Nasjonale prøver

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Nasjonale prøver 12.11.2012"

Transkript

1 Nasjonale prøver Veiledning til lærere Regning 5. trinn. DEL 2 Bokmål

2 Innhold Hvordan bruke resultatene i undervisningen?... 3 Oversikt over oppgavene til nasjonale prøver i regning Hvordan bruke analyseverktøyet (regnearket) i PAS?... 5 Gruppetabell... 6 Poenggrenser... 7 Diagrammer... 7 Å regne i alle fag... 8 Hva er god regneopplæring?... 9 Å utvikle elevenes regnestrategier...10 Tall...11 Regnearter og likhetstegnet...12 Regnestrategier...12 Multiplikasjon...13 Divisjon...14 Brøk...15 Måling...16 Måleenheter...18 Statistikk...19 Finne og bearbeide informasjon i tabell

3 Hvordan bruke resultatene i undervisningen? Denne veiledningen er en fortsettelse av veiledning for lærere til nasjonale prøver i regning på 5. trinn. Her finner du oppgaver fra tidligere års prøver med løsningsforslag og eksempler på regning i fag fra områder og emner som inngår i årets prøve. Foreløpige mestringsnivåer er publisert i PAS. Det kan være nyttig å skaffe seg oversikt over områder, oppgavetyper og emner som flere av elevene kan ha problemer med, eller de trenger større utfordringer i. En slik oversikt er et godt utgangspunkt for samtaler i elevgruppen og planlegging av videre opplæring. På neste side finner du en oversikt over oppgavene og innholdet i årets prøve. Oppgavene er sortert etter de tre områdene av regning som prøven omhandler: tall, måling og statistikk. Emnefeltet beskriver hva hver enkelt oppgave handler om. Oversikten viser også hvilke fag hver oppgave har relevans for. Det betyr at oppgaven kan relateres til en grunnleggende ferdighet eller et kompetansemål i dette faget etter 4. trinn. En tilsvarende oversikt over oppgavene ligger også i analyseverktøyet (regnearket) i PAS. Der finner du også en kolonne med løsningsprosenten for hver enkelt oppgave. Den forteller hvor mange prosent av elevene som løser oppgaven riktig. Dette vil vanligvis samsvare godt med hvilket mestringsnivå elevene har. 3

4 Oversikt over oppgavene til nasjonale prøver i regning 2012 Oppgave Innhold Område Relevans til fag 31 Plassverdisystemet Tall Ma 1 4 Addisjon Tall Ma 5 Addisjon Tall Ma 18 Subtraksjon Tall Ma 6 Subtraksjon Tall Ma 26 Subtraksjon Tall Ma, sf 20 Divisjon Tall Ma 29 Divisjon Tall Ma 14 Multiplikasjon Tall Ma, m&h 3 Multiplikasjon Tall Ma 32 Brøk Tall Ma, m&h 9 Brøk Tall Ma, m&h 30 Desimaltall Tall Ma, m&h 15 Desimaltall Tall Ma, m&h 38 Velg regneart Tall Ma, no 17 Velg regneart Tall Ma, no 7 Velg regneart Tall Ma, no 44 Velg regneart Tall Ma, no, k&h, krø 41 Velg regneart Tall Ma, krø 24 Velg regneart Tall Ma, no 21 Areal Måling Ma, k&h 16 Kjøp og salg Måling Ma, sf 33 Kjøp og salg Måling Ma, sf 43 Kjøp og salg Måling Ma, sf 13 Lengde (m og km) Måling Ma, krø, na 8 Lengde (mm og cm) Måling Ma, na, krø, k&h 28 Regne med Måling Ma, no, na, k&h, 37 Temperatur Måling Ma, na 1 Tid (dager per uke) Måling Ma, sf, na 23 Tid (md. og år) Måling Ma, sf, na 19 Tid (t og min) Måling Ma, sf, na 34 Tid (t og min) Måling Ma, sf, na, m&h 25 Vekt (g og kg) Måling Ma, m&h, na 39 Vekt (g og kg) Måling Ma, m&h, na 11 Vekt (g og kg) Måling Ma, m&h, na 2 Volum (dl og l) Måling Ma, m&h, na 40 Volum (ml og dl) Måling Ma, m&h, na 12 Lage diagram Statistikk Ma, rle, sf, na, no, 10 Bearbeide diagram Statistikk Ma, rle, sf, na, no 42 Bearbeide diagram Statistikk Ma, rle,sf, na,no, 22 Bearbeide diagram Statistikk Ma,rle, sf, na,no 35 Bearbeide tabell Statistikk Ma, rle,sf, na,no, 36 Bearbeide Statistikk Ma, rle,sf, na,no, 27 Tolke tabell Statistikk Ma, rle, sf, na, no 45 Bearbeide tabell Statistikk Ma, rle,sf, na, no, 1 Matematikk (Ma), samfunnsfag (sf), mat og helse (m&h), norsk (no), kunst og håndverk (k&h), naturfag (na), kroppsøving (krø), religion, livssyn og etikk (rle) 4

5 Hvordan bruke analyseverktøyet (regnearket) i PAS? Ved å legge inn elevenes resultater i analyseverktøyet (regnearket) i PAS, kan du lettere vurdere tendenser til styrker og eventuelle svakheter i din elevgruppe og sammenligne din elevgruppe med nasjonalt nivå. Last ned analyseverktøyet (Regneark 5. trinn regning bokmål) fra PAS og kopier inn elevenes resultater. De finner du i Prøveadministrasjonssystemet (PAS) i NP01 Grupperapport. Denne rapporten finner du i menyen på venstre side. Slik kopierer du inn elevenes resultater i analyseverktøyet (regnearket) 1. Velg Grupperapport NP01 i PAS. Velg deretter prøven og den elevgruppen du vil legge inn resultater fra. Klikk på sorter etter oppgavesett Klikk på eksporter. Resultatene fra elevgruppen du valgte, blir da overført til et Excel-ark. 3. Marker alle data i dette Excel-arket. Alt må være med: Fra og med celle A1 til og med cellen som inneholder data ytterst til høyre i arket, og helt ned til du har markert alle elevenes resultater. 4. Høyreklikk på det markerte området og velg Kopier. 5. Gå tilbake til analyseverktøyet (regnearket) og klikk på arkfanen PAS-data. 6. Plasser markøren i celle A1 (her må du være nøye). Høyreklikk og velg lim inn. Dataene er nå på plass i analyseverktøyet (regnearket). Her finner du: Forklaringer (arkfane 1) PAS-data (arkfane 2) Gruppetabell (arkfane 3) Poenggrenser (arkfane 4) Diagram (arkfane 5) Arkfanene i analyseverktøyet ser du nederst til venstre i regnearket: Regnearket kan være til hjelp for å se hvilke områder i regning, og hvilke emner innenfor disse områdene som din elevgruppe ser ut til å mestre eller kan ha utbytte av å arbeide mer med. Du får også oversikt over løsningsprosenten til hver oppgave i prøven. Regnearket gir kun informasjon om områder og emner i regning som prøven måler. Resultatene viser tendenser for din elevgruppe sammenlignet med nasjonalt nivå. Det er derfor viktig at du også bruker andre kilder som dialog, observasjon og elevarbeider for å få informasjon om den enkelte elevs ferdigheter i regning. 5

