Løsningsforslag til øving 9 OPPGAVE 1 a)

Størrelse: px
Begynne med side:

Download "Løsningsforslag til øving 9 OPPGAVE 1 a)"

Transkript

1 Høgskole i Gjøvik vd for ek, øk og ledelse aemaikk 5 Løsigsforslag il øvig 9 OPPGVE ) Bereger egeverdiee: de I) ) ) ) Egeverdier: og ) ) Bereger egevekoree: vi ivi ii) vi ed λ : ) ) v Velger s som gir s Da får vi egevekore: v s,s Kommear: For hver egeverdi er de uedelig mage egevekorer, i dee ilfelle alle vekorer parallelle med I praksis er de ok å velge u é av disse Vi skriver derfor ofe bare T v i sede for v s,s Beigelse s er ødvedig fordi ullvekor pr defiisjo ikke ka være e egevekor ) ) ed λ : v Egevekor: ) v, Diagoaliserer Har: D, hvor: D, [ v, v ], Da gjelder videre: D, hvor : D ) ) 9 9 erk! Som før ev, hvis v er e egevekor må også v ) være e egevekor ilke De er selvsag valgfri hvilke av egeverdiee vi døper hhv og, bare de kes il rikige egevekorer Feks kue vi like gjere sa D Vi får likevel samme svar: D og [ w, w] [v, v] 9 Side av

2 OPPGVE erk! Når vi skal berege egeverdier og egevekorer er de valgfri om vi bruker rekkefølge de I) eller de I ), og følgelig i I)v i eller i I )v i I dee ilfelle ka siseve form løe seg dersom vi vil ugå masse egaive all de I ) ) ) ) ) ) ) ) ) ) 9 ) 9 ) ) ) ) ) ) ) ) ) ) Egeverdier:,, Isa λ : ) ) ) z v rad eller ): z Velger: z De gir: Fra rad : Egevekor: v r, r 5 Isa : ad : Velger: z Gir: ad : Egevekor: v s, s Isa : ad : Velger: z Gir: ad : Egevekor: v, Egevekoree er pr def, og sår derfor vikelre på hveradre v i v j ) dersom v i v j Her: v v ), v v, v v ) Kommear: For e smmerisk marise T ) med reelle koeffisieer, er de allid mulig å fie e se egevekorer som sår vikelre på hveradre orogoale egevekorer) Hvis egeverdiee er forskjellige som i dee eksempele, skjer de auomaisk Dersom vi har sammefallede egeverdier, må vi gjøre e beviss valg I mage sammeheger er de e fordel med orogoale egevekorer, fordi disse da ka dae e orogoal aksekors Side av

3 OPPGVE Fra læreboka, side Proper ): i race ) aii i i Dvs: a a a ) Dessverre fies ige ilsvarede sarvei for å besemme egevekoree Egevekorer: i I) v i ed : ) ) ) z Velger z Gir : z, Egevekor: v s, s ed ) : ) ) ) Ku é fri parameer Feks z, gir, Egevekor: v, I dee ilfelle er de ikke mulig å fie lieær uavhegige egevekorer il egeverdie λ v vil være parallell med v uase valg av z ) Da ka vi ikke see opp e iveribel egevekormarise, og følgelig ikke D slik som i oppg er derfor ikke diagoaliserbar Kommear: )-mariser har geerel egeverdier røer) Dersom alle egeverdiee er forskjellige,, fier vi allid lieær uavhegige egevekorer arise er da diagoaliserbar Hvis oe av egeverdiee er sammefallede, feks, er ikke svare gi på forhåd I oe ilfeller ka vi likevel fie lieær uavhegige egevekorer, adre gager ikke som i dee eksemple) OPPGVE ) ) ) ) Egeverdier: j Nærmere besem: j * og j erk! Egeverdiee opprer som e kompleks-kojuger par, de samme må da gjelde egevekoree Side av

4 OPPG fors Isa : j j De er kaskje ikke så le å se a de o likigee fakisk er like, me prøv feks å gage rad med Fra rad : j gir j Egevekor: v j j ) Da må * v v Se i for på valig måe hvis du ikke er overbevis ) j Komplekskojugere egeverdier: j Fra før: abs ), arg ) a a 5 j j5 j j 5 Omskreve il polar form: e e Også vis idligere: e e Vikele 5 ugjør periode side 5 Jamfør oppg har vi 9 D 9 j 5 j De ber feks a e e, hvor 9 m j m 9 e e m ), og ilsvarede D Dermed har vi D 9 D og 9 D 9 D OPPGVE 5 Pla: z I dee ilfelle ser vi bare eer reelle egeverdier Projeksjo: u plae = v =v u v figure: De er bare vekorer som ligger i plae eller sår vikelre på plae som avbilder paralleller il seg selv, dvs gir rasformasjoer av pe v v ed adre ord: lle vekorer som ligger i plae, sam ormalvekore il plae ka bees som egevekorer Side av

