Karl Erik Sandvoll m.fl. Sigma1. Helse- og sosialfag. Gyldendal undervisning

Størrelse: px
Begynne med side:

Download "Karl Erik Sandvoll m.fl. Sigma1. Helse- og sosialfag. Gyldendal undervisning"

Transkript

1 Karl Erik Sandvoll m.fl. Sigma1 Helse- og sosialfag Gyldendal undervisning

2 # Gyldendal Norsk Forlag AS, utgave, 1. opplag Læreboka er skrevet etter gjeldende læreplan for faget matematikk Vg1P for det yrkesfaglige utdanningsprogrammet elektrofag. Printed in Norway by PDC Tangen, 2006 ISBN 13: ISBN 10: Redaktør: Ellen Semb Bilderedaktør: Sissel Falck Design: Gamma grafisk Vegard Brekke og Hild Mowinckel Sats og layout: Gamma grafisk Vegard Brekke, PrePress as Figurer: Gamma grafisk Vegard Brekke, forfatterne Omslagsdesign: Hild Mowinkel Omslagsillustrasjon, omslagsbilde: Getty Images Illustratør: Anja Ruud Bilder, illustrasjoner: Side 4: Ole Moksnes AS, s. 8: Peter Till/Getty Images, s. 14: Scanpix, s. 15: Corbis/Scanpix, s. 20: ø.ole Moksnes AS, n.george Widman/Scanpix, s. 22: Terje Mortensen/Scanpix, s. 23: GBA, s.24: Ørn E. Borgen/Scanpix, s.26: Lawrence Lawry/Science Photo Library/GV-Press, s. 27: Jean-Yves Bruel/Masterfile//Scanpix, s. 29: t.v. CERN/Science Photo Library/GV-Press, t.h. Dylan Martinez/Scanpix, s. 33: Ole Moksnes AS, s. 35: Photodisc/GBA, s. 36: Simon Kwong/ Scanpix, s. 38: Corel/GBA, s. 44: Sverre A.Børretzen/Scanpix, s. 53: Berit Keilen/Scanpix, s. 57: Scanpix, s. 63: Espen Sjølingstad Hoen/Scanpix, s. 68: Hugh Sitton/Getty Images, s. 84: Ole Moksnes AS, s. 85: Helene Aune, s. 87: Berit Roald/ Scanpix, s.88: Anne Langdalen, s. 89: Halvor F. Johansen, s.90: Daly & Newton/Getty Images, s. 98 n.t.h., s. 99 ø.t.v., s. 107 n.t.v.: Ulf Carlsson, s. 108 t.h., s. 111 n.t.v.: John Arne Eidsmo, 116: Jason Reed/Scanpix, s. 126: #Trondheim kommune, Kart-og oppmålingskontoret, s.127, s. 129: Ole Moksnes AS, s. 136, s. 151 ø.t.h.: M.C.Escher s «Symmetry Drawing E18» #2006 The M.C.Escher Company-Holland. All rights reserved.www.mcescher.com, s.147: t.v..# Casterman/Distr. by PIB Copenhagen 2006, t.h. GBA, s. 150 ø.t.h., s. 151 t.v.:. Heimdal Eiendomsmegling, s. 152: ø.t.h.unni Brakestad, s.154: #Succession Pablo Picasso/BONO Pablo Picasso: Violin and Grapes, New York Museum of Modern Art (MoMA). Olje pa lerret, 50,6 x 61 cm. Mrs. David M.Levy Bequest #Foto SCALA, Firenze, s. 157: Knut Falch/Scanpix, s.158, s. 159, s. 160: Ole Moksnes AS, s.160: n.t.h. E.H.Shepard Copyright under the Berne Convention.# by Reed International Books Ltd., s.161: Photodisc/GBA, s.162: Liv Hegna/Scanpix, s.164: Ole Moksnes AS, s. 165: Ragnar Axelsson/Scanpix, s.172, s. 173, s. 175: Ole Moksnes AS, s. 178: Adam Gault/Getty Images, s. 180: Ole Moksnes AS, s. 188: Trygve Indrelid/Scanpix, s. 191: GBA/Photodisc, s. 194: Jon Asgeir Lystad/Scanpix, s. 206, 207: Diplom-is, s. 216: Alfred Pasieka/Science Photo Library/GV-Press, s. 220: Stefano Lemma, s. 226, 227, s. 228, s. 229, s.230, s. 234, s. 242: Bjørn Norheim. Det må ikke kopieres fra denne boka i strid med åndsverkloven eller avtaler om kopiering inngått med KOPINOR, interesseorgan for rettighetshavere til åndsverk. Kopiering i strid med lov eller avtale kan medføre erstatningsansvar og inndragning, og kan straffes med bøter eller fengsel. Alle henvendelser om forlagets utgivelser kan rettes til: Gyldendal Undervisning Postboks 6860 St. Olavs plass 0130 Oslo E-post:

3 FORORD Denne matematikkboka er skrevet for elever som har valgt det yrkesfaglige utdanningsprogrammet for elektrofag. Boka er en alt-i-ett-bok som inneholder lærestoff og et rikt utvalg av oppgaver. Vi har lagt stor vekt på å gi boka en ryddig struktur. Hvert delemne med forklarende tekst, eksempler og aktiviteter er samlet i oppslag over en dobbeltside. På neste side ser du hvordan dette er bygd opp. Delemnene er laget ut fra en helhetstanke, der tekst, eksempler, figurer og aktiviteter til sammen skal hjelpe deg til å nå målene i læreplanen. Mange oppslag inneholder en utfordring som kan være med på å gjøre faget mer spennende. Her kan du også få utfordret din egen forståelse. Kapitlene blir innledet med læreplanmål og en kort, motiverende tekst. Etter oppslagene i hvert kapittel presenterer vi et større sammensatt eksempel. Det skal hjelpe deg til å sette delkunnskapen inn i en helhet. Deretter følger et sammendrag og test-deg-selvoppgaver. Til slutt i hvert kapittel finner du flere graderte øvingsoppgaver sortert etter emne, og blandede oppgaver fra hele kapitlet. Kapittel 8 Sinusbølger og desibel omhandler emner som ikke kreves i forhold til 1P-læreplanen. Vi har allikevel valgt å ta med disse emnene fordi de er sentrale innenfor felles programfag i VG1 Elektrofag. Dette kapittelet er ment som tilvalgsstoff og kan velges bort dersom man ønsker det. Hele kapittelet er derfor merket med stjerne. Denne boka skal hjelpe deg til å løse aktuelle matematiske problemstillinger innen fagområdet elektrofag, og i din hverdag i og utenfor skolen. Læreplanmålene sier at du skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster, og at du skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag- og samfunnsområder. Vi har i denne boka valgt å ha med et bredt spekter av oppgaver, alt fra tradisjonelle regneoppgaver til oppgaver som krever andre løsningsstrategier. Miniprosjektene er et eksempel på slike oppgaver. Det kan være å utforske matematiske problemer eller finne informasjon i andre bøker og på nettet. Denne informasjonen må du bearbeide og sammenfatte, for så å presentere for andre. Vi håper dette skal føre til faglige samtaler om matematikk gode muntlige ferdigheter er en forutsetning for å lære. Vi ønsker deg velkommen til Nettstedet inneholder sider både for elever og lærere. Elevsidene presenterer blant annet interaktive oppgaver og fordypningsstoff. På lærersidene finnes det forslag til undervisningsopplegg, tempoplan, omtale av kapitler, prøveforslag og annet. I læreplanen heter det: «Opplæringen veksler mellom utforskende, lekende, kreative og problemløsende aktiviteter og ferdighetstrening.» Vi håper dere griper mulighetene som boka og nettstedet gir, slik at matematikkopplæringen kan foregå på en aktiv måte. Vi vil takke konsulenter og andre bidragsytere for konstruktive innspill og gode råd underveis. Oslo, mars 2006 Arne S. Kaldahl Wenche Dypbukt Snorre Evjen Bjørn Fosdahl Silja Mustaparta Rubi Skøyum Karin Øiseth FORORD 3

