Generell støymodell for forsterkere (Mot Kap.2)

Størrelse: px
Begynne med side:

Download "Generell støymodell for forsterkere (Mot Kap.2)"

Transkript

1 Geerell øymdell fr frerkere (M Kap.) år e frear øyaalyer av re yemer vl de være uprakk å aalyere med dealjere øymdeller fr alle mulge øyklder. velger ede å bruke freklede mdeller m repreeerer flere mulge øyklder. ppulær mdell er -I-mdelle m beår av bare parameere: øypege g øyrømme I.

2 -I mdelle Geerel ka øy e mdul repreeere av fre øyklder: på gage g på ugage. av de på gage g e av de på ugage er øypeg me de adre er øyrøm. Med de øykldee å berake ree av mdule m øyfr. øye frerkere ka fe repreeere av e øypeg g øyrøm på gage g e kmplek krrelajkeffe (plu elve mdule). øypege g øyrømme I varerer med frekve, perajpuk g frerkere elemeer g arkekur. år de gjelder frerkere å vl de før g frem være gagelemee (valgv e rar) m har ør flyele.

3 Mdelle (lk m på fgure) ka bruke fr alle yper frerkere. (Fgure ver gå e galklde V, e øyklde g e kldemad. Krrelajkeffee er kke ag/ege.)

4 Måle øy på ugag eller gag? Valgv er de på ugager v måler gale g gå pplever de amlede øye l yeme. Me av flere gruer ka de uder krukj være prakk å rege øy fremver m gag. Ved r frerkg frfrerker vl øybdrage fra elekrkke hvedak kmme fra frfrerkere. ege øy m gag behøver e bare rege på e begree aall ledd. Ofe vl de være erea å ammelge med øybdrage fra elve klde. De vl f.ek. være le å hee på å reduere øybdrage fra elekrkke veelg uder de klde elv bdrar med. eger v m gage ka v gjøre uavhegg av frerkeree pegfrerkg g gagmpeda.

5 kvvale gagøy Mede: V vl fe e ekvvale øy m ka erae alle re øyklder (,, g I) g plaere ere med V. V vl da le kue berege /-frhlde. Fremgagmåe:. Før fer v yem pegfrerkg. å fer v øye på ugage 3. å deler v ugagøye på yem pegfrerkg g får da ekvvale øy på gage.

6 yem pegfrerkg: K V V O K : yem pegfrerkg, V : galpeg ugag, V : galpeg klde (Ikke gag på frerker!!) V O A V v Z Z Av : pegfrerkg frerker, (galpeg på frerkergag er: V Z/(+Z).) eer de e urykke de e e g får: K Av Z Z

7 øy på ugag: (Bruker rm beregg). A v : øy på ugag, : øy på gag av frerker. Z Z I Z øye på frerkergage er her uryk ved de re øykldee. B: De e kvadrae er kvadrae av Z g parallell. eer v e urykk de e e å får v: Z A I A Z v Z v

8 kvvale gagøy. U fra urykkee fr g K å fer v : K Dee er e vkg urykk!! plaere ved ( ere) med V. eraer alle øykldee. Urykke er uavhegg av Av g Z!! I Me frerkere I g er kakje kke hel uavhegge av hveradre. Har de e v krrelaj å må v uvde urykke lk a v får. I C I

9 Målg av I g. ae årak l I g mdelle ppulare er a de er ekel å fe ørrelee ved målg: K : Fe ved uregg: 4kT f : Fe ved å la gå m ull. ( reger v u g vrkge av I vl gå m ull.) I : Fe l lu ved å la gå m uedelg. I

10 kempler på gagøy: B! fgure er hva v har kal de fregåede. (B! Kurvee er frekveavhegge.)

11 øyall (F) g gal-l-øy frhld () I-adardee: The e facr f a w-pr devce he ra f he avalable upu e pwer per u badwdh he pr f ha e caued by he acual urce ceced he pu ermal f he devce, meaured a he adard emperaure f 90K. ller: F Hvr F er øyfakre. Hv elemee kke bdrar med e øy å vl: A D.v.. frhlde mellm øy på ugag g gag vl være lk frhlde mellm gal på ugag g gag. Her er A frerkge l elemee. år å er lfelle vl F være lk. Bdrar elemee med øy vl F være ørre e.

12 øyall øyfakre ka urykke decbel g kalle da øyall (gelk: F : e Fgure). F 0lg F år øyllegge er mmum (d.v.. 0) å er F= g F=0dB. kempel: Fr øymdelle v gkk gjem dlgere å ka v ee pp øyalle m følger: F 0lg 0lg Hva har v gjr her? I ellere har v øye på ugage rege lbake l gage.d.v.. øye på ugag del på yemfrerkg. yemfrerkge er /. D.v.. a ellere beår av /(/) me evere beår av. (Bemerk a v har 0 fra lg-fukje d.v.. effek: P=V²/. pege er kvadrak d.v.. OK. Me made? Fr å kue elmere made må de være amme mad fr urykke eller m ever.) I

13 øyalle er frhlde mellm de plede kurve g gagøypege. Frhlde vl være ør fr le, ærme på mde, g e mellm fr re. øyalle er ærme år =I. D.v.. elekrkke bdrag er m her relav l gagøye. Me de er gå verd å merke eg a mmum aløy ppå med mmum gagmad. Me de kmmer adre krav m eer e begreg på de mulghee

14 Defje av F m ag ver baerer eg på e emperaur på 90ºK7ºC. år dee defje bruke på erer m er kjøle ed å ka e få egave verder på F. p e Facr er øyfakre m e fukj av frekve. m fe agr de øye e bådbredde på Hz. F bruke gjere m e beegele fr Hz bredde rud 000Hz. ller å bruke F(f) fr å ag e varabel frekve (me fra med Hz bredde). øyfakre er før g frem yg fr å ammelge frerkere. Fr å pmaler fr mmum øy å ka de være dreke mvede. F.ek. ka e økg av g mdre øyfakr me vrkelghe øker både bdrage fra frerker g klde. Fr mmalerg av øy er g / bedre ege m mål.