5 OPPG 5 fors) hp diagoaliserig må vi fie lieær uavhegige egevekorer Vi velger førs vilkårlige ikke-parallelle vekorer fra plae z Feks mes, z gir v,, z gir v De sise lieær uavhegige egevekore må bli ormalvekore, dvs Ved projeksjo: v v, v v og v v Egeverdiee er alså, v v v v Jamfør oppg : Projeksjosmarise: D p vha kalkulaor) OPPGVE X Saus pr i dag: u %, hvor allee agir markedsadelee i % il hhv avis X og Y Y Fordelige eer år: 9 5 u u % er overgagsmarise ) 9 Kor forklarig: vis X miser % = ) og sier dermed igje med 9% 9) av sie opprielige aboeer, me får il gjegjeld % ) av Y's aboeer Tilsvarede vil Y beholde 9% 9) av "ege lesere" og får % ) av X's lesere ao: X 9X Y, Y X 9Y ar de samme uviklige hver år framover, da har vi eer år: u u u Vi søker fordelige eer "uedelig" lag id u lim u Fier egeverdiee il : 9 9 )9 ) D 9 Egevekoree: v v [ v, v ] Side 5 av

6 OPPG fors leraiv Egevekoree er lieær uavhegige Vi ka derfor see u kv kv U i fra defiisjoe v v ka vi see u u kv kv k v k v Dee leder videre il a u u k λ v k λ v Dvs: u lim k k k Vi ka besemme k, me de er ikke ødvedig) Edelig markedsfordelig: avis X: % % ), avis Y: % 5 % ) erk! ed og er de edelige fordelige ee og alee besem av egevekore v leraiv Bruker samme prisipp som i oppg b: u u D u 5 5 % ) 5 OPPGVE Overgagsmarise 5 foreller oss følgede: 5 5 % av dree i gruppe i) dør før de blir år gamle Dermed er de bare 5 % 5) som overføres fra gruppe i) il grp ii) eer e ed -årsperiode Tilsvarede vil 5 % av dra i grp ii) dø før de blir år, reserede 5 % 5) overføres il grp iii) eer ed -årsperiode Hver dr i grp ii) føder i gjeomsi e hudr i løpe av -årsperiode, mes dree i grp iii) føder hudr i si Disse "føde" må selvsag have i grp i) Eer periode år): Eer perioder år): u u u u aall hudr) c) Egeverdiee il : 5 5 ) , 5 j5, 5 j5 e: Dvs:, mes Jamfør oppg, aleraiv, behøver vi derfor bare fie egevekore ilhørede λ 5 5 a b c 5 5 a b c a b c v Side av

7 OPPG c) fors Edelig fordelig: u k v kv k aall dr), som prosevis ilsvarer: % 9 ed adre ord: De edelige fordelige er igje direke besem av v som gir forholde ::, % % eller prosevis: i) % %, ii) %, iii) 9% ) ) ) leraiv kue vi ha rege u a u D u 9 5 aall dr), me da måe vi førs ha fue alle egevekoree og dereer bla iverer egevekormarise som er ) og kompleks Tugvi! ) Kommear: På lag sik forblir aall dr kosa fordi de domierede egeverdie λ De førse periodee vil aall dr i hver gruppe variere me fram og ilbake fordi o av egeverdiee er komplekse Se pk Dersom vi hadde ha λ og,, ville populasjoe voks over alle greser, me de prosevise forholde mellom gruppee ville forsa vær edig besem av ilhørede egevekor v Dersom alle λ j, ville populasjoe dødd u eer e aall geerasjoer OPPGVE ) ) ) ) ) ) På smbolsk form: hvor : d) d Vi forear e "dekoplig" av likigssee vha egeverdiee og egevekoree vi fa i oppg De oppår vi med subsiusjoe z og dermed z ), hvor z er midleridige "hjelpevariabler" Nærmere besem: z gir -koordiaee il, dvs i forhold il e basis besåede av egevekoree ) De gir: z z z z z z z Dz z z z z Vi sier igje med homogee difflikiger: z z, z z og z z ed løsig: z ) Ce, z ) Ce og z) C e Ci ubeseme kosaer ) Vi øsker løsiger mhp ), og forear derfor "ilbakesubsiusjoe" z Dee ka vi aleraiv urkke som e re vekoraddisjo, side v, v, v z De gir: z ) v, v, v z z v zv zv Ce v Ce v C e v z Isa verdiee vi fa i oppg, får vi de geerelle løsige: C e C e C e Dvs: ) ) ) Ce Ce C e Ce C e Ce Ce C e Side av

8 i ) OPPG fors) I dee ilfelle er iiialbeigelsee gi, og vi ka derfor besemme kosaee C i Isa i de geerelle løsige og de oppgie iibeigelsee får vi: ) C ) C kalkulaor C, C C ) C De gir de spesielle løsige: ) e e, ) e e e, ) e e e 5 5 ) -5 - ) ) id s) erk! lle resposee dør u med ide fordi vi ikke har oe re pådrag Sseme faller il ro Side av