6 Gruppetabell I gruppetabellen (arkfane 3 i regnearket) finner du informasjon om din elevgruppes resultater (Gruppe) og mulighet til å sammenlikne dem med nasjonalt nivå (Nasjonal). Gruppe-kolonnen viser hvor mange prosent av dine elever som fikk til hver oppgave, og nasjonal-kolonnen viser tilsvarende tall for nasjonalt nivå. Differansen mellom gruppens nivå og nasjonalt nivå er beregnet under kolonnen Avvik. For å se hva slags oppgaver din elevgruppe har positive eller negative avvik på, kan du sortere tabellen etter kolonne Avvik, deretter Område og Innhold. Slik kan du sortere i regnearket 1. Marker gruppetabellen. 2. Klikk på sorter. 3. Klikk på legg til nivå og velg ønskete kolonner fra rullegardinen. 4. Klikk på OK. Regnearket er nå sortert etter kriteriene du har valgt. Menyene og valgene kan variere med hvilken versjon av programvaren som benyttes. Dersom de positive avvikene for noen områder er store, tyder det på at elevgruppen har mange sterkt presterende elever for dette innholdet i prøven. Dersom de negative avvikene på noen områder er store, tyder det på at elevgruppen har mange svakt presterende elever for dette innholdet i prøven. Det er viktig å være klar over at det vil være naturlig at din elevgruppe har både positive og negative avvik fra nasjonalt nivå. Et mindre negativt avvik kan være et godt resultat om løsningsprosenten er høy. Selv om elevgruppen har positive avvik, betyr det ikke at vi skal si oss fornøyd med nivået om løsningsprosenten er lav. Flere av oppgavene som har lav løsningsprosent på nasjonalt nivå, tester sentrale regneferdigheter som er viktige i elevenes hverdag. Gruppetabellen gir også mulighet til å se eventuelle tendenser ved ulike faglige aspekter i elevgruppens resultater. For å se tendenser i din elevgruppe, kan du sortere tabellen etter kolonnen Område, deretter Innhold og Gruppe. Du vil da kunne se om det er områder eller spesifikke emner din elevgruppe utmerker seg med høy eller lav løsningsprosent. 6

7 Poenggrenser Under arkfanen Poenggrenser finner du foreløpige poenggrenser for de tre mestringsnivåene. For å gi deg mestringsnivåene raskt har vi gjort en foreløpig beregning av mestringsnivåene basert på et utvalg av resultatene. Selv om det er lite sannsynlig, kan det likevel skje at en eller flere av grensene endrer seg med ett poeng opp eller ned. De endelige poenggrensene og resultatene fra nasjonale prøver i regning publiseres i Skoleporten og i PAS. Ved å se beskrivelsen av mestringsnivåene sammen med elevenes resultater for de ulike faglige aspektene ved prøven, kan du få tips til fokusområder og tilpassing av undervisningen for den enkelte elev i den videre regneopplæringen. Beskrivelsen av mestringsnivåene og andre råd om bruk av prøven i underveisvurderingen finner du i Veiledning til lærere Regning 5. trinn i PAS og på Utdanningsdirektoratets nettsider. Diagrammer Under arkfanen Diagrammer finner du elevgruppens løsningsprosent for hvert av de tre hovedområdene for prøven (tall, måling og statistikk) sammenliknet med nasjonalt nivå. Du finner også prosentvis fordeling på hvert av de tre mestringsnivåene for din elevgruppe, sammenliknet med nasjonalt nivå. 7

8 Å regne i alle fag Oppgavene i nasjonale prøver i regning på 5. trinn tar utgangspunkt i regning som grunnleggende ferdighet i kompetansemålene etter 4. trinn. Resultatene på gruppenivå kan være til hjelp for å se hvilke områder elevene mestrer, og hvilke emner elevene kan ha utbytte av å arbeide mer med. Hva er å kunne regne? Å kunne regne er å bruke matematikk på en rekke livsområder: resonnere og bruke matematiske begreper, fremgangsmåter, fakta og verktøy for å løse problemer og for å beskrive, forklare og forutse hva som skjer gjenkjenne regning i ulike kontekster, stille spørsmål av matematisk karakter, velge holdbare metoder når problemene skal løses, være i stand til å gjennomføre dem og tolke gyldigheten og rekkevidden av resultatene gå tilbake i regneprosessen for å gjøre nye valg kommunisere og argumentere for valg som er foretatt, ved å tolke konteksten og arbeide med problemstillingen fram til en ferdig løsning Det er nyttig å se nærmere på de områdene som prøven omfattet i planleggingen av videre undervisning som involverer regning i alle fag. Resultatet for din elevgruppe kan gi en indikasjon på det elevene mestrer innenfor områdene tall, måling og statistikk. Emner som viser lav mestring for hele eller deler av elevgruppen for de enkelte områdene, bør være naturlige å berøre i den videre regneopplæringen. Sentralt innhold i prøven for 5. trinn plassverdisystemet (betydningen av sifrenes verdi som plassholder i titallsystemet) de fire regneartene (addisjon, subtraksjon, multiplikasjon og divisjon) ulike representasjoner av brøk enkel regning med desimaltall sammensatte oppgaver måling med enheter og omgjøring (temperatur, tid, masse, vinkler, lengde, areal, og volum) mynter og sedler i kjøp og salg grafiske framstillinger og avlesing av tabeller og diagram 8

9 Hva er god regneopplæring? Det finnes ikke én oppskrift på god undervisning og hvordan gode regneferdigheter utvikles. God undervisning og læring oppnås i et samspill mellom elevene, faget og læreren i kontekst. Dette kan foregå på ulike måter, men ensidige arbeidsformer gir ikke elevene tilstrekkelige muligheter til å utvikle gode regneferdigheter. Det er viktig å ta vare på elevenes motivasjon for å lære å regne i alle fag. Prinsipper for god regneopplæring 1. Sett klare mål, og form undervisningen deretter. 2. Vær bevisst i valg av oppgaver. 3. Varier mellom arbeid i større og mindre elevgrupper og individuelt arbeid. 4. Ta utgangspunkt i noe elevene kan eller kjenner fra før. 5. Bruk det matematiske språket aktivt. 6. Benytt hjelpemidler slik at de fremmer læring og kreativitet. En gjennomtenkt bruk av disse prinsippene i planlegging, gjennomføring og vurdering av undervisningen, gir elevene mulighet til å utvikle regning som grunnleggende ferdighet i alle fag. Regneferdigheter utvikles best i gode læringsfelleskap hvor elevene blir oppfordret til å tenke og undersøke, og ideene deres blir verdsatt og danner grunnlag for undervisningen. Det må gis rom for misforståelser på veien til mer målrettede og effektive strategier. Hvordan utvikles grunnleggende ferdigheter i regning? Utvikling av regning som grunnleggende ferdighet går fra å bruke regning i konkrete situasjoner til mer sammensatte og abstrakte situasjoner å gjenkjenne situasjoner som kan løses ved regning, til å analysere problemstillinger ved regning å ta i bruk nye begreper og lære nye teknikker og strategier til å velge hensiktsmessige metoder 9

10 Å utvikle elevenes regnestrategier Denne delen inneholder eksempler på oppgaver i områdene tall, måling og statistikk. Eksemplene viser riktige svar, typiske feilsvar som kom fram under utprøvingen av oppgaver, og tips til hvordan elever som svarer feil på slike oppgaver, kan tenke for å utvikle og forbedre egne regnestrategier. I eksemplene er det påpekt noen mulige årsaker til feilsvarene. Det er viktig å finne ut hva som er årsaken til at elevene svarer feil. Det kan gjøres ved å undersøke elevens svar på lignende oppgaver, eller ved å diskutere oppgaver muntlig med elevene. Hvis en elev har tydelige misoppfatninger, må læreren ta tak i de aktuelle fagområdene. Det er i så fall lurt at de andre faglærerne samarbeider med matematikklæreren om dette. Matematikklæreren kan også velge å benytte læringsstøttende prøver i matematikk for å få mer informasjon om misoppfatningene til disse elevene. Til dette materiellet er det også laget ressurshefter til hvert av hovedområdene i læreplanen i matematikk. Du finner informasjon om disse prøvene på Utdanningsdirektoratets nettsider. Prøvene er elektroniske, gjennomføres i PGS og kan avlegges flere ganger. Oppgaver fra nasjonale prøver kan være et godt utgangspunkt for diskusjoner om videre arbeid med regning som grunnleggende ferdighet i alle fag. For å se et helt prøvesett med oppgaver kan fjorårets oppgavesett benyttes. Dette ligger tilgjengelig på Utdanningsdirektoratets nettsider. Spørsmål til diskusjon med elevgruppen På hvilken måte er regning relevant i dette faget? Hvilke emner og områder bør vi fokusere på for å utvikle gode regneferdigheter i dette faget? Er det forskjell på hvordan elevene tenker når de o fyller inn svaret selv (åpen oppgave)? o velger riktig svar og får oppgitt alternativene (flervalgsoppgave)? Har elevene gode løsningsstrategier for å løse problemstillinger som involverer regning? I noen av eksemplene i resten av veiledningen foreslår vi strategier som elevene kan ta i bruk for å komme fram til riktig svar. Dette er eksempler på oppgaver der elevene ikke nødvendigvis har lært noen standardisert regnemåte som de kan bruke. De må løse oppgavene ved å anvende ferdigheter de har fra andre områder i regning på nye problemstillinger. 10