15 Opmal kldemad. år kurve fr ekvvale gagøy er ærme kurve fr de ermke øye å er øyalle m g de relave bdrage fra elekrkke m. Made ved dee puke kalle p eller. V har da: I where øyfakre ved dee made ka v kalle Fp. De ka urykke m: F I ktf p I De er kke bare vkg hvr lav øyall e ka ppå me gå hvrda øyalle fradrer eg med varajer.

16 øymad g øyemperaur e gager akker e m e erek øymad m repreeerer all øye e mdul. ørrele på øye blr mdeler ee ved made hmke ørrele eller ved made emperaur. Uregg mad: g 4kTf I I 4kTf Uregg emperaur: 4kT f I g T I 4k f

17 øy kakadekblede everk V vl e på hvrda e ka defere de vkge øybdragyeree yeme. Fr å gjøre de deler v yeme pp mduler g deferer bdrage fra de frkjellge mdulee. epej (q. -5) klde øy: f kt f kt L L 4 0 epej defj øyfakr: f GkT G F f FGkT

18 Ugag r : FG ktf øye ver er umme av kldeøye g bdrage fra føre r. Ugag geerel r j (j): F j ' j G j ktf Her er ktf øy e hypek gagla fr r j. øye j er de øye v vlle ha på ugage hv gagøye bare var dee hypeke gagøye. Bdrage fra r j alee ka berege m følger: ' j G jktf FjG jktf G jktf F j G jkt ubrahede er de hypeke gaglae alee lk de vl være på ugage. f

19 Ugag r : V eer pp e urykk fr aløye på ugage av r : _ Tal GF GkTf F G ktf GG F GF G ktf Føre ledd er øy r g øy klde, adre ledd er bdrage fra r. Me v ka gå ee pp e urykk fr hele lk: F O _ Tal G G ktf F G G F G G ktf F G G ktf F Her har v eer hver a evere urykke fr aløye v fa ver. Ugag r 3: O _ Tal G3G F GkTf G3F G ktf F3 G 3kT G3GG F G3GF G3G G3F3 G3 ktf V eer urykke fr aløye følgede urykk l vere g får reulae l høyre: O _ Tal F F F 3 G G G ktf 3 Geerel: F... j F F G F F j G... G G G 3 G j G G f

Generell støymodell for forsterkere (Mot Kap.2)

Generell støymodell for forsterkere (Mot Kap.2) Geerell øymodell for forerkere (Mo Kap.) år e forear øyaalyer av ore yemer vl de være uprakk å aalyere med dealjere øymodeller for alle mulge øyklder. velger ede å bruke foreklede modeller om repreeerer

Detaljer

Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende:

Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende: B. Makroøkoom Oppgave: Forklar påstades hold og drøft hvlke alteratv v står overfor: Fast valutakurs, selvstedg retepoltkk og fre kaptalbevegelser er kke forelg på samme td. Makroøkoom Iledg Mudells trlemma

Detaljer

Løsningsforslag til øving 9 OPPGAVE 1 a)

Løsningsforslag til øving 9 OPPGAVE 1 a) Høgskole i Gjøvik vd for ek, øk og ledelse aemaikk 5 Løsigsforslag il øvig 9 OPPGVE ) Bereger egeverdiee: de I) ) ) ) Egeverdier: og ) ) Bereger egevekoree: vi ivi ii) vi ed λ : ) ) v Velger s som gir

Detaljer

Kraftelektronikk (Elkraft 2 høst), Løsningsforslag til øvingssett 2, høst 2005

Kraftelektronikk (Elkraft 2 høst), Løsningsforslag til øvingssett 2, høst 2005 Krfelekronkk Elkrf hø, Lønngforlg l øvnge, hø 5 Ole-Moren Mgår HA 5 Oppgve 4 3 v voe vol - - -3-4 p p 3p 4p V v 3 3 n V [ co ] 3 3. 5 b Derom nvenelen krever ørre røm enn lgjengelge hlvleerkomponener åler,

Detaljer

x x A f < A Tilbakekopling - Feedback Kap. 23 Paynter Feedback brukes til : 1. Linearisering 2. Stabilisering 3. Regulering og kontroll

x x A f < A Tilbakekopling - Feedback Kap. 23 Paynter Feedback brukes til : 1. Linearisering 2. Stabilisering 3. Regulering og kontroll Lndem 16. aprl 2013 Tlbakekplng - Feedback Kap. 23 Paynter Feedback bruke tl : 1. Lnearerng 2. Stablerng 3. Regulerng g kntrll Tlbakekplng fnne de flete ytemer : Teknke ytemer - ekempler lgke ytemer -

Detaljer

Høst 98 Ordinær eksamen

Høst 98 Ordinær eksamen ø 98 Ordiær ekae. Vi eker o a e parikkel beeger eg lag e re lije lag -ake. Parikkele arer i ro i origo ed ide =. ekuder. Parikkele haighe o ukjo a ide er gi ed: A B hor A. B. a Bereg parikkele akelerajo