3. Beregning av Fourier-rekker.

3. Beregning av Fourier-rekker. Forelesigsoaer i maemaikk. 3. Beregig av 3.. Formlee for Fourier-koeffisieee. Vi går re på sak: a f være e sykkevis koiuerlig fuksjo med periode p. De uedelige rigoomeriske rekka cos( ) si ( ) a + a +

Detaljer

Investeringer og skatt. Skattesatser med videre. Finansinvesteringer. Eksempler på finansinvesteringer

Investeringer og skatt. Skattesatser med videre. Finansinvesteringer. Eksempler på finansinvesteringer Iveseriger og ska Løsomhe av fiasiveseriger før og eer ska Løsomhe av realiveseriger eer ska Avhedelse (salg) av aleggsmidler Egekapialavkasig eer ska Joh-Erik Adreasse 1 Høgskole i Øsfold Skaesaser med

Detaljer

Eksamen i Matematikk desember, Løsningsforslag. . Det gir iht tabell ( nr.[22] ): G(s) = 3

Eksamen i Matematikk desember, Løsningsforslag. . Det gir iht tabell ( nr.[22] ): G(s) = 3 Høgskole i Gjøvik Avdelig for Tekologi Eksame i Maemaikk 5. desember Løsigsforslag OPPGAVE a) f () e si() Aleraiv s 8s Seer: g () si( ). De gir ih abell ( r.[] ): G(s) (s + ) (s + 9) Har a: f () e g().

Detaljer

Mot3.: Støy i forsterkere med tilbakekobling

Mot3.: Støy i forsterkere med tilbakekobling Mo3.: Søy i forserkere med ilbakekoblig Hiil har vi diskuer forserkere ue ilbakekoblig ("ope-loop"). Nå vil vi diskuere virkige av ilbakekoblig. Geerel beyes ilbakekoblig for å... edre forserkig, edre

Detaljer

Matematikk for IT. Oblig 7 løsningsforslag. 16. oktober

Matematikk for IT. Oblig 7 løsningsforslag. 16. oktober Matematikk for IT Oblig 7 løsigsforslag. oktober 7..8 a) Vi skal dae kodeord som består av sifree,,,, 7. odeordet er gldig dersom det ieholder et like atall (partall) -ere. Dee løses på samme måte som..:

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z OM TAYLOR POLYNOMER I dette otatet, som utfyller avsitt 6. i Gullikses bok, skal vi se på Taylor polyomer og illustrere hvorfor disse er yttige. Det å berege Taylor polyomer for håd er i prisippet ikke

Detaljer

TMA4245 Statistikk Eksamen mai 2017

TMA4245 Statistikk Eksamen mai 2017 TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee

Detaljer

Avsnitt 8.1 i læreboka Differensligninger

Avsnitt 8.1 i læreboka Differensligninger Diskret Matematikk Fredag 6. ovember 015 Avsitt 8.1 i læreboka Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker

Detaljer

Kapittel 10 fra læreboka Grafer

Kapittel 10 fra læreboka Grafer Forelesigsotat i Diskret matematikk torsdag 6. oktober 017 Kapittel 10 fra læreboka Grafer (utdrag) E graf er e samlig pukter (oder) og kater mellom puktee (eg. odes, vertex, edge). E graf kalles rettet

Detaljer

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger Differesligiger Forelesigsotat i Diskret matematikk 017 Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker er imidlertid

Detaljer

t [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet

t [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet FAO 9 Forberedelse il skoleprøve Del Prakisk bruk av inegral Oppgave parikkelfar Hasigheen il en parikkel ved iden er gi ved v () = i m/min. Tiden er ( + ) + regne i min, for angivelse av posisjon. [,

Detaljer

Innhold og forelesningsplan Eksempler på LP Begreper Løsning av enkelt eksempel Praktisk relevans Leksjon 2: Simpleksmetoden for løsning av LP

Innhold og forelesningsplan Eksempler på LP Begreper Løsning av enkelt eksempel Praktisk relevans Leksjon 2: Simpleksmetoden for løsning av LP Lekso 2 Mål for kurset teoretisk forståelse, gruleggede optimerig løsigsmetoder LP og utvidelser algoritmisk forståelse avedelser LP og utvidelser modellerig og løsig v.h.a. verktøy Ihold og forelesigspla

Detaljer

FØLGER, REKKER OG GJENNOMSNITT

FØLGER, REKKER OG GJENNOMSNITT FØLGER, REKKER OG GJENNOMSNITT Espe B. Lagelad realfagshjoret.wordpress.com espebl@hotmail.com 9.mars 06 Iledig E tallfølge er e serie med tall som kommer etter hveradre i e bestemt rekkefølge. Kvadrattallee

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1

Ukeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1 Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable

Detaljer

8 + 2 n n 4. 3n 4 7 = 8 3.