11 Tall I år var 20 av oppgavene i prøven fra området tall. I oppgavene ble elevenes regneferdigheter prøvd i emnene brøk, desimaltall og de fire regneartene addisjon, subtraksjon, multiplikasjon og divisjon. Mange av oppgavene fokuserte dessuten på å velge riktig regneart for å løse oppgaven. Eksempel Eksemplet viser en åpen oppgave på mestringsnivå 3. Elevene prøves i om de kan orientere seg i en sammensatt tekst hvor de må følge et logisk resonnement, og velge riktige regnearter for å løse oppgaven. Oppgavene om tall i årets prøve var basert på kompetansemål i læreplanene for fagene norsk, matematikk, mat og helse, kunst og håndverk, samfunnsfag og kroppsøving. Å kunne regne i norsk handler blant annet om begrepsutvikling, logisk resonnement og problemløsing. I kompetansemålene står det at elevene skal kunne lese fagtekster for barn, ha forståelse for innholdet og beherske et tilstrekkelig ordforråd til å utrykke kunnskap. 11

12 Regnearter og likhetstegnet Dette er en åpen oppgave på mestringsnivå 1. Å bygge en forståelse for likhetstegnet er viktig. Dette er en oppgave som skal vise om eleven forstår hva tegnet betyr, noe som er grunnleggende for å beherske regneartene. Selv om tallene er enkle, er det bare 37 prosent av elevene som får til oppgaven. 42 prosent av elevene svarer «8» og 15 prosent svarer «12». I begge tilfellene tyder det på at elevene tolker likhetstegnet som et symbol for «her kommer svaret». De mangler i så fall forståelsen av at det skal være likt på begge sider av tegnet. Svar Kommentar Prosent av elevene = 15 % 4 Riktig svar 37 % % % Andre svar og ubesvart 2 % Regnestrategier Forklare at = betyr er lik Presisere at det betyr helt lik. Praktisk kan dette forklares ved at det som står til venstre for likhetstegnet, har like stor verdi som det som står til høyre for likhetstegnet. 2 = 2 66 = = 1000 Bruke skålvekt for å vise at det må være like mye på hver side for at vektskåla skal være i likevekt. Gjøre oppgaven om til to regnestykker. Vise at 10 2 = 8, og da må verdien på den andre siden av likhetstegnet også være = = 8 12

13 Multiplikasjon Dette er en flervalgsoppgave på mestringsnivå 1. I denne oppgaven møter elevene multiplikasjon i en kontekst. Den lille multiplikasjonstabellen er et viktig redskap i tallbehandling. Elever som kan løse oppgaver med multiplikasjon på flere måter, viser forståelse av multiplikasjon. Svar Kommentar Prosent av elevene 4 Tar tallet 4 i oppgaveteksten eller % % 32 Riktig svar 80 % 36 Usikker på multiplikasjonstabellen 6 % Andre svar og ubesvart 1 % Regnestrategier Elever som ikke kan multiplikasjon (den lille multiplikasjonstabellen), kan bruke addisjon i stedet. Tegne åtte grupper på 4, og deretter telle dem eller addere Bruke åpen tallinje 13

14 Divisjon Dette er en flervalgsoppgave på mestringsnivå 2. Det er en praktisk oppgave som kan løses på ulike måter. Elevene kan se at kreative tenkemåter også kan føre til en løsning. For eksempel kan oppgaven løses ved å tegne og telle. Svar Kommentar Prosent av elevene 7 Teller ikke med de 12 første: 17 % 8 Riktig svar 41 % 9 Tenker 10 gjester per bord 22 % 10 Hvis det var 10 per bord, ville det bli 9 bord. Flere enn 10, og da må det bli flere enn 9 15 % Andre svar og ubesvart 5 % Regnestrategier Elevene kan ikke divisjonsalgoritmen for tosifret tall, og må bruke andre strategier. Tegne (telle oppover) Fylle opp med tiere og justere etterpå Hoppe på åpen tallinje 14

15 Brøk Dette er en flervalgsoppgave på mestringsnivå 3. For å løse denne oppgaven må elevene forstå at brøk er å dele en helhet opp i like deler. Svar Kommentar Prosent av elevene 100 kr Funnet en firedel av 400 kr 22 % 200 kr Halvert prisen, 2/4 19 % 300 kr Riktig svar 52 % 350 kr Regnefeil, 50 kr avslag 6 % Andre svar og ubesvart 2 % Regnestrategier Elevene på 5. trinn har ikke lært en algoritme for å multiplisere et helt tall med en brøk. De må bruke alternative metoder for å finne løsningen. Tegne og dele i fire like store deler Bruke penger for å dele beløpet i fire deler Bruke tallinje for å dele beløpet i fire deler Bruke tallinje og dele beløpet i fire deler, og samtidig vise verdien som brøk 15

16 Måling I år var 17 av oppgavene i prøven i området måling. Oppgavene fokuserte på måleenhetene for tid, penger, areal, lengde, vekt og volum, og beregninger og omgjøringer mellom disse De oppgavene som færrest elever svarer riktig på i nasjonal prøve i regning, er vanligvis knyttet til omgjøring av enheter. Eksempel Eksemplet viser en flervalgsoppgave på mestringsnivå 3. Elevene må kjenne til lengdeenhetene cm, dm og m og kunne sammenligne disse. Måling av lengde er regning i flere fag. I kroppsøving, naturfag og samfunnsfag kan elevene gjennom praktiske øvinger få erfaringer med ulike måleenheter og omgjøring mellom disse. Måling av lengder og tid i kroppsøving, nedbør og temperatur i naturfag og å regne med tid i samfunnsfag er eksempler på aktiviteter som kan utvikle regneferdighet. I kunst og håndverk må elevene kunne lengdemål, og i mat og helse er praktisk arbeid med veiing og måling, lese og forstå oppskrifter og omregning mellom enheter aktiviteter som øver opp regneferdigheten. 16

17 Praktiske oppgaver med kjøp og salg Dette er en flervalgsoppgave på mestringsnivå 3. Det å spare for å kunne kjøpe seg noe, er noe de fleste 10-åringer kan kjenne seg igjen i. Her må Ole spare et fast beløp i tillegg til det beløpet han har. Svar Kommentar Prosent av elevene 4 uker Sparer 50 kr i 4 uker 12 % 5 uker Riktig svar 49 % 6 uker Sparer 50 kr første uka, deretter 30 kr i fem uker 18 % 7 uker Sparer 30 kr i 7 uker, ser bort fra 50-kroneseddelen 20 % Andre svar og ubesvart 1 % Regnestrategier Ole skal spare til noe som koster 199 kr ved å spare 30 kr per uke. Divisjonen går ikke opp. Bruke sedler og mynter som konkretiseringsmiddel, og telle seg fram til riktig beløp. Bruke tallinje hvor en først merker av hva Ole har fra før, og deretter teller seg fram uke for uke til riktig beløp. 17

18 Måleenheter Dette er en flervalgsoppgave på mestringsnivå 2. Omgjøring av enheter er noe mange elever syns er vanskelig. Å forstå at det er 10 dl, i 1 L er avgjørende for å løse oppgaver som denne. Det er viktig å vise at det er flere måter å løse slike oppgaver på. Svar Kommentar Prosent av elevene 2 Tar et tall ut av oppgaveteksten: 7 % 2 liter blir til 2 flasker 4 Riktig svar 64 % 7 Adderer tallene i oppgaven: = 7 12 % 10 Multipliserer tallene i oppgaven: 15 % 2 5 = 10 Andre svar og ubesvart 2 % Regnestrategier Elevene kan ikke utføre divisjon med desimaltall som 2 : 0,5 = 4, og må derfor velge andre løsningsstrategier. 20 dl saft skal fordeles i 5-desilitersflasker. Omgjøring av liter til dl = 20, dvs. 4 flasker Tegne figur, prøve seg fram med addisjon Subtraksjon ved hjelp av åpen tallinje Tegne flasker 18