Detaljer

Årets hotteste. fyrverkerikampanje. www.fyrverkeri.no. t s. : t. kr 5 FLASHING THUNDER. n i. u h. t K. s 1. få med

Årets hotteste. fyrverkerikampanje. www.fyrverkeri.no. t s. : t. kr 5 FLASHING THUNDER. n i. u h. t K. s 1. få med Åre hoee fyrverkerkampaje FLASHING THUNDER ART.NR. E 6 kudd. E kkkelg kra pakke om vl ufordre e orebrødre både effekmeg og de avlu ede drøee. Be : e! e d em kr + kr + GRATIS! der for u h T g. Flah k ATIS

Detaljer

Mot3.: Støy i forsterkere med tilbakekobling

Mot3.: Støy i forsterkere med tilbakekobling Mo3.: Søy i forserkere med ilbakekoblig Hiil har vi diskuer forserkere ue ilbakekoblig ("ope-loop"). Nå vil vi diskuere virkige av ilbakekoblig. Geerel beyes ilbakekoblig for å... edre forserkig, edre

Detaljer

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:

Detaljer

STK1100 våren Estimering. Politisk meningsmåling. Svarer til sidene i læreboka. The German tank problem. Måling av lungefunksjon

STK1100 våren Estimering. Politisk meningsmåling. Svarer til sidene i læreboka. The German tank problem. Måling av lungefunksjon STK00 våre 07 Estmerg Svarer tl sdee 33-339 læreboka Poltsk megsmålg Sør et tlfeldg utvalg å 000 ersoer hva de vlle ha stemt hvs det hadde vært valg 305 vlle ha stemt A A's oslutg er Ørulf Borga Matematsk

Detaljer

x x A f < A Tilbakekopling - Feedback Kap. 23 Paynter Feedback brukes til : 1. Linearisering 2. Stabilisering 3. Regulering og kontroll

x x A f < A Tilbakekopling - Feedback Kap. 23 Paynter Feedback brukes til : 1. Linearisering 2. Stabilisering 3. Regulering og kontroll Lndem 24. mar 2010 Tlbakekplng - Feedback Kap. 23 Paynter Feedback bruke tl : 1. Lnearerng 2. Stablerng 3. Regulerng g kntrll Tlbakekplng fnne de flete ytemer : Teknke ytemer - ekempler Blgke ytemer -

Detaljer

2.1 Polynomdivisjon. Oppgave 2.10

2.1 Polynomdivisjon. Oppgave 2.10 . Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66

Detaljer

Det ble orientert i plenum under eksamensdagen om følgende endringer i forhold til oppgaven:

Det ble orientert i plenum under eksamensdagen om følgende endringer i forhold til oppgaven: LØSNINGSFORSLAG EKSAMEN 4 MAI 007 MET00 STATISTIKK GRUNNKURS Det ble oretert pleum uder eksamesdage om følgede edrger forhold tl oppgave: Oppgave b går ut. Det vl da bl 9 oppgaver og alle oppgaver teller

Detaljer

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 1 0 O r d i n æ r g e n e r a l f o r s a m l i n g i, a v h o l d e s m a n d a g 3. m ai 2 0 1 0, k l. 1 8 0 0 p å T r e

Detaljer

= A. Tilbakekopling - Feedback Kap. 23 Paynter. Feedback brukes til : 1. Linearisering 2. Stabilisering 3. Regulering og kontroll

= A. Tilbakekopling - Feedback Kap. 23 Paynter. Feedback brukes til : 1. Linearisering 2. Stabilisering 3. Regulering og kontroll Lndem18.aprl 2008 Tlbakekplng - Feedback Kap. 23 Paynter Feedback bruke tl : 1. Lnearerng 2. Stablerng 3. Regulerng g kntrll Tlbakekplng fnne de flete ytemer : Teknke ytemer - ekempler Blgke ytemer - ekempler

Detaljer

Høst 95 Test-eksamen. 1. Et legeme A med masse m = kg påvirkes av en kraft F gitt ved: F x = - t F y = k t 2 = 5.00N = 4.00 N/s k = 1.

Høst 95 Test-eksamen. 1. Et legeme A med masse m = kg påvirkes av en kraft F gitt ved: F x = - t F y = k t 2 = 5.00N = 4.00 N/s k = 1. Hø 95 Te-ekaen. E legee ed ae =.4 kg pårke a en kraf F g ed: F = - F = k = 5.N = 4. N/ k =.N/ llegg rker ngdekrafen nega -renng. a Bee reulankrafekoren. b Ved den = er legee ro orgo. Fnn pojon og haghe

Detaljer

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall.

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall. Løsgsforslag Eksame Statstkk Nov 00 Oppgave a) Det fs 8 mulge kombasjoer. Dsse fes ved å utelate ett og ett tall. Atall utvalg av størrelse 7 blat m er ( m 7 ). b) Prs Atall Rekker 3 kr. ( 7 ) 3 kr....