4 4

5 5

6 INNHOLD Kapittel 1 M LING OG BEREGNINGER 1 Problemløsing Avrunding og overslag Målenheter for lengde Målenheter i elektronikken Omkrets Flatemål Areal av enkle figurer Areal av sammensatte figurer Målenheter for vekt og volum Sammensatt eksempel SAMMENDRAG TEST DEG SELV Òvingsoppgaver Kapittel 2 REGNING OG FORMLER 1 Regnerekkefølge Formelregning Lag dine egne formler Forholdstall og brøker Veien om Sammensatte eksempler SAMMENDRAG TEST DEG SELV Òvingsoppgaver Kapittel 3 PROSENT 1 Når prosenten er ukjent Prosentfaktor Vekstfaktor Når grunnlaget er ukjent Prosentpoeng Sammensatt eksempel SAMMENDRAG TEST DEG SELV Òvingsoppgaver Kapittel 4 GRAFISKE FRAMSTILLINGER OG PROPORSJONALITET 1 Grafisk presentasjon Bruk av figurer for å sammenlikne data Noen spesialtilfeller Kan du stole på grafiske framstillinger? Proporsjonale størrelser Omvendt proporsjonale størrelser Sammensatt eksempel SAMMENDRAG TEST DEG SELV Òvingsoppgaver Kapittel 5 MER OM M LING OG AREAL 1 Pytagoras setning Er hjørnet rett? Omkrets og areal ved hjelp av Pytagoras setning Formlikhet Målestokk Arbeidstegninger Perspektivtegning Mangekanter Tesselering med regulære mangekanter Tesselering med andre grunnfigurer Sammensatt eksempel SAMMENDRAG TEST DEG SELV Òvingsoppgaver INNHOLD

7 Kapittel 6 VOLUM OG OVERFLATE 1 Rommål Volum av prismer og sylindrer Volum av kjegler, kuler og pyramider Volum av sammensatte figurer Overflata av enkle og sammensatte figurer Sammensatt eksempel SAMMENDRAG TEST DEG SELV Òvingsoppgaver Kapittel 7 ÒKONOMI 1 Indekser Indeksformelen Reallønn og kroneverdi Timelønn og akkord Provisjon, bonusordninger og frynsegoder Lønn, feriepenger og skatt Skatter og avgifter Sparing Lån Forbruksmuligheter Budsjett og regnskap Sammensatt eksempel SAMMENDRAG TEST DEG SELV Òvingsoppgaver Kapittel 8 * SINUSBÒLGER OG DESIBEL 1 Definisjon av sinus, cosinus og tangens Å regne ut spisse vinkler Trigonometri Sinus og cosinus til stumpe vinkler Sinuskurven Faseforskyvning og reaktans Impedans, en sum av resistans og reaktans Logaritmer og logaritmisk skala Desibel, en logaritmisk skala Utfyllende eksempel SAMMENDRAG TEST DEG SELV Òvingsoppgaver Fasit Stikkord L replan i matematikk INNHOLD 7

8

9 1 M LING OG BEREGNINGER

10 1.1 ProblemlÖsing Du skal l re ^ forskjellige môter Ô löse matematiske problemer pô For å bli god til å løse matematiske problemer trenger du mye øving. Et problem kan løses på flere måter. Erfaring hjelper deg til å velge en god løsningsmetode. EKSEMPEL 1 Zabi og Bawan skal finne omkretsen av et rektangel. Zabi måler alle sidene og legger sammen, mens Bawan regner slik: ð2 þ 6; 5Þ2 ¼ 17 STRATEGIER: ^ bruke sunn fornuft ^forenkle ^pröveogfeile ^ lete etter mönster ^v resystematisk ^tegnefigurer ^gôveienom1 ^sepôenheter ^ sortere opplysninger (hva vet jeg, og hva trenger jeg Ô vite) ^ ^ Hvordan tenker Bawan? Når du skal finne omkretsen av dette lille rektanglet, er begge løsningene greie. Tenk deg at du skal finne omkretsen av klasserommet ved hjelp av en linjal på 15 cm. Hvordan vil du gå fram? EKSEMPEL 2 Lars, Aslak og Leif har vært sammen med mamma på CABO-sport og kjøpt fotballsko, fotball, keeperhansker og en drikkeflaske til hver. Drikkeflaskene skal de betale selv. Vel hjemme tar de fram kvitteringen for å se hvor mye en drikkeflaske koster. De oppdager at prisen ikke vises. Hva skal de gjøre? Leif regner slik: ¼ : 3 ¼ 30 Kvittering fotballsko ,00 fotball ,00 keeperhansker ,00 3 drikkeflasker... sum 1310,00 Aslak løser problemet på denne måten: 750 þ 290 þ 180 þ 3x ¼ þ 3x ¼ x 3 ¼ 90 3 x ¼ 30 Lars tipper at en drikkeflaske koster 25 kroner. Mamma ringer til butikken for å undersøke prisen. Hva ville du ha gjort? 10 KAPITTEL1 M LING OG BEREGNINGER

11 EKSEMPEL 3 Tore tenker på et positivt heltall og ganger det med 2. Så tenker han på et annet positivt heltall, som han ganger med 3. Når han legger sammen de to nye tallene, får han 51. Hvilket tall tenker han på? Diskuter mulige løsningsstrategier. Finnes det mer enn én løsning på problemet? Problemet kan formuleres slik: 2u þ 3v ¼ 51. Du kan prøve og feile deg fram til en mulig løsning. Skal du finne alle løsningene, er det lurt å være systematisk. Kanskje det er bedre å lage en tilleggsbetingelse, slik at problemet bare får én løsning? AKTIVITETER Oppgave 1.1 Hva blir de tre neste tallene? a) 2; 4; 6;... b) 1; 4; 7; 10;... c) 1; 4; 9; 16;... Oppgave 1.2 a) Ofte er det lurt å se på enhetene. Fart måler vi i kilometer per time (km=h). Kan du ut fra enheten si hvilke opplysninger som trengs for å finne farten? b) Hva slags sammenheng er det mellom strekning, tid og fart? c) Du kjører i 67 km=h og skal kjøre 11 km. Bruker du mer eller mindre enn én time? Hvor lang tid bruker du? Oppgave 1.3 Ole, Trine og Bente er til sammen 43 år. Ole er dobbelt så gammel som Trine, og Bente er 3 år eldre enn Trine. Hva er alderen til hver av de tre? Oppgave 1.4 Familien til Per driver en kennel, og i hagen har de en stor andedam. Når Per blir spurt om hvor mange hunder og ender de har, svarer han: «Vi har 40 dyr, og de har 116 bein til sammen.» Hjelp hverandre med å finne ut hvor mange hunder og ender de har. Oppgave 1.5 Løs sudokuen slik at alle vertikale og horisontale linjer og alle 3 3-ruter inneholder alle tall fra 1 til Oppgave 1.6 Regn ut høyden til et tre, en flaggstang eller skolebygningen din ved hjelp av for eksempel en blyant. Miniprosjekt 1.7 Motstander får vi kjøpt i standardverdier. a) Finn ut hva standardverdiene for motstander er. b) Hva må vi gjøre når vi har behov for en motstand som ikke har en standardisert verdi? c) Bruk standardmotstander til å konstruere motstander med verdier på 50 og 200. d) Hva vil det si at en motstand har 10 % toleranse? KAPITTEL1 M LING OG BEREGNINGER 11

12 1.2 Avrunding og overslag Du skal l re ^ Ô avgjöre nôr det er behov for nöyaktighet i matematiske beregninger, og nôr vi kan gjöre overslag ^ Ô runde av desimaltall med ulik grad av nöyaktighet Tallet (pi) har et uendelig antall desimaler, tilsynelatende uten noe mønster. Japaneren Hiroyuki har lært seg de første desimalene utenat! Men trenger vi alltid å være så nøyaktige? Tenk deg at du er på IKEA og kjøper bilder. Du har dette i handlekurven: «Rød rose»: «Epler»: «Solsikke»: kr 167;50=kg kr 218;50=kg kr 107;50=kg Du har en femhundrelapp på deg. Hvordan kan du raskt regne ut i hodet om du har nok penger? Knepet er å gjøre et overslag, det vil si at du runder av tallene. Tabellen i margen illustrerer avrundingsreglene for desimaltall. Dersom vi skal runde av til nærmeste hele tall, ser vi på første desimal. Er denne desimalen 5 eller større, runder vi av oppover. I motsatt fall runder vi av nedover. Skal vi runde av til én desimal, ser vi på andre desimal på samme måte, og så videre. TALLET er definert som omkretsen av en sirkel dividert med diameteren ¼ O=d.Vanligvis nöyer vi oss med to desimaler og skriver 3,14. Avrunding av 7,2356 nærmeste titall 10 nærmeste heltall 7 1 desimal 7,2 2 desimaler 7,24 3 desimaler 7,236 EKSEMPEL 4 a) Hvordan kan du gjøre et raskt overslag for å finne ut om bildene i eksemplet ovenfor koster mer enn 500 kroner? b) Du ønsker å ramme inn «Solsikke» på nytt. Bildet har form som et rektangel med bredden b ¼ 37;43 cm og høyden h ¼ 62; 56 cm. Hvor mange centimeter rammeverk bør du bestille? Løsning: a) Vi runder av oppover til nærmeste titall og legger sammen: 167; og 218; og 107; kr 170 þ kr 220 þ kr 110 ¼ kr 500 Siden vi har rundet av alle prisene oppover, er 500 kroner nok! b) Vi runder av til én desimal og legger sammen: 37;43 cm 37;4 cm og 62;56 cm 62;6 cm 2 b þ 2 h ¼ 2 37;4 cmþ 2 62;6 cm¼ 200;0 cm Er 200 cm nok? Burde vi runde av annerledes? 12 KAPITTEL1 M LING OG BEREGNINGER