8 + 2 n n 4. 3n 4 7 = 8 3. Seksjo 4. Oppgave (). Fi greseverdiee: 8 a) 4 + 4 7 b) 4 +7 5 c) + 7 4 ( ) d) 5 4 44 + 5 4 e) 5 + si() e +6 5 Løsig. Vi vil bruke samme metode som i Eksempel 4..5 fra boke i disse oppgavee. Når vi skal

Detaljer

Matematikk for IT. Løsningsforslag til prøve 2. Torsdag 24. oktober 2013

Matematikk for IT. Løsningsforslag til prøve 2. Torsdag 24. oktober 2013 .. Matematikk for IT Løsigsforslag til prøve Torsdag. oktober Oppgave Gitt følgede predikat: P(x : x > 5 ta at uiverset ( de mulige verdier av x som vi tar i betraktig er alle hele tall, Z. Skriv hvert

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Saslighetsregig med statistikk, våre K. 3 Diskrete tilfeldige variable Noe viktige saslighetsmodeller Noe viktige saslighetsmodeller ( Sas.modell : å betr det klasse/te sas.fordelig.) Biomisk modell

Detaljer

f '( x) 28x 6x 2 ( 2) x x 4(3t 2 s) 6s 2x 6(3t 2 s) 2t ln x 2ln y med bibetingelsen 2x y m. Her er m 0

f '( x) 28x 6x 2 ( 2) x x 4(3t 2 s) 6s 2x 6(3t 2 s) 2t ln x 2ln y med bibetingelsen 2x y m. Her er m 0 Fsit obligtorisk oppgve Oppgve (9 poeg) Deriver følgede fuksjoer med hes på lle rgumeter ) f ( ) 7 f '( ) 8 6 svr: b) Svr: g ( ) ( ) ( ) g ( ) ( ) ( ) c) h( ) f ( )( ) Svr: h( ) f '( )( ) f ( ) d) Svr:

Detaljer

Totalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21%

Totalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21% TMA4100 Høste 2007 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Kommetarer til eksame Dette dokumetet er e oppsummerig av erfarigee fra sesure av eksame i TMA4100 Matematikk

Detaljer

Påliteligheten til en stikkprøve

Påliteligheten til en stikkprøve Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee

Detaljer

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO ide UNIVRI I OO De maemai-aurvieapelige faule ame i: amedag: id for eame: Oppgaveee er på 4 ider Vedlegg: illae jelpemidler: MK454 Kompoimaerialer og -orujoer ordag 8-- 9 Formelar ( ide) Roma formelamlig

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2 TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4

Detaljer

YF kapittel 3 Formler Løsninger til oppgavene i læreboka

YF kapittel 3 Formler Løsninger til oppgavene i læreboka YF kapiel 3 Formler Løsninger il oppgavene i læreoka Oppgave 301 a E 0,15 l 0,15 50 375 Den årlige energiproduksjonen er 375 kwh. E 0,15 l 0,15 70 735 Den årlige energiproduksjonen er 735 kwh. Oppgave

Detaljer

1. Egenverdiproblemet.

1. Egenverdiproblemet. Forelesigsotater i matematikk Egeerdier og egeektorer Side Egeerdiproblemet De gruleggede problemstillige Fra de gruleggede matriseregige husker du sikkert at år e ektor multipliseres med e kadratisk matrise

Detaljer

Eksamen INF3350/INF4350 H2006 Løsningsforslag

Eksamen INF3350/INF4350 H2006 Løsningsforslag Eksame INF3350/INF4350 H2006 Løsigsforslag Oppgave. Score (eller bit score) S' er e statistisk idikator på hvor sigifikat e match er. Høyere bit score svarer til høyere sigifikas. Idikatore er uavhegig

Detaljer

ECON240 Statistikk og økonometri

ECON240 Statistikk og økonometri ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi

Detaljer

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03). LØSNING, EKSAMEN I STATISTIKK, TMA440, DESEMBER 006 OPPGAVE 1 Ata at sa porøsitet er r. Målig med utstyret gir da X (x; r, 0,03). a) ( ) X r P(X > r) P 0,03 > 0 P(Z > 0) 0,5. ( X r P(X r > 0,05) P 0,03

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

Løsning eksamen R1 våren 2010

Løsning eksamen R1 våren 2010 Løsig eksame R våre 00 Oppgave a) ) f ( ) l f ( ) ' l l l l f ( ) (l ) ) g( ) 4e g( ) 4 e ( ) 4 e ( ) g( ) 4( ) e b) ( ) 4 4 6 P ) P() 4 4 6 8 6 8 6 0 Divisjo med ( ) går opp. 4 4 6 : ( ) 8 4 4 8 6 8 6

Detaljer

MAT1030 Forelesning 26

MAT1030 Forelesning 26 MAT030 Forelesning 26 Trær Roger Anonsen - 5. mai 2009 (Sis oppdaer: 2009-05-06 22:27) Forelesning 26 Li repeisjon Prims algorime finne de minse uspennende ree i en veke graf en grådig algorime i den forsand

Detaljer

Forelesning 26. MAT1030 Diskret Matematikk. Trær med rot. Litt repetisjon. Definisjon. Forelesning 26: Trær. Roger Antonsen

