Høsten 2012
Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer
Eksamen våren 2008 Løsninger
Eksamen våren 008 Løsninger Eksamen våren 008 Løsninger Del Hjelpemidler: Vanlige skrivesaker, passer, linjal med cm-mål og vinkelmåler Oppgave a f x ( ) x ln = x f ( x) = x lnx+ x = xlnx+x x b c ( ) (
Eksamen 1T våren 2016
Eksamen 1T våren 016 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene
Eksamen 1T høsten 2015, løsningsforslag
Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =
Eksamen 1T våren 2015 løsning
Eksamen T våren 05 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003
1T eksamen våren 2017 løsningsforslag
1T eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 0,710 6010
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene
Eksamen REA3022 R1, Våren 2012
Eksamen REA30 R, Våren 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) a) Deriver funksjonene gitt ved ) f 3 5 4 f 5 ) 3
Eksamen høsten 2017 Løsninger
DEL Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 3 0 5 000,0 0 5,0 0 5 + 3 ( ) 5 6 6 7 = = 0 = 0 = 0 0 =,0 0 0,5 5 0 5 3 Oppgave Skjæringspunktet
Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 19.05.010 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1 skal
Eksamen REA3022 R1, Våren 2010
Eksamen REA0 R1, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 a) Deriver funksjonene 1) ln f 1 f ) g ln ln ln 1 4e
R1 kapittel 4 Funksjonsdrøfting. Løsninger til oppgavene i boka ( 1) 5 ( 2) = = = = = = = ( ) 1 1. f ( a)
R kapittel 4 Funksjonsdrøfting Løsninger til oppgavene i boka 4. a 4 f( ) f ( ) 4 4 b g ( ) 6 c d e f 4. a b c d e f 4. a g ( ) 0 h ( ),8 4 h ( ),8,8 i ( ),8,8 i 0 ( ) j ( ) π j ( ) 0 k ( ) k ( ) f( )
Eksamen S1, Høsten 2013
Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df f
Eksamen MAT1013 Matematikk 1T Va ren 2014
Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgåve ( poeng) Rekn ut og skriv svaret så enkelt som mogleg
R1 eksamen høsten 2015
R1 eksamen høsten 2015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 2 ( ) 3 5 2 b) g( x)
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 15 5,5 10 3,0 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig 1 0 1 3 9 6 4 8 Oppgave 3 (1 poeng) Løs
Eksamen 1T våren 2016 løysing
Eksamen T våren 06 løysing Oppgåve ( poeng) Rekn ut og skriv svaret på standardform,8 0 0,0005,8 0,8 0 3,6 0 0,5 0 0,5 3 3 5 Oppgåve (3 poeng) A B C D E F G H I J K L På tallinja ovanfor er det merkt av
eksamensoppgaver.org x = x = x lg(10) = lg(350) x = lg(350) 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor
eksamensoppgaver.org 5 oppgave1 a.i.1) 2 10 x = 700 10 x = 700 2 x lg(10) = lg(350) x = lg(350) a.i.2) Vibrukerfortegnsskjema 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor x 1, 5 a.ii.1)
Forkurs, Avdeling for Ingeniørutdanning
Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen
Funksjoner 1T, Prøve 1 løsning
Funksjoner 1T, Prøve 1 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Figuren viser utviklingen i en populasjon av harer på en øy fra 1880 til 000. a) Hvor mange harer var det på øya i 1880?
Eksamen MAT1013 Matematikk 1T Hausten 2014
Eksamen MAT1013 Matematikk 1T Hausten 01 Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 50000000000,0005 10 10 ( ) 6 7,510 5,010,55,010 1,510 1,510 Oppgåve (1 poeng) Løys likninga 16 lg lg16
Eksamen MAT1013 Matematikk 1T Va ren 2014
Eksamen MAT1013 Matematikk 1T Va ren 2014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 2,510 3,010 15 5 Oppgave 2 (2 poeng) Regn ut og skriv svaret så enkelt som mulig 1 2 0 1 3 2 9 6 4
Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.
Eksamen.05.009 REA30 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5
eksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir
eksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir x, 5 2, eksamensoppgaver.org 5 a.ii) Vi har ulikheten og ordner den. 10 x 2
Eksamen REA3026 S1, Våren 2013
Eksamen REA306 S1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Løs likningene a) lg x 3 5 lg x 3 5 lg x
Eksempelsett R2, 2008
Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx
Løsningsforslag matematikk S1 V14
Løsningsforslag matematikk S1 V14 Oppgave 1 Bruker ABC-formelen: ABC-formelen gir x = 2 x = 3 x 2 + 3x 3 = 3 2x x 2 + 5x 6 = 0 x = b ± b 2 4ac 2a lg(x + 2) = 2 lg x lg(x + 2) = lg x 2 10 lg(x+2) lg x2
Eksamen 1T høsten 2015
Eksamen 1T høsten 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005
Løsningsforslag AA6516 Matematikk 2MX - 5. mai eksamensoppgaver.org
Løsningsforslag AA6516 Matematikk 2MX - 5. mai 2004 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.