13 EKSEMPEL 5 Ella arbeider i reklamebyrået Svada og skal designe en reklameplakat for et matvarefirma. Hun skal bruke et bilde med bredde b ¼ 3;6 cm og høyde h ¼ 5;4 cm. For at bildet skal passe på plakaten, må det forstørres 500 ganger. Ella vurderer å runde av verdien av bredden og høyden til hele tall før hun forstørrer. Kan hun trygt gjøre det? Løsning: Vi runder av til hele tall for bredden og høyden: b 4;0 cm og h 5;0 cm Så forstørrer vi: B ¼ 4;0 cm 500 ¼ 2000;0 cm¼ 20;0 m H ¼ 5;0 cm 500 ¼ 2500;0 cm¼ 25;0 m Vil dette bildet passe på plakaten? Vi forstørrer uten å runde av: B ¼ 3;6 cm 500 ¼ 1800;0 cm¼ 18;0 m H ¼ 5;4 cm 500 ¼ 2700;0 cm¼ 27;0 m Ella får 2 m i avvik både for bredden og høyden! Avrundinger kan gi store avvik når vi forstørrer. AKTIVITETER Oppgave 1.8 Rund av til én desimal: a) 1,23 b) 1,46 c) 6,96 d) 19,07 e) 4,555 f) 3,849 Oppgave 1.9 Rund av til to desimaler: a) 7,235 b) 11,464 c) 744,968 d) 19,079 e) 20,555 f) 13,445 Oppgave 1.10 Du er i dagligvarebutikken og handler mat. I handlekurven har du 1 purreløk: kr 9,50 3 liter melk à kr 9,00=l 1 brød: kr 14, g kjøttdeig: kr 40,50 Du står ved kassa og har en hundrelapp i lomma. Gjør overslag og bruk hoderegning for å finne ut om du unngår en pinlig situasjon. Oppgave 1.11 Klara skal regne ut jordas omkrets rundt ekvator. Jordas radius ved ekvator er 6378 km. Klara runder av til 6400 km før hun regner ut omkretsen. Hvor stort avvik fra det korrekte svaret, målt i kilometer, får hun på grunn av avrundingen? Utfordring 1.12 Du er ansatt av Svada og skal lage en valgkampplakat for en kjent politiker. Som utgangspunkt har du et portrett med bredden 10,55 cm og høyden 18,48 cm. Bildet skal forstørres 200 ganger. a) Hvor store avvik får du dersom du runder av til hele tall før du forstørrer? b) Hvor mange ganger kan bildet forstørres dersom det skal passe til en plakat med bredden 9 m og høyden 15 m? KAPITTEL1 M LING OG BEREGNINGER 13

14 1.3 MÔlenheter for lengde Du skal l re ^ hvordan du kan regne mellom ulike môlenheter for lengde Den kinesiske mur ble påbegynt rundt 300 f.kr. Muren er om lag m lang og ca cm høy på sitt høyeste. Hvordan kan vi gjøre om lengden til kilometer og høyden til meter? PREFIKSER kilo ¼ 1000 hekto ¼ 100 deka ¼ 10 desi ¼ 1 10 centi ¼ milli ¼ Tabellen viser sammenhengen mellom de vanligste målenhetene for lengde: mil kilometer hektometer dekameter meter desimeter centimeter millimeter mil km m dm cm mm ,1 0,01 0,001 Vi gjør om fra centimeter til meter ved å gå to kolonner mot venstre. Vi flytter altså kommaet to plasser til venstre. Det er det samme som å dele med 100. Den kinesiske mur er altså rundt 1500 cm ¼ 1500 m ¼ 15 m høy. 100 Vi gjør om fra meter til kilometer ved å gå tre kolonner mot venstre. Vi flytter altså kommaet tre plasser til venstre. Det er det samme som å dele med Den kinesiske mur er m ¼ 6000 km lang. LENGDEMÅL Meter er grunnenheten for lengde. Hektometer og dekameter er sv rt lite brukt. 1mil svarer til10 km. EKSEMPEL 6 a) Hvor mange meter er 120 cm? b) Hvor mange meter er 2,7 km? Løsning: a) Vi flytter kommaet to plasser mot venstre eller deler med 100: 120 cm ¼ 1;2 m 120 cm ¼ m ¼ 1;2 m b) Vi flytter kommaet tre plasser mot høyre eller ganger med 1000: 2;7 km 2;700 km ¼ 2700 m 2;7 km¼ 2; m 2700 m OMGJØRING AV ENHETER NÔr vi regner om fra större til mindre môlenheter, bruker vi ofte -tegnet. Det gjör vi fordi större enheter gjerne inneholder usikkerhet. 14 KAPITTEL1 M LING OG BEREGNINGER

15 EKSEMPEL 7 Den norske løperkongen Mensen Ernst tilbakela i 1832 distansen Paris Moskva på 14 dager. I luftlinje måler denne distansen om lag 2500 km. a) Hvor mange meter svarer det til? b) Hvor mange mil løp Mensen Ernst? c) En engelsk mile er 1609 m. Hvor lang er distansen Paris Moskva i miles? Løsning: a) Vi bruker sammenhengen mellom enhetene for lengde: 2500 km ¼ meter meter b) En mil svarer til 10 km: 2500 km ¼ 2500 mil ¼ 250 mil 10 LØPERKONGEN Mensen Ernst ble födt i Sogn og Fjordane i1795 og döde i Egypt i1843. PÔ1800-tallet ble han beundret for sine löperprestasjoner over hele Europa. Dette er like langt som Norges grense mot Sverige, Finland og Russland til sammen! c) Vi gjør om fra meter til miles: m ¼ miles 1553;76 miles 1554 miles 1609 AKTIVITETER Oppgave 1.13 Gjør om til meter: a) 234 cm b) 170 mm c) 144 dm d) 2,047 km e) 0,2 mil f) 4,5 miles Oppgave 1.17 Obelisken på Petersplassen i Vatikanet er om lag 25 m høy. Oppgave 1.14 Monolitten i Vigelandsparken i Oslo er omtrent 17 m høy. a) Hvor høy er Monolitten i centimeter? b) Fot er en målenhet som ble brukt mye tidligere. 1 fot tilsvarer 0,348 m. Hvor høy er Monolitten målt i fot? Oppgave 1.15 Gjør alle mål om til centimeter og regn ut: a) 1;2 mþ 2;7 dmþ 320 cm þ 30 mm b) 200 mm þ 0;15 m þ 5cm c) 0;33 m þ 2dmþ 40 mm Oppgave 1.16 Gjør alle mål om til meter og regn ut: a) 18 dm þ 76 cm þ 40 mm b) 0;495 fot 4;5 dmþ 12 cm þ 30 mm c) 4 km þ 1;243 miles 99 fot a) Hvor høy er obelisken målt i fot? b) Hvor høyt er dette kunstverket målt i miles? Utfordring 1.18 a) Hvor mange kilometer løp Mensen Ernst i gjennomsnitt per dag på turen Paris Moskva, når vi antar at han løp 11 timer per dag? b) Finn gjennomsnittsfarten til Ernst i kilometer per time. KAPITTEL1 M LING OG BEREGNINGER 15