Forelesning 26. MAT1030 Diskret Matematikk. Trær med rot. Litt repetisjon. Definisjon. Forelesning 26: Trær. Roger Antonsen MAT1030 Diskre Maemaikk Forelesning 26: Trær Roger Anonsen Insiu for informaikk, Universiee i Oslo Forelesning 26 5. mai 2009 (Sis oppdaer: 2009-05-06 22:27) MAT1030 Diskre Maemaikk 5. mai 2009 2 Li repeisjon

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet

Detaljer

Obligatorisk oppgave ECON 1310 høsten 2014

Obligatorisk oppgave ECON 1310 høsten 2014 Obligaorisk oppgave EON 30 høsen 204 Ved sensuren vil oppgave elle 20 prosen, oppgave 2 elle 50 prosen, og oppgave 3 elle 30 prosen. For å få godkjen må besvarelsen i hver fall: gi mins re nesen rikige

Detaljer

Fotball krysser grenser (konfirmanter Ålgård og Gjesdal)

Fotball krysser grenser (konfirmanter Ålgård og Gjesdal) 1 Fotball krysser greser (kofirmater Ålgård og Gjesdal) Øsker du e ide til et praktisk rettet prosjekt/aksjo der kofirmater ka bidra til de fattige dele av verde? Her har du et ferdig opplegg for hvorda

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder

Løsningsforslag: Deloppgave om heuristiske søkemetoder Løsigsforslag: Deloppgave om heuristiske søkemetoder 6. mai 00 Iledig Vi skal betrakte det såkalte grafdeligsproblemet (graph partitioig problem). Problemet ka ekelt formuleres som følger: Gitt e graf

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag TMA400 Matematikk Høst 04 Løsigsforslag Øvig 3 Review Exercises, side 454 Vi starter med å tege e figur av e skål med va: z A(z)

Detaljer

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400 UNIVERSITETET I AGDER Grimstad E K S A M E N : FAG: Matematikk MA-54 LÆRER: MORTEN BREKKE Klasse(r): Alle Dato:. des Eksamestid, fra-til: 0900-400 Eksamesoppgave består av følgede iklusive forside Atall

Detaljer

KOMPLEKSE TALL KARL K. BRUSTAD

KOMPLEKSE TALL KARL K. BRUSTAD KOMPLEKSE TALL KARL K BRUSTAD 1 Defiisjoer og otasjo Defiisjo 1 Et kompleks tall er et objekt på forme x + i der x og er reelle tall og kalles heholdsvis realdele og imagiærdele til det komplekse tallet

Detaljer

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013 TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >

Detaljer

Høst 98 Ordinær eksamen

Høst 98 Ordinær eksamen ø 98 Ordiær ekae. Vi eker o a e parikkel beeger eg lag e re lije lag -ake. Parikkele arer i ro i origo ed ide =. ekuder. Parikkele haighe o ukjo a ide er gi ed: A B hor A. B. a Bereg parikkele akelerajo

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består

Detaljer

Fagdag 2-3mx 24.09.07

Fagdag 2-3mx 24.09.07 Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.

Detaljer

Forelesning 25. Trær. Dag Normann april Beskjeder. Oppsummering. Oppsummering

Forelesning 25. Trær. Dag Normann april Beskjeder. Oppsummering. Oppsummering Forelesning 25 Trær Dag Normann - 23. april 2008 Beskjeder Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4, blir avleregning, slik a sudenene ikke kan belage seg på

Detaljer

Plan for fagdag 3. Plan: Litt om differanse- og summefølger. Sammenhengen a n a 1 n 1 i 1

Plan for fagdag 3. Plan: Litt om differanse- og summefølger. Sammenhengen a n a 1 n 1 i 1 Pla for fagdag 3 R2-18.11.10 Pla: Litt om differase- og summefølger. Sammehege a a 1 1 i 1 d i. Geometriske resoemet. Arbeidsoppgaver. Differase- og summefølger Regresjo med lommereger Differaser er ofte

Detaljer

2.1 Polynomdivisjon. Oppgave 2.10

2.1 Polynomdivisjon. Oppgave 2.10 . Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig

Detaljer

Forelesning nr.9 INF 1410

Forelesning nr.9 INF 1410 Forelesning nr.9 INF 141 29 espons il generelle C- og -kreser 3.3.29 INF 141 1 Oversik dagens emaer Naurlig espons respons il generelle C- og -kreser på uni-sep funksjonen Naurlig og vungen respons for

Detaljer

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:

Detaljer

Generell støymodell for forsterkere (Mot Kap.2)

Generell støymodell for forsterkere (Mot Kap.2) Geerell øymdell fr frerkere (M Kap.) år e frear øyaalyer av re yemer vl de være uprakk å aalyere med dealjere øymdeller fr alle mulge øyklder. velger ede å bruke freklede mdeller m repreeerer flere mulge