Detaljer

01. Til hvilke deler av naturen benyttes kvantefysikk som beskrivende verktøy?

01. Til hvilke deler av naturen benyttes kvantefysikk som beskrivende verktøy? Ka Kvatefykk. Tl vlke deler av ature beytte kvatefykk o bekrvede verktøy?. Nev oe etrale ateatkk-eer o går kvatefykke.. Hva kalle de eleetee Hlbert-roet o bekrver tltader tl et yte?. Hva kalle de ateatke

Detaljer

Forelesning 19 og 20 Regresjon og korrelasjons (II)

Forelesning 19 og 20 Regresjon og korrelasjons (II) STAT111 Statstkk Metoder Yushu.L@ub.o Forelesg 19 og 0 Regresjo og korrelasjos (II) 1. Kofdestervall (CI) og predksjostervall (PI) I uka 14, brukte v leær regresjo for å fage leær sammehege mellom Y og

Detaljer

Tore på sporet - Hvor tar avfallet ditt veien?

Tore på sporet - Hvor tar avfallet ditt veien? N 1 2011 Kubl T p p - Hv vfll v? D m bu m gj V lv v v l g fy g v u g Sull ll h lv m vll v h u M v m l p l v h, g g v p lvgulg v D v ll b l, bl v l V vfll lgg v l f gjvg N l vfll bu p y, m ff l y pu ll

Detaljer

Kapittel 1: Beskrivende statistikk

Kapittel 1: Beskrivende statistikk Kapttel : Bekrvede tattkk Defjoer: Populajo og utvalg Populajo: Alle mulge obervajoer v ka gjøre (,,, N ). Utvalg: Delmegde av populajoe (,,, der

Detaljer

Investeringer og skatt. Skattesatser med videre. Finansinvesteringer. Eksempler på finansinvesteringer

Investeringer og skatt. Skattesatser med videre. Finansinvesteringer. Eksempler på finansinvesteringer Iveseriger og ska Løsomhe av fiasiveseriger før og eer ska Løsomhe av realiveseriger eer ska Avhedelse (salg) av aleggsmidler Egekapialavkasig eer ska Joh-Erik Adreasse 1 Høgskole i Øsfold Skaesaser med

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Positive rekker. Forelest: 3. Sept, 2004

Positive rekker. Forelest: 3. Sept, 2004 Postve rekker Forelest: 3. Sept, 004 V skal tde utover fokusere på å teste om e rekke kovergerer, og skyve formler for summerg bakgrue. Dette er gje ford det første målet vårt er å lære hvorda v ka fe

Detaljer

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON 3 EKSAMEN VÅR TALLSVAR Det abefales at de 9 deloppgavee merket med A, B, teller lkt uasett varasjo vaskelghetsgrad. Svaree er gtt

Detaljer

Våren Ordinær eksamen

Våren Ordinær eksamen Våren - Ordinær ekaen. Vi enker a en parikkel beeger eg lang en re linje (-aken. Parikkelen arer i r i pijn =. ed iden =. Parikkelen haighe funkjn a iden er gi ed: ( hr.. a eregn parikkelen akelerajn a

Detaljer

Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n.

Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n. Løsgsforslag ST20/ST620 205, kotuasjoseksame. a Rmelghetsfuksjoe blr Logartme Derverer Løser lgge Løsge er SME: L = 2 e l L = 2 l X X. X + l X. l L = 2 + 2 X = 2. ˆ = 2 X. X. b Her ka ma beytte trasformasjosformele,

Detaljer

FORELESNINGSNOTATER I SPILLTEORI Geir B. Asheim, våren 2001 (oppdatert ).

FORELESNINGSNOTATER I SPILLTEORI Geir B. Asheim, våren 2001 (oppdatert ). OREESNINGSNOTATER I SPITEORI Ger B. Ashem, våre 00 (odatert 000.0.03. 3. STATISKE SPI MED UUSTENDIG INORMASJON (Statske Bayesaske sll Statsk sll: Sllere trekker samtdg. Ufullstedg formasjo: Mst é sllere

Detaljer

Løsningsforslag LO346E Dynamiske Systemer H 06 eksamen 21. november 2006

Løsningsforslag LO346E Dynamiske Systemer H 06 eksamen 21. november 2006 øningforlag O346E Dynamike Syemer H 6 ekamen. november 6 Oppgave Gi e yem med ranferfnkjonen H 58 + a Tidkonanen for yeme er T 8 4. Den aike forerkningen er H 5 Saik forerkning for en varmvannank kan handle

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 1 HG Revdert aprl 213 Overskt ver tester Ec 213 La θ være e ukjet parameter (ppulasjs-størrelse) e statstsk mdell. Uttrykket ukjet parameter betyr at de sae verde av θ ppulasje er ukjet. Når v setter pp

Detaljer

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s a m e i e r m ø t e i L i s a K r i s t o f f e r s e n s P l a s s S E, a v h o l d e s o ns d a g 9. m a r s

Detaljer

3. Beregning av Fourier-rekker.

3. Beregning av Fourier-rekker. Forelesigsoaer i maemaikk. 3. Beregig av 3.. Formlee for Fourier-koeffisieee. Vi går re på sak: a f være e sykkevis koiuerlig fuksjo med periode p. De uedelige rigoomeriske rekka cos( ) si ( ) a + a +

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG Revdert mars 013 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg

Detaljer

I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E

I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E 2 0 0 9 O r d i næ r t s am e i e rm ø t e i S am b o b o l i g s a m ei e fi n n e r s t e d t o r s d ag 3 0. 0 4. 2 0 0 9 K l. 1 8. 3 0

Detaljer

Spill med fullstendig info.