16 1.4 MÔlenheter i elektroteknikken Du skal l re ^ om môlenheter i elektroteknikken ^ Ô skrive store og smô verdier pô den formen som er vanlig i elektroteknikk Målinger og beregninger innenfor elektroteknikken fører ofte til at vi arbeider med svært små eller svært store tall. For å få til det må vi bruke tierpotenser eller prefikser når vi skal skrive verdiene. Før vi går inn på elektroteknikken, skal vi ta for oss to eksempler med tierpotenser: 10 6 ¼ ¼ Vi ser at 10 6 er et ettall med seks nuller etter ¼ ¼ 1 ¼ 0; Her kommer ettallet på den sjette plassen bak komma. Effekter kan ha størrelser helt opp i terawatt (TW). Nedenfor har vi illustrert denne størrelsen: PREFIKSER tera ¼ T ¼ giga ¼ G ¼ 10 9 mega ¼ M ¼ 10 6 kilo ¼ k ¼ 10 3 milli ¼ m ¼ 10 3 mikro ¼ m ¼ 10 6 nano ¼ n ¼ 10 9 piko ¼ p ¼ femto ¼ f ¼ terawatt ¼ W ¼ W Kondensatorer kan være i størrelser fra femtofarad (ff) og oppover. Vi illustrerer også dette tallet: 1 femtofarad ¼ F ¼ 0; F Det er vanlig å skrive enhetene i elektroteknikk enten med prefikser som vist på den gule lappen, eller med tiereksponenter som svarer til prefiksene. EKSEMPEL 8 En vanlig størrelse på kondensatorer er 10 mf. Skriv denne verdien først som tiereksponent, og deretter uten prefiks og eksponent. Løsning: 10 mf ¼ F ¼ 0; F 10 µf EKSEMPEL 9 Energibruken av elektrisitet blir målt i wattimer (Wh). Et år var det norske elektrisitetsforbruket Wh. Skriv dette forbruket både som tierpotens og med prefiks. Løsning: Wh ¼ Wh ¼ 212 TWh 16 KAPITTEL1 M LING OG BEREGNINGER

17 Strøm kan variere fra milliampere (ma) til megaampere (MA). Legg merke til forskjellen på stor og liten m. En feil her kan få katastrofale konsekvenser! EKSEMPEL 10 Hvor mange ganger mer er 12 MA enn 12 ma? Løsning: 12 MA A ¼ ¼ ma 0;012 A 12 MA er en milliard ganger mer enn 12 ma. AKTIVITETER Oppgave 1.19 Skriv resistansen til motstanden nedenfor uten prefiks, med og uten tierpotenser: 120 MΩ Oppgave 1.20 Skriv induktansen til spolen nedenfor som en tierpotens, deretter med prefiks: H Oppgave 1.21 Skriv kapasiteten til kondensatoren nedenfor uten prefiks, med og uten tierpotenser: 120 pf Oppgave 1.22 a) Hvor mange ganger mer er 120 mf enn 240 nf? b) Uttrykk 1200 pf i nanofarad ðnfþ. c) Skriv nh som millihenry ðmhþ. d) Hvor mange kiloohm ðkþ er 0,240 G? Oppgave 1.23 a) Fem motstander på 270 k koples i serie. Hvor mange kiloohm blir den totale resistansen? b) Åtte kondensatorer på 300 pf blir koplet i parallell. (Da må du summere kondensatorverdiene.) Hvor mange nanofarad ðnfþ blir den totale kapasitansen? c) 14 motstander på 910 k koples i serie. Hvor mange megaohm ðmþ blir den totale resistansen? Oppgave 1.24 Inngangssignalet til en forsterker er 50 mv. På utgangen er det 38 V. Hvor mange ganger blir spenningen forsterket? Utfordring 1.25 En norsk familie bruker et år kwh i strøm. a) Hvor stort er dette forbruket i megawattimer? b) Hvor mange wattimer bruker familien per dag? c) Hvor mange megawattimer bruker familien på ti år? Utfordring 1.26 Ohms lov er slik: U ¼ R I. I elektronikk er det vanlig å arbeide med kiloohm (k) og milliampere (ma). Forklar hvorfor dette blir så enkelt når vi bruker Ohms lov. KAPITTEL1 M LING OG BEREGNINGER 17

18 1.5 Omkrets Du skal l re ^ hvordan du kan regne ut omkretsen av enkle geometriske figurer Firmaet Tummelumsk skryter av at de har produsert tivolimarkedets mest spektakulære pariserhjul, med en radius på 21 meter. Rektangel b l O = 2l + 2b Kvadrat s s O = 4s Parallellogram s g Hvor mange meter har du beveget deg etter en runde med dette pariserhjulet? Enn etter tolv runder? For å regne ut det må vi finne omkretsen av hjulet. Tabellen i margen viser formler for omkretsen av noen enkle geometriske figurer. Siden et pariserhjul alltid har form som en sirkel, blir omkretsen O ¼ 2 r ¼ 2 21 m ¼ 131;947 m 132 m Her runder vi av svaret. Hvorfor det, tror du? Etter tolv runder med dette hjulet har du beveget deg 12 O ¼ m ¼ 1584 m 1;6 km O = 2s + 2g Trapes c d b a O = a + b + c + d Trekant c b a O = a + b + c Sirkel r O = 2pr Vi gjør om til kilometer og runder av grovere enn ovenfor. Tenk gjennom hvorfor. EKSEMPEL 11 Et rektangel har lengden 40 cm og bredden 2,2 dm. Hvor mange centimeter er omkretsen? Løsning: Vi gjør om bredden fra desimeter til centimeter: 2;2 dm¼ 22 cm HUSK NÔr du skal regne ut omkretsen av en geometrisk figur, mô alle lengdene ha samme enhet! Omkretsen blir da O ¼ 2 l þ 2 b ¼ 2 40 cm þ 2 22 cm ¼ 124 cm 18 KAPITTEL1 M LING OG BEREGNINGER

19 EKSEMPEL 12 Karin skal sy et bånd langs kanten av en kjøkkenduk med form som vist på figuren. Hvor mange desimeter kantebånd trenger hun? Løsning: Duken består av et rektangel med en halvsirkel i hver ende. Til sammen utgjør de to halvsirklene en hel sirkel. Dukens omkrets blir derfor summen av omkretsen av en sirkel og omkretsen av rektanglets to langsider: O ¼ 2 l þ 2 r ¼ 2 26 dm þ 2 9dm¼ 108;549 dm 109 dm Her runder vi av oppover. Hvorfor? 18 dm Legg merke til at radien er lik halve diameteren: ¼ 9 dm. 2 Vi tar ikke med kortsidene på rektanglet i dukens omkrets. Studer figuren og finn ut hvorfor! 18 dm 26 dm AKTIVITETER Oppgave 1.27 Regn ut omkretsen i meter av en sirkel der a) r ¼ 2,18 cm b) r ¼ 18 dm c) d ¼ 0,637 km Oppgave 1.28 Finn omkretsen av et rektangel i centimeter der a) b ¼ 20 cm og l ¼ 40 cm b) b ¼ 30 cm og l ¼ 17 dm Oppgave 1.29 Jordas radius ved ekvator er 6378 km. Hvor stor er avstanden i mil mellom to punkter på ekvator som ligger på nøyaktig motsatt side av jordkloden? Oppgave 1.30 Ernst er nesten ferdig med oppussingen og skal legge gulvlister i stua. Rommet har form som et rektangel med lengden 6 m og bredden 4 m. En 70 cm bred dør på den ene kortveggen går inn til kjøkkenet. På den ene langveggen finnes en tilsvarende dør ut mot gangen. Hvor mange meter listverk bør Ernst kjøpe inn? Oppgave 1.31 Regn ut omkretsen av sjokoladekaka: 13 cm Utfordring 1.32 Karin har kjøpt en rull med julegavepapir. Papiret er rullet på en pappsylinder med lengden 80 cm og diameteren 5 cm. a) Dersom lengden av gavepapiret er 10 m, hvor stor er omkretsen av papiret? b) Omtrent hvor mange runder er papiret tvinnet rundt pappsylinderen? c) Tenk gjennom hvilke feilkilder det er i svaret du fikk i b. KAPITTEL1 M LING OG BEREGNINGER 19