Detaljer

Beskjeder. MAT1030 Diskret matematikk. Oppsummering. Oppsummering

Beskjeder. MAT1030 Diskret matematikk. Oppsummering. Oppsummering Beskjeder MAT1030 Diskre maemaikk Forelesning 25: Trær Dag Normann Maemaisk Insiu, Universiee i Oslo 23. april 2008 Roger har bed meg gi følgende beskjeder: 1 De mese av plenumsregningen i morgen, 24/4,

Detaljer

Løsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan

Løsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan Løsigsforslag for adre obligatoriske oppgave i STK11 Våre 27 Av Igu Fride Tvete (ift@math..uio.o) og Ørulf Borga (borga@math.uio.o). NB! Feil ka forekomme. NB! Sed gjere e mail hvis du fier e feil! Oppgave

Detaljer

LØSNING: Eksamen 28. mai 2015

LØSNING: Eksamen 28. mai 2015 LØSNING: Eksame 28. mai 2015 MAT110 Statistikk 1, vår 2015 Oppgave 1: revisjo ) a) Situasjoe som beskrives i oppgave ka modelleres med e ure. I dee ure er fordelige kjet, M atall bilag med feil og N 100

Detaljer

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo. Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege

Detaljer

e n . Videre er det en alternerende følge, da annenhvert ledd er positivt og negativt. Vi ser også at n a n = lim n e n = 0. lim n n 1 n 3n 2 = lim

e n . Videre er det en alternerende følge, da annenhvert ledd er positivt og negativt. Vi ser også at n a n = lim n e n = 0. lim n n 1 n 3n 2 = lim TMA400 Høst 206 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 9 9..8 Vi er gitt følge { ( ) } {a }. e De første leddee i følge er a e, a 2 2 e 2, a e, a 4 4

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i STK2120 Statistiske metoder og dataaalyse 2 Eksamesdag: Madag 6. jui 2011. Tid for eksame: 09.00 13.00. Oppgavesettet er på 5 sider.

Detaljer

EKSAMENSOPPGAVE. Antall sider inkl. forside: 4

EKSAMENSOPPGAVE. Antall sider inkl. forside: 4 Avdelig for igeiørudig Fg: ITUETELL AALYE Grupper: 3KA Esesoppgve esår v Tille hjelpeidler: EKAEOPPGAE All sider il. forside: 4 Fgr: O 458 K Do: 4.0.0 All oppgver: 5 Fglig veileder: Per Ol øig Esesid,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i MAT00 Matematikk I Eksamesdag: Fredag 4 jui 00 Tid for eksame: 0900 00 Oppgavesettet er på sider Vedlegg: Tillatte hjelpemidler:

Detaljer

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort? ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt

Detaljer

Forelesning Moment og Momentgenererende funksjoner

Forelesning Moment og Momentgenererende funksjoner ushu.li@uib.o Forelesig + 3 Momet og Mometgeererede fuksjoer 1. Oppsummerig til Forelesig 1 1.1) Fuksjoe av S.V: hvis variabele er e fuksjo (trasformasjo) av S.V. : g( ), da er også e S.V.: til ethvert

Detaljer

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008 Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))

Detaljer

System 2000 HLK-Relais-Einsatz Bruksanvisning

System 2000 HLK-Relais-Einsatz Bruksanvisning Sysem 2000 HLK-Relais-Einsaz Sysem 2000 HLK-Relais-Einsaz Ar. Nr.: 0303 00 Innholdsforegnelse 1. rmasjon om farer 2 2. Funksjonsprinsipp 2 3. onasje 3 4. Elekrisk ilkopling 3 4.1 Korsluningsvern 3 4.2

Detaljer

Signifikante sifre = alle sikre pluss ett siffer til

Signifikante sifre = alle sikre pluss ett siffer til Sigifikate siffer og stadardavvik behadles i kap. Disse to emee skal vi ta for oss i dag. Kofidesgreser behadles i kap 4. Dette skal vi ta for oss i osdag. Presetasjo av aalysedata ka gjøres på følgede

Detaljer

Landrapport fra Norge NBO:s styremöte 18. november 2014

Landrapport fra Norge NBO:s styremöte 18. november 2014 Ladrappor fra Norge NBO:s syremöe 18. ovember 2014 Nyckelal för Norge ovember 2014. Folkmägd 5 138 000 Förväad BNP-uvecklig 2,2 % Iflaiosak 2,5 % Arbeslöshe 3,4 % Syrräa 1,5 % Bolåeskuld i förhållade ill

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

Eksamen Prosessteknikk 8.desember 2004 løsningsforslag

Eksamen Prosessteknikk 8.desember 2004 løsningsforslag Eksame Prosesstekikk 8.desember 4 løsigsforslag Oppgave dag = 4 timer (godtar også beregiger basert på 8 timer eller timer ute trekk). x to/dag = = 5466.67 kg/time 4 5466.67 Molvekt N = 7 = 86.7 kmol/time

Detaljer

JUBILEUMSLOTTERIET 2013-20 ÅR

JUBILEUMSLOTTERIET 2013-20 ÅR 1994-13 år JUBILEUMSLOTTERIET 13 - ÅR Kr 30,1994-13 år og vi Skrap frem 3 like og vi! di lokale foballklubb! ES 1 Se spilleregler på bakside! X X- 0 0 0 0 0-0 0 0 2 3 4 5 6 7 8 Kr 50,- 24 9 23 22 Skrap

Detaljer

Løsningsforslag til regneøving 5. Oppgave 1: a) Tegn tegningen for en eksklusiv eller port ved hjelp av NOG «NAND» porter.