Spill med fullstendig info. Spll med fulltedg fo. Foreleger pllteor V, del G.B. Ahem, pllteor, oppdat... Spllteor tuderer flerpero-belutgproblemer, og aalyerer aktører om er rajoelle (har veldeferte preferaer) reoerer trategk (tar

Detaljer

P r in s ipp s ø k n a d. R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e

P r in s ipp s ø k n a d. R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e P r in s ipp s ø k n a d R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e O pp d ra g s n r : 2 0 1 50 50 O pp d ra g s n a v n : Sa n d s ta d g å r d

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG mars 2009 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette

Detaljer

Tillegg nr 1 til Grunnprospekt datert 27. mai 2015 i henhold til EU's Kommisjonsforordning nr 809/2004

Tillegg nr 1 til Grunnprospekt datert 27. mai 2015 i henhold til EU's Kommisjonsforordning nr 809/2004 Tllegg nr 1 l Grunnprospek daer 27. ma 2015 henhold l EU's Kommsjonsforordnng nr 809/2004 Tlreelegger Oslo, 25. jun 2015 Uarbede samarbed med DNB Markes 1 av 7 Ord med sor forboksav som benyes llegg l

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består

Detaljer

Econ 2130 uke 15 (HG)

Econ 2130 uke 15 (HG) Eco 130 uke 15 (HG) Kofdestervall Løvås: 6.1., 6.3.1 3. (Avstt 6.3.4 6 leses på ege håd. Se også overskt over kofdestercvall ekstra otat på ettet.) 1 Defsjo av kofdestervall La θ være e ukjet parameter

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen HG mars 0 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset.

Detaljer

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk Yushu.@hh.o Forelesg 5 og 6 Itroduksjo tl Bayesask statstkk 1. Itroduksjo Fortsatt atar v har stokastsk varabel X (X ka være stokastsk varabel vektor) kommer fra e fordelg med parametere ( ka være parameter

Detaljer

Forelesning Ordnings observatorer

Forelesning Ordnings observatorer Yushu.L@ub.o Forelesg 6 + 7 Ordgs observatorer. Oppsummerg tl Forelesg 4 og 5.) Fuksjoer (trasformasjoer) av flere S.V...) Smultafordelg tl to ye S.V. Ata at v har to S.V., med smultafordelg f ( x, x )

Detaljer

INF3400 Del 5 Statisk digital CMOS

INF3400 Del 5 Statisk digital CMOS INF400 Del 5 Sask dgal MOS Elmore forsnkelsesmodell modell: modell NANDN: NAND 1 9 Forsnkelsesmodell: N 1 j 1 j 1 NAND Ulegg 7 10 1 Parassk dsforsnkelse: V kaller dffusjonskapasanser for parasske kapasanser

Detaljer

EKSAMENSOPPGAVE. Antall sider inkl. forside: 4

EKSAMENSOPPGAVE. Antall sider inkl. forside: 4 Avdelig for igeiørudig Fg: ITUETELL AALYE Grupper: 3KA Esesoppgve esår v Tille hjelpeidler: EKAEOPPGAE All sider il. forside: 4 Fgr: O 458 K Do: 4.0.0 All oppgver: 5 Fglig veileder: Per Ol øig Esesid,

Detaljer

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur:

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur: 0. Foseke akiekue Nå e asiso skal bukes il e foseke, oscillao, file, seso, ec. så vil de væe behov fo passive elemee som mosade, kodesaoe og spole ud asisoe. Disse vil søge fo biasig slik a asisoe få ikig

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON: EKAMEN TALLVAR. et abefales at de 9 deloppgavee merket med A, B, teller lkt uasett varasjo vaskelghetsgrad. varee er gtt

Detaljer

STK1100 våren Konfidensintevaller

STK1100 våren Konfidensintevaller STK00 våre 07 Kofdestevaller Svarer tl avstt 8. læreboka Ørulf Borga Matematsk sttutt Uverstetet Oslo Eksempel E kjemker er teressert å bestemme kosetrasjoe µ av et stoff e løsg Hu måler kosetrasjoe fem

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO ide UNIVRI I OO De maemai-aurvieapelige faule ame i: amedag: id for eame: Oppgaveee er på 4 ider Vedlegg: illae jelpemidler: MK454 Kompoimaerialer og -orujoer ordag 8-- 9 Formelar ( ide) Roma formelamlig

Detaljer

Diskretisering av et kontinuerlig problem vedbruk av prinsippet om minimum potensiell energi. For et lineært elastisk material:

Diskretisering av et kontinuerlig problem vedbruk av prinsippet om minimum potensiell energi. For et lineært elastisk material: ME 5 Eergmetoder Dskretserg a et kotuerg probem edbruk a prsppet om mmum potese eerg otese eerg for et eastsk system: Oerfatekrefter traksoer pr. fateehet Idre oum-krefter Forskyger Fu Fy Fz w dv u y z

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 9. ma 7 EKSAMEN I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Kapittel 1: Beskrivende statistikk

Kapittel 1: Beskrivende statistikk Kapttel : Bekrvede tattkk Defjoer: Populajo og utvalg Populajo: Alle mulge obervajoer v ka gjøre, (,,, N ). Utvalg: Delmegde av populajoe (,,,, der

Detaljer

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 1 V a l d r e s g t 1 6 S / E I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s am e i e rm øt e i V a l d r es g t 1 6 S / E, a v h o l d e s o n s d a g 2 7. a

Detaljer

Kraftens moment er: Om A: r Om B: r' som har vektorene r. ' fra B. Det samlede kraftmomentet om A er da