20 1.6 FlatemÔl Du skal l re ^ at areal er et môl for störrelsen av en flate ^ hvordan du kan regne mellom ulike môlenheter for areal En flate er todimensjonal og har ingen tykkelse. En firkantet flate er bare representert ved lengden og bredden. Til å oppgi størrelsen av en flate bruker vi betegnelsen areal. Tabellen viser sammenhengen mellom ulike målenheter for areal. kvadratkilometer kvadrathektometer kvadratdekameter kvadratmeter kvadratdesimeter kvadratcentimeter kvadratmillimeter km 2 m 2 dm 2 cm 2 mm ,01 0,0001 0, For hver kolonne vi flytter oss i tabellen, må vi flytte kommaet to plasser. Når vi skal gjøre om fra m 2 til dm 2,måvi flytte kommaet to plasser mot høyre. Det er det samme som å gange med 100: 14;25 m 2 ¼ 1425 dm 2 eller 14;25 m 2 ¼ 14; dm 2 ¼ 1425 dm 2 Vi gjør om fra m 2 til km 2 ved å flytte kommaet seks plasser mot venstre. Det er det samme som å dele med : m 2 ¼ 0;07 km eller km2 ¼ 0;07 km 2 EUKLIDS DEFINISJONER ^ Et punkt er noe som ikke kan deles. ^ Ei linje er en lengde uten bredde. ^ En ate er noe som bare har lengde og bredde. ENHETER FOR AREAL Kvadratmeter, m 2,er grunnenheten for areal. Kvadratdekameter og kvadrathektometer brukes sv rt sjelden. EKSEMPEL 13 a) Hvor mange kvadratmeter er cm 2? b) Hvor mange kvadratmeter er mm 2? b) En serviett har et areal på 4dm 2. Hvor mange kvadratmeter utgjør det? d) New York by har et areal på 787 km 2. Gjør om til kvadratmeter. Løsning: a) Vi flytter kommaet fire plasser mot venstre: cm 2 ¼ 1;74 m 2 b) Vi flytter kommaet seks plasser mot venstre: mm 2 ¼ 0;564 m 2 c) Vi deler på 100: 4dm 2 ¼ m2 ¼ 0;04 m 2 d) Vi ganger med : 787 km 2 ¼ m m 2 20 KAPITTEL1 M LING OG BEREGNINGER

21 EKSEMPEL 14 a) Arealet av et A4-ark er 624 cm 2. Hvor stort er dette arealet i kvadratmeter? b) En målenhet for arealet av landområder er mål. Dersom vi eier en tomt på 200 mål, hvor mange kvadratkilometer disponerer vi når 1mål er 1000 m 2? A4 Løsning: a) Vi gjør om fra kvadratcentimeter til kvadratmeter: 624 cm 2 ¼ m2 ¼ 0;0624 m 2 b) Vi gjør om 200 mål til kvadratmeter: 200 mål ¼ m m 2 Deretter regner vi om til kvadratkilometer: m 2 ¼ 0;20 km 2 AKTIVITETER Oppgave 1.33 Gjør om til kvadratmeter: a) 180 cm 2 b) 2500 mm 2 c) 132 dm 2 d) 0;034 km 2 e) 0;37 mål f) 2;16 mål g) 3;04 km 2 Oppgave 1.34 Arealet av et lite landområde, for eksempel en hustomt, blir ofte oppgitt i mål. Ett mål svarer til 1000 m 2. a) Hvor mange kvadratmeter er en tomt på 4,5 mål? b) Hvor mange kvadratmeter er et landområde på 632 mål? c) Hvor mange mål er en tomt på 1432 m 2? d) Hvilket av arealene i oppgave a, b og c er vanligst størrelse for en tomt til en enebolig? Oppgave 1.35 a) Silisiumdelen av en minnebrikke er et kvadrat med side lik 5 mm. Hvor stort er arealet i kvadratmeter? b) I denne minnebrikken kan det være 12 millioner transistorer. Hvor stort areal har hver transistor? c) Dersom hver transistor er kvadratisk, hvor stor er sidekanten i transistoren? Nettoppgave 1.36 a) Bruk Internett eller oppslagsverk til å finne arealet av Moskva by i kvadratmeter. Hvilken by er størst, New York eller Moskva? b) Hvor stor er forskjellen i areal mellom byene målt i kvadratkilometer? Nettoppgave 1.37 Euklid var en gresk matematiker som levde rundt 300 f.kr. Bruk Internett eller oppslagsverk og finn ut mer om hva denne mannen arbeidet med. KAPITTEL1 M LING OG BEREGNINGER 21

Karl Erik Sandvoll m.fl. Sigma1. Helse- og sosialfag. Gyldendal undervisning

Karl Erik Sandvoll m.fl. Sigma1. Helse- og sosialfag. Gyldendal undervisning Karl Erik Sandvoll m.fl. Sigma1 Helse- og sosialfag Gyldendal undervisning # Gyldendal Norsk Forlag AS, 2006 1. utgave, 1. opplag Læreboka er skrevet etter gjeldende læreplan for faget matematikk Vg1P

Detaljer

Karl Erik Sandvoll m.fl. Sigma1. Helse- og sosialfag. Gyldendal undervisning

Karl Erik Sandvoll m.fl. Sigma1. Helse- og sosialfag. Gyldendal undervisning Karl Erik Sandvoll m.fl. Sigma1 Helse- og sosialfag Gyldendal undervisning # Gyldendal Norsk Forlag AS, 2006 1. utgave, 1. opplag Læreboka er skrevet etter gjeldende læreplan for faget matematikk Vg1P

Detaljer

Karl Erik Sandvoll m.fl. Sigma1. Helse- og sosialfag. Gyldendal undervisning

Karl Erik Sandvoll m.fl. Sigma1. Helse- og sosialfag. Gyldendal undervisning Karl Erik Sandvoll m.fl. Sigma1 Helse- og sosialfag Gyldendal undervisning # Gyldendal Norsk Forlag AS, 2006 1. utgave, 1. opplag Læreboka er skrevet etter gjeldende læreplan for faget matematikk Vg1P

Detaljer

Karl Erik Sandvoll m.fl. Sigma1. Helse- og sosialfag. Gyldendal undervisning

Karl Erik Sandvoll m.fl. Sigma1. Helse- og sosialfag. Gyldendal undervisning Karl Erik Sandvoll m.fl. Sigma1 Helse- og sosialfag Gyldendal undervisning # Gyldendal Norsk Forlag AS, 2006 1. utgave, 1. opplag Læreboka er skrevet etter gjeldende læreplan for faget matematikk Vg1P

Detaljer

Karl Erik Sandvoll m.fl. Sigma1. Helse- og sosialfag. Gyldendal undervisning

Karl Erik Sandvoll m.fl. Sigma1. Helse- og sosialfag. Gyldendal undervisning Karl Erik Sandvoll m.fl. Sigma1 Helse- og sosialfag Gyldendal undervisning # Gyldendal Norsk Forlag AS, 2006 1. utgave, 1. opplag Læreboka er skrevet etter gjeldende læreplan for faget matematikk Vg1P

Detaljer

Karl Erik Sandvoll m.fl. Sigma1. Helse- og sosialfag. Gyldendal undervisning

Karl Erik Sandvoll m.fl. Sigma1. Helse- og sosialfag. Gyldendal undervisning Karl Erik Sandvoll m.fl. Sigma1 Helse- og sosialfag Gyldendal undervisning # Gyldendal Norsk Forlag AS, 2006 1. utgave, 1. opplag Læreboka er skrevet etter gjeldende læreplan for faget matematikk Vg1P

Detaljer

Kapittel 7. Lengder og areal

Kapittel 7. Lengder og areal Kapittel 7. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

Lag et bilde av geometriske figurer, du også!

Lag et bilde av geometriske figurer, du også! Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

Sinus 1P Y > Tall og mengde

Sinus 1P Y > Tall og mengde 1 Book Sinus 1P-Y.indb Sinus 1P Y > Tall og mengde 2014-07-2 14:47:09 Tall og mengde MÅL for opp læ rin gen er at ele ven skal kun ne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale

Detaljer

GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE

GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til geometriske figurer G - 2 2 Grunnleggende om geometriske figurer G - 3 3 1-dimensjonale figurer

Detaljer

Tall og enheter. Mål. for opplæringen er at eleven skal kunne

Tall og enheter. Mål. for opplæringen er at eleven skal kunne 8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk Mellomtrinn Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Fargelegg a) 4 ruter

Detaljer

Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m.

Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m. SI-systemet Lengde Masse Volum Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m. Den grunnleggende SI-enheten

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets

Detaljer

OVERFLATE FRA A TIL Å

OVERFLATE FRA A TIL Å OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c

Detaljer

Øvingshefte. Geometri

Øvingshefte. Geometri Øvingshefte Matematikk Mellomtrinn Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk Mellomtrinn Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Fargelegg a) 4 ruter

Detaljer

Øvingshefte. Geometri

Øvingshefte. Geometri Øvingshefte Matematikk Ungdomstrinn/VGS Geometri Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U-trinn/VGS Geometri 1 Geometri Seksjon 1 Oppgave 1.1 Finn omkrets (O)

Detaljer

Geometri. Mål. for opplæringen er at eleven skal kunne

Geometri. Mål. for opplæringen er at eleven skal kunne 8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke geometri i planet til å analysere og løse sammensatte teoretiske og praktiske problemer knyttet til lengder, vinkler og areal 1.1 Vinkelsummen

Detaljer

Etter en lang ferie er det en del regneferdigheter vi må friske opp:

Etter en lang ferie er det en del regneferdigheter vi må friske opp: Repetisjonshefte matematikk høsten 7. trinn Navn: Etter en lang ferie er det en del regneferdigheter vi må friske opp: Ganging med store tall s. 2 Deling med store tall s. 2 Brøkregning s. 3 Finne brøkdeler

Detaljer

Oppgaver i matematikk, 9-åringer

Oppgaver i matematikk, 9-åringer Oppgaver i matematikk, 9-åringer Her er gjengitt de frigitte oppgavene fra TIMSS 95. Oppgavene fra TIMSS 2003 ventes frigitt i løpet av sommeren 2004 og vil bli lagt ut kort tid etter dette. Oppgavene

Detaljer

Prøveinformasjon. Høsten 2014 Bokmål

Prøveinformasjon. Høsten 2014 Bokmål Høsten 2014 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen

Detaljer

Geometriske morsomheter 8. 10. trinn 90 minutter

Geometriske morsomheter 8. 10. trinn 90 minutter Lærerveiledning Passer for: Varighet: Geometriske morsomheter 8. 10. trinn 90 minutter Geometriske morsomheter er et skoleprogram hvor elevene får trening i å definere figurer ved hjelp av geometriske

Detaljer

På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet.

På samme måten er de spesielle trekantene likesidet, likebeint, rettvinklet. GEOMETRI GRUNNLEGGENDE GEOMETRI Geometriske former Trekant, firkant, sirkel. - Hva er det? Hvordan ser det ut? Deltakerne fikk i oppdrag å tegne: en firkant, en trekant og en runding. Som forventet, tegnet

Detaljer

Lengdemål, areal og volum

Lengdemål, areal og volum Lengdemål, areal og volum Lengdemål Elever bør tidlig få erfaring med å vurdere ulike avstander og lengdemål. De kommer ofte opp i situasjoner i hverdagen hvor det er en stor ulempe å ikke ha begrep om

Detaljer

1 Tall og enheter KATEGORI 1. 1.1 Regnerekkefølge. 1.2 Hoderegning og overslagsregning. 198 Sinus 1YP > Tall og enheter

1 Tall og enheter KATEGORI 1. 1.1 Regnerekkefølge. 1.2 Hoderegning og overslagsregning. 198 Sinus 1YP > Tall og enheter 1 Tall og enheter KATEGORI 1 1.1 Regnerekkefølge Oppgave 1.110 7 8 9 6 ( ) 6 7 ( 9) Oppgave 1.111 2 3 8 3 2 ( 2) 3 + 8 ( 3) ( 4) + 2 Oppgave 1.112 3 6 + 2 3 6 + 2 4 7 8 6 e) 4 3 + 3 f) 3 6 4 Oppgave 1.113

Detaljer

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b. KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0

Detaljer

Grunnskoleeksamen 2002. Innholdsfortegnelse

Grunnskoleeksamen 2002. Innholdsfortegnelse Grunnskoleeksamen 2002 Innholdsfortegnelse Delprøve 1...1 Oppgave 1 (2p)...1 Oppgave 2...1 Oppgave 3...1 Oppgave 4...2 Oppgave 5...2 Oppgave 6...2 Oppgave 7 (1p)...3 Oppgave 8 (1p)...3 Oppgave 9 (1p)...4

Detaljer

Matematikk for yrkesfag

Matematikk for yrkesfag John Engeseth Odd Heir BOKMÅL fo re nk Håvard Moe l t e Særtrykk Matematikk for yrkesfag Innhold 1 Tall Vi øver på å legge sammen og trekke fra 4 Regning med positive og negative tall 5 Vi øver på å gange

Detaljer

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1.

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1. KAPITTELPRØVE 1 KAPITTEL 1 God start 1 Hvor stor del av figuren er a) grå b) hvit 2 Hva er størst av 1 6 a) og 2 10 1 5 b) og 2 10 2 4 c) og 3 10 3 1 d) og 4 3 3 a) Hvordan deler vi inn området mellom

Detaljer

Foto: Bensinstasjon. Literprisen på bensin og diesel er oppgitt på skiltet nederst til venstre i bildet.

Foto: Bensinstasjon. Literprisen på bensin og diesel er oppgitt på skiltet nederst til venstre i bildet. Foto: Bensinstasjon. Literprisen på bensin og diesel er oppgitt på skiltet nederst til venstre i bildet. 1 I dagliglivet opplever vi at volum spiller en sentral rolle på en rekke områder. Når du går i

Detaljer

JULETENTAMEN, 9. KLASSE, 2015. FASIT

JULETENTAMEN, 9. KLASSE, 2015. FASIT JULETENTAMEN, 9. KLASSE, 2015. FASIT DELPRØVE 1. OPPGAVE 1.1: 367 + 254 = 621 c: 67. 88 536 536 = 5896 e: 18,4-9,06 = 9,34 24,8 + 7,53 = 32,33 d: 3,2 : 0,8 = 32 : 8 = 4 32 f: 12 2. 5 2 = 12 2. 25 = 12

Detaljer

Årsplan i Matematikk

Årsplan i Matematikk Årsplan i Matematikk Tidspunkt (uke eller mnd) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 5A Kap 1: God start Kunne utvikle og bruke ulike regnemetoder for addisjon og subtraksjon

Detaljer

Eksamen MAT 1011 Matematikk 1P Høsten 2013

Eksamen MAT 1011 Matematikk 1P Høsten 2013 Eksamen MAT 1011 Matematikk 1P Høsten 01 Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 0 % av sidene i boka. Hvor mange sider er det i boka? Går «veien om 1»: 150 1% 5 0 100% 5 100 500

Detaljer

Trigonometri og geometri

Trigonometri og geometri 6 Trigonometri og geometri 6.1 Sinus til en vinkel Oppgave 6.110 a) Hvilken av disse påstandene er riktig? 1) sin = 3) sin = 2) sin = b) Hvilken av disse påstandene er riktig? b a Oppgave 6.111 ruk lommeregneren

Detaljer

Tall og algebra Vg1P MATEMATIKK

Tall og algebra Vg1P MATEMATIKK Oppgaver Innhold Innhold... 1 Modul 1: Regnerekkefølgen... 2 Modul 2: Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 9 Modul 4: Koordinatsystemet... 12 Modul 5: Forhold... 14 Modul 6: Proporsjonale

Detaljer

FRI KOPIERING "MATTE-PRØVA" Kartlegging av kunnskap og innsikt i matematikk. Oppgaver til bruk ved direkte observasjon

FRI KOPIERING MATTE-PRØVA Kartlegging av kunnskap og innsikt i matematikk. Oppgaver til bruk ved direkte observasjon FRI KOPIERING "MATTE-PRØVA" Kartlegging av kunnskap og innsikt i matematikk Oppgaver til bruk ved direkte observasjon Elev: Prøvd dato: Reidunn Ødegaard & Ragnhild Skaar. - 4. rev.utg., Gjøvik, Øverby

Detaljer

Mattestigen 4 Mattekort

Mattestigen 4 Mattekort Mattestigen 4 Mattekort FASIT Hanne Solem Britt Jakobson Eva Marand 2004 GAN Forlag AS, Oslo 2004 Britt Jakobson, Eva Marand, og Bokförlaget Natur och Kultur AB, Stockholm ISBN 82-494-0596-0 Grafisk tilrettelegging

Detaljer

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra:

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra: Kartlegging / vurdering av nivå Begynn året med et kort kurs i tall-lære og matematiske symboler. Deretter kartlegging som plasserer elevene i nivågruppe. De som kan dette, jobber med tekstoppgaver / problemløsning.