Løsningsforslag til regneøving 5. Oppgave 1: a) Tegn tegningen for en eksklusiv eller port ved hjelp av NOG «NAND» porter. TFE4110 Digialeknikk med kreseknikk Løsningsforslag il regneøving 5 vårsemeser 2008 Løsningsforslag il regneøving 5 Ulever: irsdag 29. april 2008 Oppgave 1: a) Tegn egningen for en eksklusiv eller por

Detaljer

DRIVHJUL. - benyttes ved lave turtall n. - gir lav periferikraft F i forhold til effekten P. - gir stor periferikraft F

DRIVHJUL. - benyttes ved lave turtall n. - gir lav periferikraft F i forhold til effekten P. - gir stor periferikraft F Trasmisjoer (lectures otes) Trasmisjoer DRIVHJUL Reimdrift Rullekjeder Tahjul - beyttes ved store turtall - gir lav periferikraft F i forhold til effekte P - beyttes ved lave turtall - gir stor periferikraft

Detaljer

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene Løsiger til ilærigsoppgavee kapittel Rekker Løsiger til ilærigsoppgavee a Vi ser at differase mellom hvert ledd er 4, så vi får det este leddet ved å legge til 4 Det este leddet blir altså 6 + 4 = 0 b

Detaljer

Ma Analyse II Øving 5

Ma Analyse II Øving 5 Ma0 - Aalyse II Øvig 5 Øistei Søvik.0.0 Oppgaver 9. Determie whether the give sequece is (a) bouded (above or below), (b) positive or egative (ultimately), (c) icreasig, decreasig, or alteratig, ad (d)

Detaljer

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008

3MX 2007/8 - Kapittel 5: 8. januar 5. februar 2008 3MX 00/8 - Kapittel : 8. jauar. februar 008 Pla for skoleåret 00/008: Kapittel 6: 6/ /. Kapittel : / /3. Prøver på eller skoletime etter hvert kapittel. É heildagsprøve i hver termi. Repetisjo, prøver,

Detaljer

1. Premonitions - Foresight (ex-rmgdn Pause)

1. Premonitions - Foresight (ex-rmgdn Pause) SVÆRT RUBATO - MYE VISUELLE TEGN: Dee låta har svært lite tydelig tempo Derfor må vi fokusere på å gjøre mye visuelle teg til hveradre I tillegg til visuelle teg (mest av alt felles asatser på lage toer

Detaljer

B Bakgrunnsinformasjon om ROS-analysen.

B Bakgrunnsinformasjon om ROS-analysen. RI SI KO- O G SÅRBARH ET SANALYSE (RO S) A Hva som skal utredes Beredskapog ulykkesrisiko(ros) vurderesut fra sjekklistefra Direktoratetfor samfussikkerhetog beredskap.aalyse blir utført ved vurderigav

Detaljer

Øvinger uke 46 løsninger

Øvinger uke 46 løsninger Øviger uke 6 løsiger Oppgave Verdie av determiate er avgjørede for atall løsiger. ed e parameter i oppgave løer det seg å bestemme determiate først og fie ut for hvilke parameterverdier determiate er ull.

Detaljer

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke

Eksempler fra slutten av forrige uke. Eksempler (styrke, dimensjonering,...) Eksempler fra slutten av forrige uke Oversikt, del 5 Hypotesetestig, del 4 (oppsummerig fra Hypotesetestig, del 5 Kofidesitervall dimesjoerig Eksempler fra slutte av forrige uke Kofidesitervall p-verdi Eksempler Eksempler (styrke, dimesjoerig,...

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1

1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1 . Berak følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < T = 0 + Y, 0 < < Hvor Y er BNP, C er priva konsum, I er privae realinveseringer, G er offenlig kjøp av varer og jeneser, T er

Detaljer

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen Utvlgte løsiger oppgvesmlige S kpittel Rekker Utvlgte løsiger oppgvesmlige 0 Vi k prøve med differsemetode Differsee mellom leddee utover er 4,6,8, så det er rimelig t differse mellom femte og fjerde ledd

Detaljer

Harald Bjørnestad: Variasjonsregning en enkel innføring.