19 Statistikk I år var åtte av oppgavene i prøven i området statistikk. Statistikk er det området som har færrest oppgaver i prøven. I disse oppgavene skulle elevene lage diagram, bearbeide informasjon i tabeller og diagrammer og tolke tabeller. Arbeid med grafiske framstillinger, tabeller og statistikk er regning både i norsk, samfunnsfag, naturfag og mat og helse. Innsamling av data til undersøkelser innenfor faglige tema bør gjennomføres i praksis, ikke bare teoretisk. I mat og helse må elevene kunne lese oppskrifter og forstå enkel merking av varer. Et eksempel på dette vises i oppgaven nedenfor, en flervalgsoppgave på mestringsnivå 2. Eksempel 19

20 Finne og bearbeide informasjon i tabell Denne oppgaven er en åpen oppgave på mestringsnivå 2. Elevene skal finne opplysninger i en tabell med mange opplysninger, og finne differansen mellom de aktuelle tallene. Svar Kommentar Prosent av elevene 28 Bruker tallet fra % 65 Riktig svar 38 % 75 Subtraherer det minste sifferet fra det største 4 % uansett plassering: gir 75 Andre svar og ubesvart 55 % De ca elevene som ble testet med denne oppgaven, hadde nesten 1100 ulike svar, og ingen av feilsvarene utmerket seg med høy svarprosent. I tillegg til å orientere seg i tabellen inngår også måleenheter og tallbehandling. Her er det viktig å samtale i gruppen om hva som er utfordringen i oppgaven. Er det ord og uttrykk i teksten eller spørsmålsstillingen, er det å orientere seg i tabellen, eller er det tallbehandlingen som er problemet? Å lese og lage tabeller og diagram, innsamling og bearbeiding av data er en grunnleggende ferdighet i regning og kompetansemål i flere fag. 20

21 Schweigaards gate 15 Postboks 9359 Grønland 0135 OSLO Telefon utdanningsdirektoratet.no

Nasjonale prøver 01.11.2012

Nasjonale prøver 01.11.2012 Nasjonale prøver 01.11.2012 Veiledning til lærere Regning 8. og 9. trinn. DEL 2 Bokmål Innhold Hvordan bruke resultatene i opplæringen?... 3 Oversikt over oppgavene til nasjonale prøver i regning 2012...

Detaljer

Nasjonale prøver 17.10.2013

Nasjonale prøver 17.10.2013 Nasjonale prøver 17.10.2013 Veiledning til lærere Regning 5. trinn. Del 2 Bokmål Innhold Hvordan bruke resultatene i undervisningen?... 3 Oversikt over oppgavene til nasjonal prøve i regning 2013 versjon

Detaljer

Nasjonale prøver 18.09.2013

Nasjonale prøver 18.09.2013 Nasjonale prøver 18.09.2013 Veiledning til lærere Regning 8. og 9. trinn. Del 2 Bokmål Innhold Hvordan bruke resultatene i undervisningen?... 3 Oversikt over oppgavene til nasjonal prøve i regning 2013...

Detaljer

Veiledning del 3. Oppfølging av resultater fra. nasjonal prøve i regning. 8. trinn

Veiledning del 3. Oppfølging av resultater fra. nasjonal prøve i regning. 8. trinn Versjon 8. september 2009 Bokmål Veiledning del 3 Oppfølging av resultater fra nasjonal prøve i regning 8. trinn Høsten 2009 1 Dette heftet er del 3 av et samlet veiledningsmateriell til nasjonal prøve

Detaljer

Veiledning del 3. Oppfølging av resultater fra. nasjonal prøve i regning. 5. trinn

Veiledning del 3. Oppfølging av resultater fra. nasjonal prøve i regning. 5. trinn Versjon 8. september 2009 Bokmål Veiledning del 3 Oppfølging av resultater fra nasjonal prøve i regning 5. trinn Høsten 2009 1 Dette heftet er del 3 av et samlet veiledningsmateriell til nasjonal prøve

Detaljer

Nasjonale prøver 2014

Nasjonale prøver 2014 Nasjonale prøver 2014 Veiledning til lærere Regning 5. trinn DEL 2 Bokmål Innhold Hvordan bruke resultatene i undervisningen?... 3 Oversikt over oppgavene til nasjonal prøve i regning 2014 versjon 1 (V1)...

Detaljer

Nasjonale prøver

Nasjonale prøver Nasjonale prøver 12.11.2012 Rettleiing til lærarar Rekning 5. steget. DEL 2 Nynorsk Innhald Korleis bruke resultata i undervisninga?... 3 Oversikt over oppgåvene til nasjonale prøver i rekning 2012...

Detaljer

Skoleeiers oppfølging nasjonale prøver. Tromsø kommune

Skoleeiers oppfølging nasjonale prøver. Tromsø kommune Skoleeiers oppfølging nasjonale prøver Tromsø kommune Kommunens fokus på nasjonale prøver Mediafokus Oppfølging 13.10 Årlig rapportering på resultat, gjennomføring og etterarbeid Nødvendig å sikre kvalitet

Detaljer

Se hvordan Hovseter ungdomsskole arbeidet før, under og etter gjennomføring av prøven.

Se hvordan Hovseter ungdomsskole arbeidet før, under og etter gjennomføring av prøven. Hva måler nasjonal prøve i regning? Prøven skal måle i hvilken grad elevenes regneferdigheter er i samsvar med beskrivelsene av regning som grunnleggende ferdighet i læreplanen til hvert fag. Prøven er

Detaljer

Hva måler nasjonal prøve i regning?

Hva måler nasjonal prøve i regning? Hva måler nasjonal prøve i regning? Prøven skal måle i hvilken grad elevenes regneferdigheter er i samsvar med beskrivelsene av regning som grunnleggende ferdighet i læreplanen til hvert fag. Prøven er

Detaljer

Nasjonal prøve i grunnleggende ferdigheter i å kunne regne 5. og 8. (9.) trinn

Nasjonal prøve i grunnleggende ferdigheter i å kunne regne 5. og 8. (9.) trinn Nasjonal prøve i grunnleggende ferdigheter i å kunne regne 5. og 8. (9.) trinn Lillehammer 5. og 6. september 2017 Revidert versjon pga. offentlighet Grethe Ravlo Leder for prøveutviklingsgruppa ved Nasjonalt

Detaljer

Trondheim 29. november 2012

Trondheim 29. november 2012 Trondheim 29. november 2012 Grethe Ravlo Universitetslektor Leder gruppa som utvikler nasjonale prøver i regning Nasjonalt senter for matematikk i opplæringen NTNU PROGRAM Nasjonal prøve i regning Trondheim

Detaljer

Nasjonale prøver. Veiledning til lærere Regning 8. og 9. trinn. DEL 2 01.10.2014. Bokmål

Nasjonale prøver. Veiledning til lærere Regning 8. og 9. trinn. DEL 2 01.10.2014. Bokmål Nasjonale prøver 01.10.2014 Veiledning til lærere Regning 8. og 9. trinn. DEL 2 Bokmål Innhold Hvordan bruke resultatene i undervisningen?... 3 Oversikt over oppgavene til nasjonal prøve i regning 2014

Detaljer

Veiledning. Nasjonale prøver i regning for 8. og 9. trinn. Versjon: juli 2010, bokmål

Veiledning. Nasjonale prøver i regning for 8. og 9. trinn. Versjon: juli 2010, bokmål Veiledning Nasjonale prøver i regning for 8. og 9. trinn Versjon: juli 2010, bokmål Nasjonale prøver i regning for 8. og 9. trinn Her får du informasjon om nasjonale prøver i regning og hva prøven måler.