Detaljer

Matematikk 1. 4. årstrinn Smøla kommune

Matematikk 1. 4. årstrinn Smøla kommune Lokal læreplan i Matematikk 1. 4. årstrinn Smøla kommune Grunnskolen 1 INNHOLDSFORTEGNELSE Hovedområder.. side 3 Gjennomføring.. side 10 Målark. side 11 Digitale ressurser.. side 19 2 HOVEDOMRÅDER Matematikkplanen

Detaljer

Scooter/moped Motorsykkel Thales

Scooter/moped Motorsykkel Thales Eksamen 20.05.2011 MAT0010 Matematikk 10. årstrinn (Elever) Del 2 Scooter/moped Motorsykkel Thales Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 2: 5 timer totalt. Del 1 og Del 2 skal

Detaljer

Hverdagsmatte Fasit side 1

Hverdagsmatte Fasit side 1 Hverdagsmatte Fasit side 1 Del 1 Grunnleggende regning Tall Oppgave 1.16 Legge sammen og trekke fra Oppgave 1.19 a) 9 b) 6 c) 9 d) 9 e) 14 f) 10 g) 12 h) 13 Oppgave 1.20 a) 68 b) 189 c) 599 Oppgave 1.21

Detaljer

Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter

Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter Lærerveiledning Passer for: Varighet: Full fart med funksjoner, prosent og potens Vg1T, TY, P, PY og Vg2P 75 minutter Full fart med funksjoner, prosent og potens er et skoleprogram hvor elevene går fra

Detaljer

Eksamen MAT1011 1P, Våren 2012

Eksamen MAT1011 1P, Våren 2012 Eksamen MAT1011 1P, Våren 2012 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (18 poeng) a) 14,90 kroner per flaske 48,20 kroner

Detaljer

KOMPETANSEMÅL ETTER 2. TRINNET Tall:

KOMPETANSEMÅL ETTER 2. TRINNET Tall: KOMPETANSEMÅL ETTER 2. TRINNET Tall: 1. Telle til 100, dele opp og byggemengder oppt il 10, sette sammen og dele opp tiergrupper. 2. Bruke tallinjen til beregninger og å angi tallstørrelser. 3. Gjøre overslag

Detaljer

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 Lærer: Knut Brattfjord og Hege Skogly Læreverk: Grunntall 5 a og b, 6 a og b og 7 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Side 1 av 7 Periode 1: UKE 34 - UKE 37 Sammenligne og regne om mellom hele tall, desimaltall, brøker,

Detaljer

Hvor mye må jeg betale for 2 kg appelsiner?

Hvor mye må jeg betale for 2 kg appelsiner? Hvor mye må jeg betale for 2 kg appelsiner? 5 Jeg har omtrent 380 kr 400 kr! Avrunding og overslag MÅL I dette kapitlet skal du lære om avrunding av hele tall avrunding av desimaltall overslag i addisjon

Detaljer

5 Geometri. Trigonometri

5 Geometri. Trigonometri MTEMTIKK: 5 Geometri. Trigonometri 5 Geometri. Trigonometri Ordet geometri kan deles opp i geo, som betyr jord eller land, og metri, som betyr å måle. Geometri kan oversettes med jordmåling eller landmåling.

Detaljer

Kapittel 3. Praktisk regning med målenheter

Kapittel 3. Praktisk regning med målenheter Kapittel 3. Praktisk regning med målenheter I praktiske oppgaver må du ofte regne med målenheter. For eksempel kan lengder måles i meter, masser i kg, volumer i liter og temperatur i grader celsius. Men

Detaljer

Hvor mye koster 10 kurver plommer?

Hvor mye koster 10 kurver plommer? Hvor mye koster 10 kurver plommer? 13 Jeg runder av tallene til 50 kr, 200 kr og 350 kr for å se om jeg har nok! Smart, ikke sant!? Kr 48,- Kr 199,- Kr 353,- Hoderegning og avrunding MÅL I dette kapittelet

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE

VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER 1 Innledning til volum 1 V - 2 2 Grunnleggende om volum 1 V - 2 3 av V - 5 3a Kube V - 5 3b Rett prisme V - 7 3c Sylinder V - 8 3d

Detaljer

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI 1. Måleenheter 1.1 Lengdeenheter Eksempel 1: Gjør om 5 m til dm, cm og mm m dm 5 m = 5 10 dm = 50 dm m cm 5 m = 5 10 10 cm = 5 10 2 cm = 500 cm m mm 5 m

Detaljer

Anne-Lise Gjerdrum Elisabet W. Kristiansen. Illustrasjoner: Anne Holt og John Thoresen. Tusen millioner. Bokmål

Anne-Lise Gjerdrum Elisabet W. Kristiansen. Illustrasjoner: Anne Holt og John Thoresen. Tusen millioner. Bokmål Anne-Lise Gjerdrum Elisabet W Kristiansen Illustrasjoner: Anne Holt og John Thoresen Tusen millioner B Grunnbok Bokmål Tusen millioner barn kan være venner tusen millioner fra nær og fjerne strender venn

Detaljer

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013 Tentamen matematikk GS3 Mandag 22. april 2013 DEL 1 Excel Oppgave 1. Hans låner 90 000 kr i banken til 4 % rente pr år. Nedbetalingstiden for lånet er 6 år. a) Lag tabellen nedenfor i Excel. År % rente

Detaljer

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato Plan for hele året: - Kapittel 7: Mars - Kapittel 8: Mars/april 6: Trigonometri - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni Ordet geometri betyr egentlig jord- (geos) måling (metri).

Detaljer

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1.

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1. KAPITTELPRØVE 1 KAPITTEL 1 God start 1 Hvor stor del av figuren er a) grå b) hvit 2 Hva er størst av 1 6 a) og 2 10 1 5 b) og 2 10 2 4 c) og 3 10 3 1 d) og 4 3 3 a) Hvordan deler vi inn området mellom

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger Niels Henrik Abels matematikkonkurranse 0 04. Løsninger Første runde 7. november 0 Oppgave. Siden er et primtall, vil bare potenser av gå opp i 0. Altså,,,,..., 0 i alt tall........................................

Detaljer

wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1P Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, så regner symbolsk. Det vil si at

Detaljer

Fasit til øvingshefte

Fasit til øvingshefte Fasit til øvingshefte Matematikk Ungdomstrinn/VGS Velge regneart Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren fasit Matematikk U-trinn/VGS Velge regneart 1 Velge regneart Seksjon 1 Oppgave

Detaljer

Eksamen 21.05.2012. MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 2. Bokmål

Eksamen 21.05.2012. MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 2. Bokmål Eksamen 21.05.2012 MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 2 Bokmål Eksamensinformasjon for Del 2 Eksamenstid Hjelpemidler til Del 2 09.00 14.00, totalt 5 timer Del

Detaljer

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer.

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer. Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: Veiledning om vurderingen: Andre opplysninger: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2

Detaljer

Eksamen 20.05.2011. MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 2. Bokmål

Eksamen 20.05.2011. MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 2. Bokmål Eksamen 20.05.2011 MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 2 Bokmål Eksamensinformasjon for Del 2 Eksamenstid Hjelpemidler til Del 2 09.00 14.00, totalt 5 timer Del

Detaljer

Matematisk juleverksted

Matematisk juleverksted GLASSMALERI Matematisk juleverksted Mona Røsseland 1 2 GLASSMALERI GLASSMALERI Slik går du frem: Fremgangsmåte for å lage ramme Lag en ramme av svart papp. Lag strimler av svart papp, som skal brukes til

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Skriv som prosent a) 0,451 b) 5 25 Oppgave 2 (2 poeng) a) Forklar at de to trekantene ovenfor er formlike. b) Bestem lengden av siden BC ved regning. Eksamen

Detaljer

Målestokk. Den blir mange ganger forstørret! Lurer på hva målestokken til globusen er... MÅL 11.1 11.4 11.2 11.5 11.3

Målestokk. Den blir mange ganger forstørret! Lurer på hva målestokken til globusen er... MÅL 11.1 11.4 11.2 11.5 11.3 11 Den blir mange ganger forstørret! Lurer på hva målestokken til globusen er... MÅL I dette kapittelet skal du lære å forstørre og forminske lage enkle kart bruke målestokk til å beregne avstander lage

Detaljer

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4. Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale

Detaljer

Hensikt. Målet for denne dialogbaserte samlingen må være å finne en faglig plattform i

Hensikt. Målet for denne dialogbaserte samlingen må være å finne en faglig plattform i Fagdag i matematikk Hensikt Målet for denne dialogbaserte samlingen må være å finne en faglig plattform i overgangen grunnskole og videregående skole slik at elevene oppnår en faglig trygghet i matematikk.