Kraftens moment er: Om A: r Om B: r' som har vektorene r. ' fra B. Det samlede kraftmomentet om A er da yikk or igeiører. Litt tatikk. Side Litt tatikk. etigeer or ikeekt. Vi ka å ette opp etigeer or at et egeme ka ære i ro. Vi et aerede at ektorumme a de kretee om irker på egemet må ære ik u or at maeeteret

Detaljer

som vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,,

som vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,, HG Eco30 07 9/3-07 Supplemet tl forelesg uke 0 (6 mars) (Det jeg kke rakk å ta på forelesg) Termolog (estmerg) Data (kokrete tall), x, x, er ervasjoer av stokastske varable, X, X, De statstske modelle

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II 1 ECON 13 HG, revdert aprl 17 Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som

Detaljer

Prisindekser for bygg og anlegg, bolig og eiendom 2006 Resultater og metoder

Prisindekser for bygg og anlegg, bolig og eiendom 2006 Resultater og metoder Norges offselle saskk D 363 Prsdekser for bygg og alegg, bolg og eedom 26 Resulaer og meoder Sassk seralbyrå Sascs Norway Oslo Kogsvger Norges offselle saskk I dee sere publseres hovedsakelg prmærsaskk,

Detaljer

Seminaroppgaver for uke 13

Seminaroppgaver for uke 13 1 ECON 2130 2016 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver) La X og Y være to uavhegge

Detaljer

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN 5.- 6. JUNI 201 3 A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 09. 0 0 1 0. 0 0 R E G I S TR E R I NG N o e å b i t e i 10. 0 0 1 0. 15 Å p n i ng

Detaljer

Forelesning Punktestimering

Forelesning Punktestimering STAT Statst Metoder Yushu.L@ub.o Forelesg 8 + 9 Putestmerg. Fra sasylghetsteor tl statst feres ) Sasylghetsberegg sasylghetsteor: v jeer parametere som besrver modellee, f.es. p boms modell, ormal fordelg,

Detaljer

Krefter og betinget bevegelser 14.02.2013

Krefter og betinget bevegelser 14.02.2013 Krefer og benge beegeler 4..3 FYS-MEK 4..3 Benge beegele beegele: r bane: r beegele lang banen: haghe: r r u r u angenalekor: far lang een: akeleraon: a u u u u angenalakeleraon: enrpealakeleraon: a a

Detaljer

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3))

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3)) 1 ECON 2130 2017 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 (Oppgave (1), (2), og (3)) (1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver)

Detaljer

LØSNINGSFORSLAG TIL ØVING NR. 4, HØST 2009

LØSNINGSFORSLAG TIL ØVING NR. 4, HØST 2009 NTNU Nrges tekisk-aturviteskapelige uiversitet Fakultet fr aturviteskap g teklgi Istitutt fr materialteklgi TMT411 KJEMI LØSNINGSFORSLAG TIL ØVING NR. 4, HØST 009 OGAVE 1 a) V = 50 ml, c = 0.150 M m KMO4

Detaljer

Working Paper ANO 2002/3. Estimering av indikatorer for volatilitet. Kjetil Johan Rakkestad. Avdeling for verdipapirer og internasjonal finans

Working Paper ANO 2002/3. Estimering av indikatorer for volatilitet. Kjetil Johan Rakkestad. Avdeling for verdipapirer og internasjonal finans ANO 00/3 Oslo februar 00 Workng Paper Avdelng for verdpaprer og nernasjonal fnans Esmerng av ndkaorer for volale av Kjel Johan Rakkesad Workng papers fra Norges Bank kan beslles over e-pos: posen@norges-bankno

Detaljer

Kommentarer til oppgaver;

Kommentarer til oppgaver; Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe

Detaljer

Avdeling for ingeniørutdanning. Ny og utsatt eksamen i Elektronikk

Avdeling for ingeniørutdanning. Ny og utsatt eksamen i Elektronikk www.ho.o dlg fo gøutdag Ny og utatt kam Elktokk ato: 9. augut d: 9- tall d klu fod: 6 kludt dlgg tall oppga: 4 llatt hjlpmdl: ådholdt kalkulato om kk kommu tådløt. Mkad: Kaddat må l kotoll at oppgattt

Detaljer

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 våren 2007

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 våren 2007 Side av Løningforlag Ekamen i Fy-mek/Fy-mef våren 7 Oppgave a) En pendel beår av en iv, maelø av av lengde L med en kule med mae m fee i enden. Den andre enden er fee i e frikjonfri hengel. Gjør rede for

Detaljer

!" #$$ % &'& ( ) * +$ $ %,% '-!" (,+% %#&. /000)( '', 1('2#- ) 34.566,*,, - 7 )8, +$,+$#& *! +&$ % -

! #$$ % &'& ( ) * +$ $ %,% '-! (,+% %#&. /000)( '', 1('2#- ) 34.566,*,, - 7 )8, +$,+$#& *! +&$ % - !" #$$ % &'& ( * +$ $ %,% '!" (,+% %#&. /000( '', 1('2# 34.566,*,, 7 8, +$,+$#& *! +&$ % + 8 ( 9( :.,;(.