Detaljer

Nasjonale prøver

Nasjonale prøver Nasjonale prøver 17.08.2012 Veiledning til lærere Regning 5. trinn Bokmål Innhold Endringer i årets gjennomføring 2012... 3 1 OM PRØVEN... 4 Hva måler prøven?... 5 Hvordan bruke prøven i arbeidet med vurdering

Detaljer

Veiledning. Nasjonale prøver i regning for 5. trinn. Versjon: juli 2010, bokmål

Veiledning. Nasjonale prøver i regning for 5. trinn. Versjon: juli 2010, bokmål Veiledning Nasjonale prøver i regning for 5. trinn Versjon: juli 2010, bokmål Nasjonale prøver i regning for 5. trinn Her får du informasjon om nasjonale prøver i regning og hva prøven måler. Videre presenteres

Detaljer

Nasjonale prøver 01.09.14

Nasjonale prøver 01.09.14 Nasjonale prøver 01.09.14 Veiledning til lærere Regning 5. trinn «Nasjonale prøver gir informasjon om hvordan elevene mestrer lesing, regning og engelsk» Bokmål Innhold 1 Nasjonal prøve i regning for 5.

Detaljer

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter Regning i alle fag Hva er å kunne regne? Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer å resonnere og bruke matematiske begreper, fremgangsmåter, fakta og verktøy

Detaljer

Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder

Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder Aspekter ved regning som skal vektlegges i ulike fag Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder ARTIKKEL SIST

Detaljer

Nasjonale prøver

Nasjonale prøver Nasjonale prøver 01.08.13 Veiledning til lærere Regning 8. og 9. trinn «Nasjonale prøver er et nyttig verktøy for læreren, skolen og skoleeieren fordi det gir informasjon om hvordan eleven mestrer lesing,

Detaljer

timene og hjemme 36 både med og uten digitale verktøy fortløpende Kapittelprøve Arbeidsinnsats i 38 de hele tallene, bruke positive og mindre enn 0

timene og hjemme 36 både med og uten digitale verktøy fortløpende Kapittelprøve Arbeidsinnsats i 38 de hele tallene, bruke positive og mindre enn 0 ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2017/2018 Læreverk: Multi Lærer: Kaia Bøen Jæger og Carl Petter Tresselt UKE MÅL (K06) TEMA ARBEIDSFORM VURDERING 34 lese av, plassere og beskrive posisjoner i Koordinatsystemet

Detaljer

Ti år med nasjonale prøver i regning

Ti år med nasjonale prøver i regning Ti år med nasjonale prøver i regning Resultater knyttet til symbolbruk og forståelse.. og en del annet Trondheim 28. november 2017 Grethe Ravlo Leder for prøveutviklingsgruppa ved Nasjonalt senter for

Detaljer

ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst)

ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst) ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst) Læreverk: Multi Lærer: Mona Haukås Olsen og Anne Marte Urdal/Ruben Elias Austnes 34-36 37-40 MÅL (K06) TEMA ARBEIDSFORM VURDERING lese avlassere og beskrive

Detaljer

ÅRSPLAN I MATEMATIKK FOR 4.TRINN

ÅRSPLAN I MATEMATIKK FOR 4.TRINN Balsfjord kommune for framtida Storsteinnes skole Mulighetenes skole med trygghet, ansvar og respekt former vi framtida. ÅRSPLAN I MATEMATIKK FOR 4.TRINN 2017-18 *Vi bruker læreverket Multi 4. Oppgaveboka

Detaljer

Læringstrapp tall og plassverdisystemet

Læringstrapp tall og plassverdisystemet Læringstrapp tall og plassverdisystemet 4. Bruke enkle brøker som 1/2, 1 /4, 1 /3, 1 /6, 1 /8, 1 /10 og enkle desimaltall som 0,5, 0,25, 0,75, og 0,1 i praktiske sammenhenger. Gjenkjenne partall, oddetall,

Detaljer

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.

Detaljer

Nasjonale prøver i grunnleggende ferdigheter i å kunne regne i alle fag 5. og 8. (9.) trinn

Nasjonale prøver i grunnleggende ferdigheter i å kunne regne i alle fag 5. og 8. (9.) trinn Nasjonale prøver i grunnleggende ferdigheter i å kunne regne i alle fag 5. og 8. (9.) trinn Oslo 28. oktober 2014 Grethe Ravlo Nasjonalt Senter for Matematikk i Opplæringen NTNU Tre spørsmål: Hva måler

Detaljer

Nasjonale prøver 01.10.2013

Nasjonale prøver 01.10.2013 Nasjonale prøver 01.10.2013 Rettleiing til lærarar Rekning 8. og 9. trinn. Del 2 Nynorsk Innhold Hvordan bruke resultatene i undervisningen?... 3 Oversikt over oppgåvene til nasjonal prøve i rekning 2013

Detaljer

Nasjonale prøver i grunnleggende ferdigheter i å kunne regne

Nasjonale prøver i grunnleggende ferdigheter i å kunne regne Nasjonale prøver i grunnleggende ferdigheter i å kunne regne 5. og 8. trinn Oslo 28. oktober 2010 Grethe Ravlo Astrid Bondø Nasjonalt senter for matematikk i opplæringen NTNU Prøvenes betydning for opplæringen

Detaljer

Nasjonale prøver

Nasjonale prøver Nasjonale prøver 01.11.2012 Rettleiing til lærarar Rekning 8. og 9. steget. DEL 2 Nynorsk Innhald Korleis bruke resultata i undervisninga?... 3 Oversikt over oppgåvene til nasjonale prøver i rekning 2012...

Detaljer

Forslag til undervisningsopplegg - bruk av elevsvar for videre læring

Forslag til undervisningsopplegg - bruk av elevsvar for videre læring Forslag til undervisningsopplegg - bruk av elevsvar for videre læring Ressursen er knyttet til etterarbeid av nasjonale prøver i regning, og skisserer et undervisningsopplegg hvor elevsvarene brukes aktivt

Detaljer

Nasjonal prøve i regning

Nasjonal prøve i regning Nasjonal prøve i regning Veiledning til lærere Oppfølging og videre arbeid med prøven på 8. og 9. trinn + = 2015 Bokmål Innhold Oppfølging og videre arbeid med prøven...4 Hva måler den nasjonale prøven

Detaljer

ÅRSPLAN I MATEMATIKK TRINN

ÅRSPLAN I MATEMATIKK TRINN ÅRSPLAN I MATEMATIKK 2017-2018 7. TRINN Mål: Planen skal ta utgangspunkt i kompetansemålene i matematikk ståsted til elevene. Tilpasning i forhold til mengde vanskegrad har alle krav på! Hovedtema Tall

Detaljer

Addisjon og. subtraksjon. Muntlig tilbake- - Bruke metoder for hoderegning, overslagsregning, skriftlig regning - Addisjon. enn

Addisjon og. subtraksjon. Muntlig tilbake- - Bruke metoder for hoderegning, overslagsregning, skriftlig regning - Addisjon. enn ÅRSPLAN I MATEMATIKK FOR 5. TRINN 2016/2017 Læreverk: Multi 5a og b Lærer: Ruben Elias Austnes Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING - Finne verdien av et siffer HELE TALL Titallsystemet Tallinjer

Detaljer

Lokal læreplan Sokndal skole. Fag: Matematikk Trinn: 5.trinn Lærebok: Grunntall 5A og 5B

Lokal læreplan Sokndal skole. Fag: Matematikk Trinn: 5.trinn Lærebok: Grunntall 5A og 5B Lokal læreplan Sokndal skole Fag: Matematikk Trinn: 5.trinn Lærebok: Grunntall 5A og 5B Uke Tema Komp.mål (direkte fra læreplanen) Læringsmål Uke 34 42? Uke 42-46 Repetisj on tidligere tema. Forbere dende

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 1

7. TRINN MATEMATIKK PERIODEPLAN 1 1 7. TRINN MATEMATIKK PERIODEPLAN 1 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal,