Eksamen 1T, Hausten 2012
Eksamen 1T, Hausten 01 Del 1 Tid: timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (1 poeng) Ei rett linje har stigingstal. Linja skjer x
R1 eksamen høsten 2015 løsning
R1 eksamen høsten 15 løsning Løsninger laget av Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 7, 5 10 4 7,5 4,0 10 0 10, 1 4 1 ( 4) 8 9,0 10 0 10 Oppgave (4 poeng) Siv har fire blå og seks svarte bukser i skapet.
1T eksamen hausten 2017 Løysing
1T eksamen hausten 017 Løysing Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Rekn ut og skriv svaret på standardform. 105000 0,15
Løsningsforslag. Høst Øistein Søvik
Eksamen R Løsningsforslag Høst 0..0 Øistein Søvik Del Oppgave a ) ) f x x ex Her bruker vi regelen som sier at uv ' u ' v uv ' u x, u ' og v e x, v ' e x f ' x ex x ex f ' x x ex f ' x x e x Oppgave )
Eksamen R2, Våren 2011 Løsning
R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene
1T eksamen våren 2018 løysingsforslag
1T eksamen våren 018 løysingsforslag DEL 1 Utan hjelpemiddel Tid: Del 1 skal leverast inn etter timar. Hjelpemiddel: Del 1 Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar. Oppgåve
Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. og setter f u ln
Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) 3 f( ) 3 f 3 4 3 b) g( ) ln( ) Vi bruker kjerneregelen
Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org
Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned
Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag
Eksamen i FO99A Matematikk Underveiseksamen Dato. desember 6 Tidspunkt 9. -. Antall oppgaver Vedlegg Tillatte hjelpemidler Ingen Godkjent kalkulator Godkjent formelsamling Oppgave Vi løser likningene ved
R1 Eksamen høsten 2009 Løsning
R1 Eksamen, høsten 009 Løsning R1 Eksamen høsten 009 Løsning Del 1 Oppgave 1 3 a) Deriver funksjonen f( x) 5e x f( x) 5e 3 15e 3 x 3x b) Deriver funksjonen gx x 3 ln x x x g( x) 3x ln x x 3 x 3ln 1 3 c)
Del1. Oppgave 1. a) Deriver funksjonene: 1) f x x. b) Regn ut grenseverdien hvis den eksisterer. lim. c) Trekk sammen. fx x x x
Del Oppgave a) Deriver funksjonene: 4 ) f x x ) g x x e x b) Regn ut grenseverdien hvis den eksisterer x x lim x x c) Trekk sammen x x 4x x x x x x 4 d) Gitt punktenea,, B 5,4 og C 4,7. ) Bestem AB, AC
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Løs likningssystemet 5x y x y 9 Oppgave ( poeng) Skriv så enkelt som mulig x x x 1 Oppgave 3 ( poeng) Løs ulikheten x x 3 10 Oppgave 4 ( poeng) Løs likningen
Eksamen 1T, Våren 2011
Eksamen 1T, Våren 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (13 poeng) a) Skriv på standardform 1) 36 00 000 3600000
Eksamen R2 høsten 2014 løsning
Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen
Løsning eksamen R1 høsten 2009
Løsning eksamen R høsten 009 Oppgave a) b) f( ) 5e 3 f ( ) 5 e (3 ) 5e 35e 3 3 3 3 ( ) ln( ) g 3 3 3 g( ) ln( ) ln( ) 3 ln( ) ( ) 3 3 ln( ) 3 ln( ) (3ln( ) ) c) La 3 f( ) 0 0. Da er 3 f () 0 0 0 0 0 Dermed
4 Funksjoner og andregradsuttrykk
4 Funksjoner og andregradsuttrkk KATEGORI 1 4.1 Funksjonsbegrepet Oppgave 4.110 Regn ut f (0), f () og f (4) når a) f () = + b) f () = 4 c) f () = + 5 d) f () = 3 3 Oppgave 4.111 f() = + + 1 4 3 1 0 1
Eksamen MAT1013 Matematikk 1T Våren 2012
DEL 1 Utan hjelpemiddel Oppgåve 1 (18 poeng) a) Rekn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Rekn ut og skriv svaret på standardform 5 6 5,510 6,010 11 1 33,0 10
Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål
Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål
Eksamen våren 2016 Løsninger
DEL Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve,8,8 (,8 ) 3,6 3, 6 3, 6,5 5, (5, ) Oppgve 3, 5 Vi ser på tllinj t,5 tilsvrer punkt F. Vi ser
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave 2 (1 poeng) Regn ut 4 2 (2 ) 0 3 3 2 Oppgave 3 (2 poeng) Regn ut og skriv svaret så enkelt
Eksamen MAT1013 Matematikk 1T Våren 2013
DEL 1 Utan hjelpemiddel Oppgåve 1 (1 poeng) Rekn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgåve (1 poeng) Løys likningssystemet x3y7 5xy8 Vel å løyse likninga