Detaljer

Løsning eksamen R1 våren 2010

Løsning eksamen R1 våren 2010 Løsig eksame R våre 00 Oppgave a) ) f ( ) l f ( ) ' l l l l f ( ) (l ) ) g( ) 4e g( ) 4 e ( ) 4 e ( ) g( ) 4( ) e b) ( ) 4 4 6 P ) P() 4 4 6 8 6 8 6 0 Divisjo med ( ) går opp. 4 4 6 : ( ) 8 4 4 8 6 8 6

Detaljer

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1 Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable

Detaljer

Chapter 2 - Discrete Mathematics and Its Applications. Løsningsforslag på utvalgte oppgaver

Chapter 2 - Discrete Mathematics and Its Applications. Løsningsforslag på utvalgte oppgaver Chpter - Dscrete Mthemtcs d Its pplctos Løsgsforslg på utvlgte oppgver vstt Oppgve Gtt 7 ) E mtrse med rder og koloer er e mtrse Geerelt hr v t e m mtrse er e mtrse med m rder og koloer Uttrykket m klles

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II ECON 3 HG, revdert aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som v kaller

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk ÅMA0 Sasylghetsregg med statstkk, våre 00 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estmerg målemodelle (kp. 5.3)

Detaljer

FYS 105 Fysikk Ordinær eksamen vår 2005

FYS 105 Fysikk Ordinær eksamen vår 2005 FYS 5 Fyikk Ordinær ekaen år 5. En bil kjører lang en re linje (-aken og paerer origo ed haigheen 7. k/h ( =. / i poii -rening ed iden =. Haigheen o unkjon a iden er gi ed: hor (.6. a ee bilen akelerajon

Detaljer

Econ 2130 uke 19 (HG) Inferens i enkel regresjon og diskrete modeller

Econ 2130 uke 19 (HG) Inferens i enkel regresjon og diskrete modeller Eco 3 uke 9 (HG) Iferes ekel regresjo og dskrete modeller De ekle regresjosmodelle. Resultater fra 5m og 5m for me fra EM på skøyter Heerevee 4. ( er 5m-tde og y 5m-tde sekuder for løper.) Spredgdagram

Detaljer

Kapittel 9 ALGEBRA. Hva er algebra?

Kapittel 9 ALGEBRA. Hva er algebra? Kpttel 9 ALGEBRA Hv er lger? Kpttel 9 ALGEBRA Alger Ekelt k v s t lger er å rege me okstver steet for tll. Når v løser lgger, står okstve (vlgvs for et estemt tll. Når v ruker lger tl å utlee formler eller

Detaljer

lillllllilllllllllllllllll it[illt lil] lll

lillllllilllllllllllllllll it[illt lil] lll HELSE &O# Ma 2005 K 54 TRE JENTER HAR TESTET - DE VIRI(ER! San Barsnes Smonsen: ' ' I r ' \ I I -........ I... f '.-'. --::jjj' ';:'j:' \f [ ] I-a;--7A -n4 LY " r1._ " r O Anne Esaheh ok baren med $hape.up

Detaljer

Driftsinstruks. Montering vinterdrift. www.novemakulde.no. Vi håper de får stor glede av et Novema kulde produkt!

Driftsinstruks. Montering vinterdrift. www.novemakulde.no. Vi håper de får stor glede av et Novema kulde produkt! Driftsistruks Mterig viterdrift Vi håper de får str glede av et Nvema kulde prdukt! www.vemakulde. w w. Ihld MONTASJE... 1 Dkumetasj... 2 Mtasje av viterdrift på mii splitter... 3 Hvrfr viterdrift....

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II ECON 3 HG, aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel som v kaller resposvarabele

Detaljer

FØLGER, REKKER OG GJENNOMSNITT

FØLGER, REKKER OG GJENNOMSNITT FØLGER, REKKER OG GJENNOMSNITT Espe B. Lagelad realfagshjoret.wordpress.com espebl@hotmail.com 9.mars 06 Iledig E tallfølge er e serie med tall som kommer etter hveradre i e bestemt rekkefølge. Kvadrattallee

Detaljer

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s am e i e rm øt e i S am B o B o l i g s am e i e, a v h o l d es o ns d a g 2 8. 04. 2 0 1 0, k l. 1 8. 3 0 i G r ef s e n m e n i g h e t s s

Detaljer

FYS3140 KORT INTRODUKSJON TIL KONTINUERLIGE GRUPPER

FYS3140 KORT INTRODUKSJON TIL KONTINUERLIGE GRUPPER FYS340 KORT INTRODUKSJON TIL KONTINUERLIGE GRUPPER I en konnuerlg gruppe avhenger hver eleen av e se av paraere a, a 2, a r, slk a e vlkårlg eleen ar foren G(a, a 2, a r ) Anall paraere r er gruppens densjon

Detaljer

S T Y R E T G J Ø R O P P M E R K S O M P Å A T D Ø R E N E S T E N G E S K L

S T Y R E T G J Ø R O P P M E R K S O M P Å A T D Ø R E N E S T E N G E S K L K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i

Detaljer

Forelesning 21 og 22 Goodness of fit test and contingency table ( 2 test og krysstabell)

Forelesning 21 og 22 Goodness of fit test and contingency table ( 2 test og krysstabell) STAT111 Statstkk Metoder Yushu.L@ub.o Forelesg 1 Goodess of ft test ad cotgecy table ( test krysstabell 1.Goodess of ft test ( test Ata at v har et utvalg med observasjoee fra e stokastsk varabel X. Goodess-of-ft

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO ide UNIVRI I OO De maemai-aurvieapelige faule ame i: amedag: id for eame: Oppgaveee er på 4 ider Vedlegg: illae jelpemidler: MK454 Kompoimaerialer og -orujoer ordag 9-- 9 Formelar ( ide) Roma formelamlig