Detaljer

RENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 3.og 4.trinn 2017/18

RENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 3.og 4.trinn 2017/18 RENDALEN KOMMUNE Fagertun skole Årsplan i matematikk for 3.og 4.trinn 2017/18 Klassen har to timer i uka med stasjonsjobbing der matematikk er fokus. Dette er timer da 1.-4.kl er sammen. De andre matematikktimene

Detaljer

Kyrkjekrinsen skole Årsplan for perioden: 2012-2013

Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 3ab Lærer: Therese Hermansen og Monica Strand Brunvoll Uke Årshjul Hovedtema Kompetansemål Delmål Arbeidsmetode

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44

7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44 1 7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile

Detaljer

Årsplan i matematikk 2017/ Trinn

Årsplan i matematikk 2017/ Trinn Årsplan i matematikk 2017/2018 5. Trinn Antall timer pr. uke: 4 Lærer: Juni Hausken Læreverk:, Multi 5b,, Smart øving Nettsted: http://podium.gyldendal.no/multi?page=elev Period e Kompetansemål fra Kunnskapsløftet

Detaljer

Nasjonale prøver

Nasjonale prøver Nasjonale prøver 17.10.2013 Rettleiing til lærarar Rekning 5. trinn. Del 2 Nynorsk 1 Innhald Korleis bruke resultata i undervisninga?... 3 Oversikt over oppgåvene til nasjonal prøve i rekning 2013 versjon

Detaljer

Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning. Revidert læreplan i matematikk

Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning. Revidert læreplan i matematikk Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning Revidert læreplan i matematikk Læreplan i matematikk Skoleforordningen 1734 Regning og matematikk Dagliglivets matematikk Grunnleggende ferdigheter

Detaljer

Nasjonal prøve i regning

Nasjonal prøve i regning Bokmål Nasjonal prøve i regning Veiledning til lærere Oppfølging og videre arbeid med prøven på 5. trinn 1 Innhold Oppfølging og videre arbeid med prøven... 4 Hva måler den nasjonale prøven i regning?...

Detaljer

Årsplan matematikk 3. trinn

Årsplan matematikk 3. trinn Årsplan matematikk 3. trinn Uke Tema Kompetansemål Læringsmål Aktiviteter, metoder og læringsressurser Hele Jeg vet hva symbolet er for de året fire regneartene. Utvikle og bruke varierte metodar for multiplikasjon

Detaljer

ÅRSPLAN I MATEMATIKK: SKOLEÅRET 2016/2017

ÅRSPLAN I MATEMATIKK: SKOLEÅRET 2016/2017 ÅRSPLAN I MATEMATIKK: SKOLEÅRET 2016/2017 Faglærer: Dorthea Ledang Fagbøker/lærestoff: Radius 3a grunnbok og Radius 3b grunnbok. Mnd August Læreplanmål (kunnskapsløftet) Delmål Tema/emne Kunne dele hele

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11

7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11 1 7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11 KOMPETANSEMÅL Måling Mål for opplæringa er at eleven skal kunne: gjere overslag over og måle storleikar for lengd, areal, masse, volum, vinkel og tid, og bruke

Detaljer

ÅRSPLAN MATEMATIKK 6.TRINN 2016/2017. Høst 2016

ÅRSPLAN MATEMATIKK 6.TRINN 2016/2017. Høst 2016 ÅRSPLAN MATEMATIKK 6.TRINN 2016/2017 Dette er en tenkt plan. Den vil bli blir fortløpende revidert gjennom året. Høst 2016 Ekstra fokusområde for høsten: Regnestrategier Uke Kompetansemål Innhold Arbeidsmåte

Detaljer

Mestringsbeskrivelser for nasjonale prøver i regning

Mestringsbeskrivelser for nasjonale prøver i regning Mestringsbeskrivelser for nasjonale prøver i regning ARTIKKEL SIST ENDRET: 24.05.2017 Mestringsnivå regning 5. trinn Mestringsnivå 1 Skalapoeng: til og med 42. Den typiske eleven på dette nivået gjenkjenner

Detaljer

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING HALVÅRSPLAN I MATEMATIKK FOR 6. TRINN 2016-2017 Læreverk: Multi 6a Lærer: Anita Nordland Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING 34-39 - Finne verdien av et siffer avhengig av hvor i tallet det

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse KJØP OG SALG Lære om : - Sedler og mynters

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse J A N U A R KJØP OG SALG Læringsstrategier:

Detaljer

LOKAL LÆREPLAN ETTER LK-06 VED TORDENSKJOLDS GATE SKOLE. FAG: Matematikk TRINN: 5. Timefordeling på trinnet: 4 timer i uka

LOKAL LÆREPLAN ETTER LK-06 VED TORDENSKJOLDS GATE SKOLE. FAG: Matematikk TRINN: 5. Timefordeling på trinnet: 4 timer i uka LOKAL LÆREPLAN ETTER LK-06 VED TORDENSKJOLDS GATE SKOLE FAG: Matematikk TRINN: 5 Timefordeling på trinnet: 4 timer i uka Grunnleggende ferdigheter i regning, lesing, skriving og digitale ferdigheter. Uke

Detaljer

Vurdering med nasjonale prøver

Vurdering med nasjonale prøver Grethe Ravlo Vurdering med nasjonale prøver Etter siste gjennomføring i september 2008, har totalt ca. 600 000 elever i Norge gjennomført nasjonale prøver i tre fag. I 2007 og 2008 ble elevene testet i

Detaljer

ÅRSPLAN I MATEMATIKK FOR 4. TRINN HØSTEN

ÅRSPLAN I MATEMATIKK FOR 4. TRINN HØSTEN 34 35 36 37 38 39 40 42 43 44 45 ÅRSPLAN I MATEMATIKK FOR 4. TRINN HØSTEN 2014 Læreverk: Multi Faglærer: Astrid Løland Fløgstad MÅL (K06) TEMA ARBEIDSFORM VURDERING lese avlassere og beskrive posisjoner

Detaljer

Oppdatert august 2014. Helhetlig regneplan Olsvik skole

Oppdatert august 2014. Helhetlig regneplan Olsvik skole Oppdatert august 2014 Helhetlig regneplan Olsvik skole Å regne Skolens er en strategier basis for for livslang å få gode, læring. funksjonelle elever i regning. 1 Vi på Olsvik skole tror at eleven ønsker

Detaljer

Årsplan i matematikk 2016/2017

Årsplan i matematikk 2016/2017 Årsplan i matematikk 2016/2017 Antall timer pr. uke: 4 Lærer: Irene Fodnestøl Læreverk:, Multi 5b,, Smart Nettsted: http://podium.gyldendal.no/multi?page=elev Periode Kompetansemål fra Kunnskapsløftet

Detaljer

Nasjonalt senter for matematikk i opplæringen

Nasjonalt senter for matematikk i opplæringen Nasjonalt senter for matematikk i opplæringen Realfagbygget A4, NTNU 7491 Trondheim Telefon: +47 73 55 11 42 Faks: +47 73 55 11 40 merete.lysberg@matematikksenteret.no Nasjonale prøver i grunnleggende

Detaljer

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i Lærebok: Tusen Millioner, Gjerdrum og Skovdahl Tallbok (rutebok i A5 format) Barn lærer matematikk gjennom spill, leik, utforsking og aktiv samhandling. Språkets betydning er veldig viktig for å forstå

Detaljer

Matematikk 5., 6. og 7. klasse.

Matematikk 5., 6. og 7. klasse. Matematikk 5., 6. og 7. klasse. Kompetansemål 5. 6. 7. Tall og algebra (regnemåter) Beskrive og bruke plassverdisystemet for, regne med positive og negative hele tall,, brøker og prosent, og plassere de

Detaljer

Til lærere. Hvordan bruke nasjonale prøver som redskap for læring? _Nasjonale_prøver_Lærere_A5_bokmål.indd :49

Til lærere. Hvordan bruke nasjonale prøver som redskap for læring? _Nasjonale_prøver_Lærere_A5_bokmål.indd :49 Til lærere Hvordan bruke nasjonale prøver som redskap for læring? 13-095_Nasjonale_prøver_Lærere_A5_bokmål.indd 1 27.05.13 13:49 Nasjonale prøver som redskap for læring Underveisvurdering handler om å

Detaljer

Målenheter for vekt: tonn, kg, hg, g. Måling med omgjøring i km, m, dm, cm, mm. Måling med volum.