Eksamen 1T, Høsten 2011
Eksamen 1T, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Hvor mye koster én flaske vann, og hvor mye
DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (3 poeng) Oppgave 3 (4 poeng) Oppgave 4 (4 poeng) Deriver funksjonene. b) g( x) 5e sin(2 x)
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) cos(3 x) x b) g( x) 5e sin( x) Oppgave (3 poeng) Bestem integralene a) b) 3 ( )d e 1 x x x x ln x dx Oppgave 3 (4 poeng) a) Løs
Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator
Oppgave 1 Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt 09.00-14.00 Antall oppgaver 6 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag a) Likningen
Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål
Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en
( ) DEL 1 Uten hjelpemidler. Oppgave 1. Oppgave 2. Px ( ) er altså delelig med ( x 2) hvis og bare hvis k = 8. f x x x. hx ( x 1) ( 1) ( 1) ( 1)
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a f x x x f ( x) = 6x+ 6 ( ) = 3 + 6 c 3 gx ( ) = 5ln( x x) 1 3 g ( x) = 5 3 ( x x )
1P, Funksjoner løsning
1P, Funksjoner løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 I koordinatsystemet ovenfor er det tegnet fire rette linjer, j, k, m og n. Finn likningen for hver av de fire linjene. j : y
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) 8 v 6 Bruk trekanten ovenfor til å bestemme sinv. Oppgave ( poeng) Skriv så enkelt som mulig 4x 4 x x 1 Oppgave 3 ( poeng) Løs ulikheten x 4x 1 0 Eksamen MAT1013
1T eksamen våren 2018
1T eksamen våren 018 DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 3 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 ( poeng) Løs
Løsningsforslag 1T Eksamen. Høst 26.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag 1T Eksamen 6 Høst 26.11.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave ( poeng) Løs likningssystemet x 3y 13 4x y Oppgave 3 ( poeng) Løs ulikheten x 6x 0 Oppgave 4
Løsningsforslag Eksamen R1 - REA3022-28.05.2008
Løsningsforslag Eksamen R1 - REA3022-28.05.2008 eksamensoppgaver.org September 14, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i R1 er gratis, og det er lastet ned på eksamensoppgaver.org.
Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008. eksamensoppgaver.org
Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 1MX er gratis, og det er lastet
R2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka
R kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka E Bruker formelen cos 36 cos( 8 ) E sin 8 v og sin8 5 cos v sin sin8 5 5 6 5 5 8 5 5 8 6 5 8 6 5 8 8 3 5 5 5 a f ( ) sin 5 cos f ( ) 5cos
Eksamen høsten 2015 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 a f x = x + x 3 5 f () x = 3 x+ 5 = 6x + 5 b gx = 3 ( x ) gu = 3 u 4 4 3 g () u = 34
Eksamen. Fag: AA6516 Matematikk 2MX. Eksamensdato: 7. desember 2005. Vidaregåande kurs I / Videregående kurs I
Eksamen Fag: AA6516 Matematikk 2MX Eksamensdato: 7. desember 2005 Vidaregåande kurs I / Videregående kurs I Studieretning: Allmenne, økonomiske og administrative fag Privatistar/Privatister Oppgåva ligg
Løsningsforslag 1T Eksamen. Høst 26.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik
Løsningsforslag 1T Eksamen 6 Høst 26.11.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere
R1 - Eksamen V
Delprøve 1 R1 - Eksamen V09.05.10 Løsningsskisser Oppgave 1 1) Kjerneregel: fx u 4, u x 1 f x 4u 3 x 8xx 1 3 ) Produktregel (og kjerneregel på e x ): g x 1e x xe x 1 xe x lim x xx x lim x x xxx 4xx xxx
Del 1. 3) Øker eller minker den momentane veksthastigheten når x = 1? ( )
Del Oppgave a) Deriver funksjonen f( x) = x cos( x) b) Deriver funksjonen ( ) ( 4 x f x = e + ) c) Gitt funksjonen f( x) = x 4x + x+ ) Ligger grafen over eller under x-aksen når x =? ) Stiger eller synker
R1 - Eksamen
R1 - Eksamen 31.05.01 Løsningsskisser Del 1 - Uten hjelpemidler Oppgave 1 a) 1) f x 5 3x 1 0 15x 1 ) Kjerneregel: g x 5e u, u 3x g x 5e u 3 15e u 15e 3x b) ln a ln b ln a ln b 3 ln a ln a ln b ln a ln