Detaljer

Avdeling for ingeniørutdanning. Ny og utsatt eksamen i Elektronikk

Avdeling for ingeniørutdanning. Ny og utsatt eksamen i Elektronikk www.ho.o dlg fo gøutdag Ny og utatt kam Elktokk ato: 3. augut d: 9-4 tall d klu fod: 7 kludt dlgg tall oppga: 6 llatt hjlpmdl: ådholdt kalkulato om kk kommu tådløt. Mkad: Kaddat må l kotoll at oppgattt

Detaljer

3 Tekniske data og målskisser

3 Tekniske data og målskisser Tekske data og målsksser ECOFAST -koorme vekselstrømsmotorer DT/DV..ASK Tekske data og målsksser. ECOFAST -koorme vekselstrømsmotorer DT/DV..ASK ECOFAST certed Fuksjosbeskrvelse AXX ECOFAST -koorme vekselstrømsmotorer

Detaljer

Oppgaven dekker ideell opamp, bodeplot og resonans.

Oppgaven dekker ideell opamp, bodeplot og resonans. Lønngfrlg fr ktvt flter gve FYS3 H9 Uke 4 H.Blk Aktvt flter Ogven ekker eell m, elt g renn. Dette flteret er ert å en relerng v et Sllen ey flter. Ref : Sllen, R. P.; E. L. ey 955-3. "A Prtl Meth f Degnng

Detaljer

Testvinnerne år etter år, kjøper du hos oss!

Testvinnerne år etter år, kjøper du hos oss! v å å, kjø du h k 749,- k 49, k k 35,- B 3 VG k,f 3 k. v å å R N N V gka 6 Af b GRAND FNAL ghøyd: ca. 6 m Vagh: ca. mu Kuvk: g Faak gullffk g akd jdy vl fyll hmml g g gdg fyvklvl. k 999,- 4 kudd, faak

Detaljer

K v in n e r p å tv e rs 2 3.0 9.0 7

K v in n e r p å tv e rs 2 3.0 9.0 7 S itu a s jo n e n i p e n s jo n s k a m p e n K v in n e r p å tv e rs 2 3.0 9.0 7 H o v e d p u n k te r N y tt fo rs la g til A F P b y g d p å p e n s jo n s re fo rm e n B e g ru n n e ls e n fo

Detaljer

1. Premonitions - Foresight (ex-rmgdn Pause)

1. Premonitions - Foresight (ex-rmgdn Pause) SVÆRT RUBATO - MYE VISUELLE TEGN: Dee låta har svært lite tydelig tempo Derfor må vi fokusere på å gjøre mye visuelle teg til hveradre I tillegg til visuelle teg (mest av alt felles asatser på lage toer

Detaljer

inf 1510: prosjekt Tone Bratteteig

inf 1510: prosjekt Tone Bratteteig if 1510: pj T Bi if1510: 23 ju 2013 Iiu f Ifi Li &l IDEO hbp://wwwic/w/hppi- c- ccphbp:// i hlv- vi wwwyuubc/wch?v=m66zu2pcicm Li &l 6å pj Kyi, li på i &l S hbp://ifiui/pj/yi/ hbp://vic/43105142 hbp://ifiui

Detaljer

I analysen rapporteres følgende resultater basert på data for 90 regioner:

I analysen rapporteres følgende resultater basert på data for 90 regioner: Eksamen SØK3001 Vår 2011 Bokmål Oppgave 1 I en emprsk undersøkelse benyes førs verrsnsdaa for å esmere sammenhengen mellom regonale bolgprser og regonal nnek En av relasjonene som esmeres er g ved (1)

Detaljer

Løsningsforslag Matematikk4N/4M, TMA4123/TMA4125, vår 2016

Løsningsforslag Matematikk4N/4M, TMA4123/TMA4125, vår 2016 Løigforlag MatematikkN/M, TMA/TMA5, vår 6 Oppgave Skriver om ligigytemet på valig måte Gau Seidel blir da Setter vi x, y, z får vi x y z y x z z x y 6 x y z y x z z x y 6 Dv,,,, x y z x y z 6 Oppgave Side

Detaljer

Påliteligheten til en stikkprøve

Påliteligheten til en stikkprøve Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee

Detaljer

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005 OBLIGATORISK OPPGAVE INF 0/0/90 HØSTEN 005 Levergsfrst: 0. september 005 Arbedsform: Løses dvduelt Ileverg tl: Aja Bråthe Krstofferse (ajab@f.uo.o Levergskrav: Det forutsettes at du er kjet med holdet

Detaljer

Notat 1: Grunnleggende statistikk og introduksjon til økonometri

Notat 1: Grunnleggende statistikk og introduksjon til økonometri Notat : Gruleggede statstkk og troduksjo tl økoometr Gruleggede statstkk Populasjo vs. utvalg Statstsk feres gjør bruk av formasjoe et utvalg tl å trekke koklusjoer (el. slutger) om populasjoe som utvalget

Detaljer

Potensiell energi Bevegelsesmengde

Potensiell energi Bevegelsesmengde Poensell energ eegelsesengde 2.3.23 YS-MEK 2.3.23 konsera kraf kraf so bare ahenger a possjon arbed ahenger bare a sar- og slupossjon, kke a een ello arbed er null hs sar- og slupossjon er densk kan fnne

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov Forelenng nr.3 INF 4 Elektronke ytemer Parallelle og parallell-erelle kreter Krchhoff trømlo Dagen temaer Krchhoff trømlo Parallelle kreter Kreter med parallelle og erelle ter Effekt parallelle kreter

Detaljer