Målenheter for vekt: tonn, kg, hg, g. Måling med omgjøring i km, m, dm, cm, mm. Måling med volum. Årsplan i matematikk 6.trinn 2015-16 Læreverk: MULTI Uk Kompetansemål i Tema Delmål Arbeidsmåte Vurdering e kunnskapsløftet. 34-37 Repetisjon Målenheter for vekt: tonn, kg, hg, g - De fire regneartene.

Detaljer

ÅRSPLAN I MATEMATIKK FOR SINSEN SKOLE Sist revidert: av Hilde Sollie

ÅRSPLAN I MATEMATIKK FOR SINSEN SKOLE Sist revidert: av Hilde Sollie ÅRSPLAN I MATEMATIKK FOR SINSEN SKOLE 5.trinn Sist revidert: 01.09.2014 av Hilde Sollie Læreverk: b Mattetrappa Brøk Mattetrappa Prosent Nettressurser: Dreambox Learning Abakus Matematikkmandag! Ukentlig

Detaljer

Til lærere. Hvordan bruke nasjonale prøver som redskap for læring?

Til lærere. Hvordan bruke nasjonale prøver som redskap for læring? Til lærere Hvordan bruke nasjonale prøver som redskap for læring? Nasjonale prøver som redskap for læring Vurdering for læring handler om å bruke informasjon om dine elever for å tilpasse opplæringen og

Detaljer

Årsplan matematikk 1. trinn skoleåret 15/16

Årsplan matematikk 1. trinn skoleåret 15/16 Årsplan matematikk 1. trinn skoleåret 15/16 FAG Den lokale læreplanen for faget må: Sees i sammenheng med det aktuelle trinn Sikre at skolen jobber med alle kompetansemål i faget Aktuelle elementer fra

Detaljer

Årsplan matematikk 4. klasse, Læreverk: Multi 4a og 4b Lærer: Irene Jørgensen Skaret

Årsplan matematikk 4. klasse, Læreverk: Multi 4a og 4b Lærer: Irene Jørgensen Skaret Årsplan matematikk 4. klasse, 2016-2017 Læreverk: Multi 4a og 4b Lærer: Irene Jørgensen Skaret Uke Kompetansemål (K06) Tema Arbeidsmåter Vurdering 34-35 Lese av, plassere og beskrive posisjoner i rutenett,

Detaljer

Sammendrag av analyserapporter fra nasjonale prøver i 2012

Sammendrag av analyserapporter fra nasjonale prøver i 2012 Sammendrag av analyserapporter fra nasjonale prøver i 2012 Dette er et sammendrag av de tre analyserapportene fra gjennomføringen av nasjonale prøver høsten 2012. Det ble gjennomført nasjonale prøver i

Detaljer

Årsplan i Matematikk

Årsplan i Matematikk Årsplan i Matematikk Tidspunkt (uke eller mnd) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 5A Kap 1: God start Kunne utvikle og bruke ulike regnemetoder for addisjon og subtraksjon

Detaljer

Målenheter for vekt: tonn, kg, hg, g. Måling med omgjøring i km, m, dm, cm, mm. Måling med volum.

Målenheter for vekt: tonn, kg, hg, g. Måling med omgjøring i km, m, dm, cm, mm. Måling med volum. Årsplan i matematikk 6.trinn 2015-16 Læreverk: MULTI Uk Kompetansemål i Tema Delmål Arbeidsmåte Vurdering e kunnskapsløftet. 34-37 Repetisjon Målenheter for vekt: tonn, kg, hg, g - De fire regneartene.

Detaljer

Kompetanse i faget og kompetansemål: Hovedområdene: 1. Tal og algebra 2. Geometri 3. Måling 4. Statistikk og sannsyn

Kompetanse i faget og kompetansemål: Hovedområdene: 1. Tal og algebra 2. Geometri 3. Måling 4. Statistikk og sannsyn Mal lokallæreplan ved Froland skole Utdanningsdirektoratets veiledninger til de ulike læreplanene for fag danner grunnlaget for arbeidet med lokale læreplaner på Froland skole Fag: matematikk Trinn: 7.

Detaljer

Læringsmål i regning. Eksempel på lokal læreplan i å kunne regne som grunnleggende ferdighet FAKTA OM LÆRINGSMÅLENE

Læringsmål i regning. Eksempel på lokal læreplan i å kunne regne som grunnleggende ferdighet FAKTA OM LÆRINGSMÅLENE Læringsmål i regning Eksempel på lokal læreplan i å kunne regne som grunnleggende ferdighet FAKTA OM LÆRINGSMÅLENE Læringsmålene er eksempler på lokale læreplaner i grunnleggende ferdigheter for voksne.

Detaljer

Årsplan Matematikk 2015 2016 Årstrinn: 5. årstrinn

Årsplan Matematikk 2015 2016 Årstrinn: 5. årstrinn Akersveien 4, 0177 OSLO oppdatert 27.08. 15 Tlf: 23 29 25 00 Årsplan Matematikk 2015 2016 Årstrinn: 5. årstrinn Eli Aareskjold, Kjetil Kolvik, Cordula K. Norheim Kompetansemål Tidspunkt Tema/Innhold Læreverk

Detaljer

Data og statistikk 35

Data og statistikk 35 ÅRSPLAN I MATMATIKK FOR 3. TRINN HØSTN 2017 Læreverk: Multi Faglærer: Astrid Løland Fløgstad og Inger-Alice Breistein MÅL/LÆR (LK) TMA ARBIDSFORM/MTOD VURDRING 34 Data og statistikk 35 36 37 38 39 40 samle,

Detaljer

MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING

MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING Svein H. Torkildsen Ny GIV 2012-13 Dette har vi fokus på God regning effektiv undervisning 10. trinn underyterne Elevers tenking Grunnleggende

Detaljer

ÅRSPLAN I MATEMATIKK 17/18

ÅRSPLAN I MATEMATIKK 17/18 Tall KOMPETANSEMÅL PERIODE ARBEIDSMETODE DIGITALT VERKTØY Forstå plassverdisystemet for hele tall og, alt fra tusendeler til millioner og så med brøker og prosent. De skal også forstå utvidelsen til negative

Detaljer

Tema Kompetansemål Læringsmål Metoder og læringsressurser Gr.ferdigheter Vurdering. Jeg kan lese av og plassere i rutenett og koordinatsystem.

Tema Kompetansemål Læringsmål Metoder og læringsressurser Gr.ferdigheter Vurdering. Jeg kan lese av og plassere i rutenett og koordinatsystem. Mer enn 1000 og mindre enn 0 Koordinatsystem Uke Tema Kompetansemål Læringsmål Metoder og læringsressurser Grunnleggende ferdigheter Vurdering 34-36 36-41 Elevene skal kunne lese av, plassere og beskrive

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer

Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere:

Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere: Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere: Cordula Norheim, Åsmund Gundersen, Renate Dahl Akersveien 4, 0177 OSLO, Tlf: 23 29 25 00 Kompetansemål Tidspunkt Tema/Innhold Lærestoff Arbeidsmåter

Detaljer

Nasjonal prøve i regning

Nasjonal prøve i regning 201 Bokmål Nasjonal prøve i regning Veiledning til lærere Oppfølging og videre arbeid med prøven for 8. og 9. trinn 2016 1 Innhold Oppfølging og videre arbeid med prøven... 4 Hva måler nasjonal prøve i

Detaljer

ENDRINGER I NASJONALE PRØVER

ENDRINGER I NASJONALE PRØVER ENDRINGER I NASJONALE PRØVER Ny skala og måling av utvikling over tid Per Kristian Larsen Vurdering 2 Et verktøy i underveisvurderingen ELEV & LÆRER Et verktøy i underveisvurderingen Elevers forutsetninger