Detaljer

Høsten 2015 Bokmål. Prøveinformasjon. Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: Del 1 (32,5 poeng) Del 2 (29 poeng)

Høsten 2015 Bokmål. Prøveinformasjon. Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: Del 1 (32,5 poeng) Del 2 (29 poeng) Høsten 2015 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og Del 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt samtidig. Del 1 skal du levere innen

Detaljer

Løsning del 1 utrinn Høst 13

Løsning del 1 utrinn Høst 13 //06 Løsning del utrinn Høst - matematikk.net Løsning del utrinn Høst Contents DEL EN Oppgave + 679 = 0 89 78 = 8 c) 7,, 6 = 6, 6 d) : 0, = 0 : = 80 Oppgave 78 dl = 7,8 L, mil = kilometer = 000 m c), t

Detaljer

Oppgaver i matematikk, 13-åringer

Oppgaver i matematikk, 13-åringer Oppgaver i matematikk, 13-åringer Her er gjengitt de frigitte oppgavene fra TIMSS 95. Oppgavene fra TIMSS 2003 ventes frigitt i løpet av sommeren 2004 og vil bli lagt ut kort tid etter dette. Oppgavene

Detaljer

- lese og skrive tallene til 100 000 - plassverdisystemet: verdien til et siffer er. Materiell: Abakus avhengig av hvor i tallet det står

- lese og skrive tallene til 100 000 - plassverdisystemet: verdien til et siffer er. Materiell: Abakus avhengig av hvor i tallet det står Hovedområde: Tall. Kompetansemål etter 4. trinn MÅL: beskrive plassverdisystemet for dei heile tala, bruke positive og negative heile tal, enkle brøkar og desimaltal i praktiske samanhengar, og uttrykkje

Detaljer

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra:

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: 1. sammenligne og regne om mellom hele tall, desimaltall, brøker, prosent, promille og tall på standardform, uttrykke slike tall på varierte

Detaljer

a) 5 5 b) 7 9 c) 1 0 d) 5 10 2,6 3,8 5 5,9 5,6 0,1 3,8 Tegn tallinjer og merk av brøkene. Skriv tallene på utvidet form.

a) 5 5 b) 7 9 c) 1 0 d) 5 10 2,6 3,8 5 5,9 5,6 0,1 3,8 Tegn tallinjer og merk av brøkene. Skriv tallene på utvidet form. 1 Skriv av og sett inn < eller >. a) 5 5 b) 7 9 c) 1 0 d) 5 10 2 Tegn en tallinje fra 6 til 6. Merk av tallene så nøyaktig som mulig. 2,6 3,8 5 5,9 5,6 0,1 3,8 3 Tegn tallinjer og merk av brøkene. 1 3

Detaljer

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 1. 5. trinn Del C: Notatark til kartleggingsleder Elev: Født: Skole: Klassetrinn: Kartleggingsleder: Andre til stede: Sted og dato for kartlegging:

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 30 % av sidene i boka. Hvor mange sider er det i boka? Oppgave 2 (1 poeng) På et kart er avstanden fra et punkt A til

Detaljer

ÅRSPLAN I MATEMATIKK 9. TRINN 2014/ 2015

ÅRSPLAN I MATEMATIKK 9. TRINN 2014/ 2015 Læreverk: Faktor 2 matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen, men emnene vil bli de samme. Frosta skole, 18.08.2014 Faglærere:

Detaljer

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å legge sammen tall. Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34-38 Tema: Kap.1 «Tall og tallforståelse» sammenligne og omregne hele tall ( ) og tall på standardform,

Detaljer

Øvingshefte. Velge regneart

Øvingshefte. Velge regneart Øvingshefte Matematikk Ungdomstrinn/VGS Velge regneart Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U-trinn/VGS Velge regneart 1 Velge regneart Seksjon 1 Oppgave 1.1

Detaljer

Eksamen 25.05.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1011 Matematikk 1P. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Faktor terminprøve i matematikk for 9. trinn

Faktor terminprøve i matematikk for 9. trinn Faktor terminprøve i matematikk for 9. trinn Høsten 2011 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del

Detaljer

Hastigheten til bob-en er 120 km/t. Hva vil det si?

Hastigheten til bob-en er 120 km/t. Hva vil det si? Hastigheten til bob-en er 120 km/t. Hva vil det si? 12 Hm, ett britisk pund koster 11,45 kr! Sammensatte enheter MÅL I dette kapitlet skal du lære om fart priser lønn valuta KOPIERINGSORIGINALER 12.1 Felles

Detaljer

Tusen millioner. Grunnbok A Grunnbok B Oppgavebok. B ok m ål

Tusen millioner. Grunnbok A Grunnbok B Oppgavebok. B ok m ål An n e R as ch-h alv o rs e n O d d v ar Aa s e n Tusen millioner Fasit Grunnbok A Grunnbok B Oppgavebok B ok m ål CAPPELEN DAMM AS, 0 ISBN 98-8-0--. utgave,. opplag 0 Materialet i denne publikasjonen

Detaljer

Bokmål. Eksamensinformasjon. Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon.

Bokmål. Eksamensinformasjon. Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon. Eksamen 19.05.2009 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:

Detaljer

Eksamen 19.05.2014. MAT0010 Matematikk Del 2. Badeland. Eratosthenes. Bokmål

Eksamen 19.05.2014. MAT0010 Matematikk Del 2. Badeland. Eratosthenes. Bokmål Eksamen 19.05.2014 MAT0010 Matematikk Del 2 Badeland Eratosthenes Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 2: 5 timer totalt: Del 1 skal du levere innen 2 timer. Del 2 skal du

Detaljer

Eksempeloppgave 2 2009

Eksempeloppgave 2 2009 Eksempeloppgave 2 2009 MAT0010 Matematikk Elever (10. årstrinn) Eksamen våren 2009 Del 1 Bilde: Utdanningsdirektoratet Skole: Elevnummer: Del 1 + ark fra del 2 Bokmål Bokmål Eksamensinformasjon til Del

Detaljer

3 Formler, likninger og ulikheter

3 Formler, likninger og ulikheter Formler, likninger og ulikheter KATEGORI 1.1 Likninger Oppgave.110 4 + 4x = x + 8 5x 6 = 4x 5 1 x = x + 1 d) x = x 5 Oppgave.111 x + x = x 4 5x = x 14 x 1 = 4x + 4 d) x + x = 0 Oppgave.11 x = 4x 10 x 8

Detaljer

i matteboken Elevhefte Geometri og måling

i matteboken Elevhefte Geometri og måling i matteboken Elevhefte Geometri og måling Oppgave 1 Bildet er fra et treningsrom på Brann Stadion. a) Hvilke geometriske former finner du på bildet? Side 2 b) Hvilke former er det på de hvite skinnbitene

Detaljer

Matematikk for yrkesfag

Matematikk for yrkesfag John Engeseth Odd Heir Håvard Moe fo re nk BOKMÅL l t e Matematikk for yrkesfag BOKMÅL John Engeseth Odd Heir Håvard Moe BOKMÅL Matematikk for yrkesfag forenklet Innhold 1 Tall Vi øver på å legge sammen

Detaljer

ÅRSPLAN I MATEMATIKK 9. TRINN 2015/ 2016

ÅRSPLAN I MATEMATIKK 9. TRINN 2015/ 2016 Læreverk: Faktor 2 matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen, men emnene vil bli de samme. Frosta skole, 20.08.2015 Faglærere:

Detaljer

Vurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016

Vurderingsveiledning for lærere og sensorer. i praktisk matematikk på yrkesfaglige programområder. MAT1001 Vg1 P-Y. Gjelder fra våren 2016 Vurderingsveiledning for lærere og sensorer i praktisk matematikk på yrkesfaglige programområder MAT1001 Vg1 P-Y Gjelder fra våren 2016 Veiledningen er utarbeidet for lærere og sensorer. Den tar utgangspunkt

Detaljer

Bedre vurderingspraksis. Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana)

Bedre vurderingspraksis. Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana) Bedre vurderingspraksis Utprøving av kjennetegn på måloppnåelse i fag. Slik jobber vi i Tana (Seida og Austertana) Bedre vurderingspraksis Prosjekt Bedre vurderingspraksis skal arbeide for å få en tydeligere

Detaljer

Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere:

Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere: Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere: Cordula Norheim, Åsmund Gundersen, Renate Dahl Akersveien 4, 0177 OSLO, Tlf: 23 29 25 00 Kompetansemål Tidspunkt Tema/Innhold Lærestoff Arbeidsmåter

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2016-2017 Side 1 av 9 Periode 1: UKE 33-UKE 39 Tema: Tall og tallforståelse sammenligne og omregne hele tall,

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

Geometri. Mål. for opplæringen er at eleven skal kunne. bruke formlikhet og pytagorassetningen til beregninger og i praktisk arbeid

Geometri. Mål. for opplæringen er at eleven skal kunne. bruke formlikhet og pytagorassetningen til beregninger og i praktisk arbeid 8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke formlikhet og pytagorassetningen til beregninger og i praktisk arbeid løse praktiske problemer knyttet til lengde, vinkel, areal og volum

Detaljer

Tall og formler MÅL. for opplæringen er at eleven skal kunne

Tall og formler MÅL. for opplæringen er at eleven skal kunne 8 1 Tall og formler MÅL for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene tolke, bearbeide, vurdere

Detaljer