Harald Bjørnestad: Variasjonsregning en enkel innføring. Haral Bjørnesa: Variasjonsregning en enkel innføring. Tiligere har vi løs oppgaven me å finne eksremalveriene ( maks./min. veriene) av en gi funksjon f () når enne funksjonen oppfyller beseme krav. Vi

Detaljer

Løsningsforslag til øving 12

Løsningsforslag til øving 12 Høgskolen i Gjøvik vd. for tekn., øk. og ledelse Matematikk 5 Løsningsforslag til øving OPPGVE Husk at N {alle naturlige tall} { 0,,,,... }, Z {alle heltall} {...,,,0,,,,... }, R {alle reelle tall} og

Detaljer

Eksamen REA3028 S2, Våren 2011

Eksamen REA3028 S2, Våren 2011 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l

Detaljer

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi

Detaljer

Kapittel 8: Estimering

Kapittel 8: Estimering Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som

Detaljer

Matematikk for IT. Prøve 2. Onsdag 21. oktober 2015

Matematikk for IT. Prøve 2. Onsdag 21. oktober 2015 Matematikk for IT Prøve Osdag. oktober 5 Løsigsforslag 6. oktober 5 Oppgave Gitt følgede slutig: Hvis fakturae ble sedt forrige madag så fikk du pegee i går. Du fikk pegee i går. Derfor ble fakturae sedt

Detaljer

STK1100 våren 2017 Estimering

STK1100 våren 2017 Estimering STK1100 våre 017 Estimerig Svarer til sidee 331-339 i læreboka Ørulf Borga Matematisk istitutt Uiversitetet i Oslo 1 Politisk meigsmålig Spør et tilfeldig utvalg på 1000 persoer hva de ville ha stemt hvis

Detaljer

Kommentarer til oppgaver;

Kommentarer til oppgaver; Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe

Detaljer

Forprosjektrapport. I denne rapporten er aktivitet og oppgave ensbetydende. Bruker referer til sluttbrukerne av applikasjonen og ikke administrator.

Forprosjektrapport. I denne rapporten er aktivitet og oppgave ensbetydende. Bruker referer til sluttbrukerne av applikasjonen og ikke administrator. Forprosjektrapport Presetasjo... Itroduksjo... Bakgru... Mål og rammebetigelser... Kravspesifikasjo... Mål... Rammebetigelser... 3 Tekologi... 3 Løsiger/alterativer... 3 Aalyse av virkiger... 7 Presetasjo

Detaljer

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling STAT (V6) Statistikk Metoder Yushu.Li@uib.o Forelesig 4 og 5 Trasformasjo, Weibull-, logormal, beta-, kji-kvadrat -, t-, F- fordelig. Oppsummerig til Forelesig og..) Momet (momet about 0) og setral momet

Detaljer

STK1100: Kombinatorikk

STK1100: Kombinatorikk 1100: ombiatorikk auar 2009 Ørulf orga Matematisk istitutt Uiversitetet i Oslo 1 Uiform sasylighetsmodell: t stokastisk forsøk har N utfall Det er de mulige utfallee for forsøket i atar at de N utfallee

Detaljer

Deskriptiv statistikk for sentrum og spredning i fordelingen. Gjennomsnitt og standardavvik. eller

Deskriptiv statistikk for sentrum og spredning i fordelingen. Gjennomsnitt og standardavvik. eller Eksempel : tall dager i sykehus. Ikke-parametriske tester versus parametriske tester Stia Lyderse Presetert på Regioal forskigskoferase for psykiatri og rusfeltet Ålesud 4 jui 03 Behadlig : 6, 5, 37,,

Detaljer

2004/58 Notater 2004. Katharina Henriksen. Notater. Ny metode for prismåling av personbiler i konsumprisindeksen. Seksjon for Økonomiske indikatorer

2004/58 Notater 2004. Katharina Henriksen. Notater. Ny metode for prismåling av personbiler i konsumprisindeksen. Seksjon for Økonomiske indikatorer 24/58 Noaer 24 Kaharia Herikse Noaer Ny meode for prismålig av persobiler i kosumprisidekse Seksjo for Økoomiske idikaorer Sammedrag Kjøp av ye persobiler igår som e spesiel ilreelag udersøkelse i kosumprisidekse.

Detaljer

Prosedyre for løsning av oppgaver Jeg skal ved hjelp av noen oppgaver/eksempler fra produsentens tilpasning, gi

Prosedyre for løsning av oppgaver Jeg skal ved hjelp av noen oppgaver/eksempler fra produsentens tilpasning, gi Jo Vislie; mars 07 ECO 00 07 Prosedyre for løsig av ogaver Jeg sal ved hjel av oe ogaver/esemler fra rodusetes tilasig, gi forslag til rosedyre/hjel/veivalg til å løse ogaver i ECO 00. Det er tre tyer

Detaljer

Rente og pengepolitikk 1. Innhold. Forelesningsnotat 9, februar 2015

Rente og pengepolitikk 1. Innhold. Forelesningsnotat 9, februar 2015 Forelesigsotat 9, februar 2015 Rete og pegepolitikk 1 Ihold Rete og pegepolitikk...1 Hvorda virker Norges Baks styrigsrete?...3 Pegemarkedet...3 Etterspørselskaale...4 Valutakurskaale...4 Forvetigskaale...5

Detaljer