Detaljer

8 årstrinn, Høst Tina Dufke & Arne Christian Ringbsu

8 årstrinn, Høst Tina Dufke & Arne Christian Ringbsu 35-38 TALLÆRE OG GRUNNLEGGENDE REGNING Periode 8 årstrinn, Høst 2016. Tina Dufke & Arne Christian Ringbsu Hovedemne Mål Innhold Læringsressurser Vurdering Titallssystemet med heltall og desimaltall Regning

Detaljer

Matematikk 1. 4. årstrinn Smøla kommune

Matematikk 1. 4. årstrinn Smøla kommune Lokal læreplan i Matematikk 1. 4. årstrinn Smøla kommune Grunnskolen 1 INNHOLDSFORTEGNELSE Hovedområder.. side 3 Gjennomføring.. side 10 Målark. side 11 Digitale ressurser.. side 19 2 HOVEDOMRÅDER Matematikkplanen

Detaljer

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK

DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK Oppgaveveiledning Oppgave 10 Hoderegningsstrategier. Addisjon og subtraksjon. Notatark til kartleggingsleder og Elevark DYNAMISK KARTLEGGINGSPRØVE I MATEMATIKK For elever fra 5. 10. trinn og elever i videregående

Detaljer

INNHOLD. Satsingsområde: Klasseledelse. Grunnleggende ferdigheter i LK06. Satsingsområdene: Regning, lesing, skriving.

INNHOLD. Satsingsområde: Klasseledelse. Grunnleggende ferdigheter i LK06. Satsingsområdene: Regning, lesing, skriving. INNHOLD Satsingsområde: Klasseledelse Grunnleggende ferdigheter i LK06 Satsingsområdene: Regning, lesing, skriving Analyseverktøy Klasseledelse Åpne dører Kvalitet i skolens kjerneoppgaver Personlig utvikling

Detaljer

Nasjonal prøve i regning

Nasjonal prøve i regning Bokmål Nasjonal prøve i regning Veiledning til lærere Oppfølging og videre arbeid med prøven for 5. trinn 2016 1 Innhold Oppfølging og videre arbeid med prøven... 3 Hva måler nasjonal prøve i regning?...

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler

Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler Sandvika 12.september 2011 Tone Elisabeth Bakken tone.bakken@ohg.vgs.no Hovedpunkter: Praktisk regning dag 1 Læringsmiljø Elevers

Detaljer

Årsplan i matematikk 4.klasse, 2015-2016

Årsplan i matematikk 4.klasse, 2015-2016 Årsplan i matematikk 4.klasse, 2015-2016 Antall timer pr uke: 5. timer Lærere: Marte Fjelddalen, Helene V. Foss, Evelyn Haugen Læreverk: Multi Gyldendal Grunnbok 4A og 4B + Oppgavebok 4 Nettstedet: www.gyldendal.no/multi

Detaljer

Matematikk i tverrfaglige sammenhenger

Matematikk i tverrfaglige sammenhenger Matematikk i tverrfaglige sammenhenger Ungdomsskolekonferansen Gyldendal kompetanse 17.09.12 grete@tofteberg.net Kan vi tenke oss en dag uten? Innfallsvinkel 1 Hvor finner vi matematikken i fagene? Regneferdigheter

Detaljer

ENDRINGER I NASJONALE PRØVER

ENDRINGER I NASJONALE PRØVER ENDRINGER I NASJONALE PRØVER Ny skala og måling av utvikling over tid Per Kristian Larsen Vurdering 2 Et verktøy i underveis- vurderingen ELEV & LÆRER Et verktøy i underveisvurderingen Elevers forutsetninger

Detaljer

ÅRSPLAN I MATTE 3. og 4. TRINN BREIVIKBOTN SKOLE

ÅRSPLAN I MATTE 3. og 4. TRINN BREIVIKBOTN SKOLE ÅRSPLAN I MATTE 3. og 4. TRINN BREIVIKBOTN SKOLE 2012-2013 Lærer: Knut Brattfjord Læreverk: Grunntall 3 a og b, 4 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene er fra Lærerplanverket

Detaljer

5. TRINN MATEMATIKK PERIODEPLAN 1

5. TRINN MATEMATIKK PERIODEPLAN 1 1 5. TRINN MATEMATIKK PERIODEPLAN 1 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal,

Detaljer

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs Ny Giv Grunnleggende regneferdighet Brynhild Farbrot Foosnæs Læring innebærer endring Hva har du endret siden sist? Læring innebærer at du blir utfordret og at du tør å ta utfordringen. Hvilke utfordringer

Detaljer

Lokal læreplan matematikk 3. trinn

Lokal læreplan matematikk 3. trinn Lokal læreplan matematikk 3. trinn Lærebok: Multi 3 Antall uker Tema: (Statistikk) 2 Data og statistikk Multi grunnbok 3a s.2-15. Oppgavebok s. 2-7. Nettoppgave 2, nivå 1 og 3. Bruke legoklosser, knapper,

Detaljer

Nasjonale prøver. Siden 2007 er det i Norge gjennomført nasjonale prøver i grunnleggende regne- og leseferdigheter

Nasjonale prøver. Siden 2007 er det i Norge gjennomført nasjonale prøver i grunnleggende regne- og leseferdigheter Nasjonale prøver Prestasjoner, kjønnsforskjeller og pedagogisk bruk Grethe Ravlo Siden 2007 er det i Norge gjennomført nasjonale prøver i grunnleggende regne- og leseferdigheter i alle fag og i deler av

Detaljer

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE 2012-2013 MÅLENE ER FRA LÆREPLANVERKET FOR KUNNSKAPSLØFTET 2006 OG VEKTLEGGER HVA ELEVENE SKAL HA TILEGNET SEG ETTER 2. KLASSE Grunnleggende ferdigheter

Detaljer

Uke Tema: Kunnskapsløftet

Uke Tema: Kunnskapsløftet Uke Tema: Kunnskapsløftet Matematisk innhold Kompetansemål: Læringsmål: Metoder/Vurdering 34-39 Kap. 1: Tall Titallssystemet o Store tall Addisjon og subtr. o Store tall Negative tall Multiplikasjon og

Detaljer

lærebøker, lokalt lærestoff Matematikk.org Gruble.net Diktat.no Multi.no Tusen millioner.no Tusen Millioner s.4-27 Oppgavebok 4-13

lærebøker, lokalt lærestoff Matematikk.org Gruble.net Diktat.no Multi.no Tusen millioner.no Tusen Millioner s.4-27 Oppgavebok 4-13 LOKAL LÆREPLAN ETTER LK-06 VED VARDÅSEN SKOLE FAG: MATEMATIKK TRINN: 4.TRINN Timefordeling på trinnet:4 Grunnleggende ferdigheter i regning, lesing, skriving og digitale ferdigheter. Med forbehold om endringer

Detaljer

Emnebytteplan matematikk trinn

Emnebytteplan matematikk trinn Emnebytteplan matematikk 3. 4. trinn 3. trinn 4. trinn Uke Data og statistikk Koordinatsystemet Flersifrede tall Mer enn 1000 og mindre enn 0 Måling Legge sammen og trekke fra Tid Tid, klokka Geometri

Detaljer

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Hovedområde Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale sressurser for 5. trinn Fra Lese-forlivet-planen brukes jevnlig i alle fag

Detaljer

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring Overordnet plan for fagene. Fag: Matematikk Trinn: 8. trinn Skole: Lindesnes ungdomsskole År: 2015/2016 Lærestoff: Nye Mega 8 a og 8b Vurdering. Prinsipper i vurdering. 1. Elevene forstår hva de skal lære

Detaljer

ÅRSPLAN Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner )

ÅRSPLAN Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner ) Øyslebø oppvekstsenter ÅRSPLAN 2017-2018 Fag: Matematikk Trinn: 4 Lærer: Lise Jortveit og Kari Oftebro Tidsrom (Datoer/ ukenr, perioder..) Tema Lærestoff / læremidler (lærebok kap./ s, bøker, filmer, annet

Detaljer