Oppsummering Faktor 1 3

Størrelse: px
Begynne med side:

Download "Oppsummering Faktor 1 3"

Transkript

1 Faktor 1 Tall og algebra Naturlige tall Naturlige tall er hele tall som er større enn Vi kan skrive naturlige tall på utvidet form. 124 = Partall og oddetall Partall er hele tall som er delelige med Oddetall er hele tall som ikke er delelige med Primtall og sammensatte tall Primtall er naturlige tall som bare er delelige med 1 og seg selv Sammensatte tall kan skrives som et produkt av naturlige tall som er større enn = 2 7 Faktorisering Når vi faktoriserer et tall, skriver vi tallet som et produkt med flere faktorer. 24 = 8 24 = = 2 12 Primtallsfaktorisering: 24 = Alle faktorene er primtall 46

2 Desimaltall Et desimaltall består av et helt tall og desimaler. Tallet 64,2 har to desimaler. Den plassen et siffer har i et tall, er avgjørende for verdien til sifferet. 6 4, 2 TIERE ENERE TIDELER HUNDRE- DELER De fire regneartene Addisjon Ledd + ledd = sum Subtraksjon Ledd ledd = differanse Multiplikasjon Faktor. faktor = produkt Divisjon Dividend : divisor = kvotient Potenser Når vi multipliserer tall eller variabler som er like store, kan vi skrive dem som en potens = 5 6 x x x = x Når vi multipliserer potenser som har samme grunntall, blir svaret en potens med det samme grunntallet. Eksponenten i svaret blir summen av eksponentene i de potensene vi multipliserer = = 2 7 x x 2 = x + 2 = x 5 Når vi dividerer potenser som har samme grunntall, blir svaret en potens med det samme grunntallet. Eksponenten i svaret blir eksponenten i telleren minus eksponenten i nevneren. 5 6 : 5 2 = = = 5 4 x 6 : x 2 = x6 x 2 = x = x 4 47

3 Tall på standardform og på utvidet form Vi kan skrive naturlige tall og desimaltall på standardform = 2, Vanlig form Standardform 0,0025 = 2,5 10 Vanlig form Standardform Vi kan skrive naturlige tall og desimaltall på utvidet form = = ,9 = , ,01 = Kvadrattall Hvis x er et helt tall, kaller vi x 2 et kvadrattall. 5 5 = 5 2 = er et kvadrattall. Kvadratrot Kvadratroten av et tall x er det positive tallet som multiplisert med seg selv gir tallet x. p ffiffiffiffiffi 25 = 5 fordi 5 5 = 25 Trekanttall Vi får trekanttall ved å summere naturlige tall fortløpende fra 1 og oppover = er et trekanttall = 6 6 er et trekanttall 48

4 Negative tall Negative tall er alle tall som er mindre enn Negative tall Positive tall Regning med fortegnstall Å legge til et negativt tall er det samme som å trekke fra det tilsvarende positive tallet ð--7þ = = Å trekke fra et negativt tall er det samme som å legge til det tilsvarende positive tallet ð--7þ = = 17 Når vi multipliserer eller dividerer et positivt tall og et negativt tall, blir svaret et negativt tall. 25 ð--5þ = : ð--5þ ¼ --5 Når vi multipliserer eller dividerer to negative tall, blir svaret et positivt tall ð--5þ = : ð--5þ = 5 Romertall I romertallsystemet bruker vi bokstaver som symboler for tall. I V X L C D M Når et mindre romertall står foran et større tall, trekker vi det minste tallet fra det største. Når det største tallet står først, skal du addere tallene. Vi plasserer aldri romertallene V, L eller D foran et tegn med høyere verdi. 49

5 Totallssystemet I totallssystemet bruker vi bare sifrene 0 og 1. Plassverdiene i dette tallsystemet er potenser av 2 (1, 2, 4, 8, osv.) (2 4 ) 8 (2 ) 4 (2 2 ) 2 (2 1 ) 1 (2 0 ) Tallet i totallssystemet er = = = 27 i titallssystemet. Brøk En brøk består av teller, nevner og brøkstrek. Brøkstreken er det samme som divisjonstegn. 4 Teller Brøkstrek Nevner Hvis telleren og nevneren er like store, er brøken lik = 1 Uekte brøk og blandet tall 2 = Uekte brøk Blandet tall 50

6 Utviding og forkorting av brøk Når vi utvider en brøk, multipliserer vi telleren og nevneren med det samme tallet. 1 5 = 1 5 = 15 Når vi forkorter en brøk, dividerer vi telleren og nevneren med det samme tallet = 4 : 4 16 : 4 = 1 4 Addisjon og subtraksjon av brøker Når vi skal addere eller subtrahere to eller flere brøker som har like nevnere, legger vi sammen tellerne og beholder nevneren = = Hvis brøkene ikke har lik nevner, må vi først finne fellesnevner = = = = Brøk og desimaltall En brøk kan skrives som desimaltall. Da dividerer vi telleren med nevneren. 5 = : 5 = 0,6 Alle desimaltall kan skrives som en brøk med nevneren 10, 100, 1000 osv. 0,12 = Mange brøker kan ikke skrives som et eksakt desimaltall. Da runder vi av til ønsket antall desimaler. 2 = 0, ,67 51

7 Brøk og multiplikasjon Vi multipliserer et helt tall med en brøk ved å multiplisere det hele tallet med telleren. 4 2 = 4 2 = 8 = 2 2 Vi multipliserer to eller flere brøker med hverandre ved å multiplisere telleren med telleren og nevneren med nevneren. 1 2 = 1 2 = 2 9 Brøk og divisjon Vi dividerer en brøk med en brøk ved å multiplisere med den omvendte brøken. 4 9 : 1 2 = = : 2 = = 12 2 = 6 Forhold Forholdet mellom to tall finner vi ved å dividere tallene med hverandre. Forholdet mellom 5 og 25 er 5 : 25 = 1 5 = 1 : 5 Prosent Prosent betyr hundredeler. 5 % = Sammenhengen mellom prosent, brøk og desimaltall 5 % = = 0,05 Prosent Brøk Desimaltall 52

8 Prosenten av et tall Når vi skal regne ut prosenten av et tall, gjør vi om prosenten til desimaltall og multipliserer med tallet. 5 % av 500 kr er 0, kr = 25 kr Å finne prosenten Vi finner ut hvor mange prosent 40 kr er av 250 kr slik: 40 kr 250 kr = 0,16 0,16 = Det betyr at 0,16 = 16 % 40 kr er 16 % av 250 kr Promille Promille betyr tusendeler. Vi regner med promille på samme måte som vi regner med prosent. 5 = = 0,005 5 av kr er 0, kr = 60 kr Utregning av talluttrykk Når det er flere regnearter i et talluttrykk, regner vi i denne rekkefølgen: 1 parenteser 2 multiplikasjon og divisjon addisjon og subtraksjon 5 + (4 + 2) = = = 2 Bokstavuttrykk Regneuttrykk som inneholder bokstaver, kaller vi for algebraiske uttrykk eller bokstavuttrykk. Bokstaven står da i stedet for et hvilket som helst tall. Bokstaven kaller vi en variabel. A = g h O = 2a + 2b 5

9 Sette inn tall i bokstavuttrykk Vi finner verdien av et bokstavuttrykk ved å sette inn tall for variablene og regne ut uttrykket som et talluttrykk. Hvis vi setter a = 4 og b = 6 inn i bokstavuttrykket 2a + 2b får vi: 2a + 2b = = = 20 Regning med bokstavuttrykk Når vi regner med bokstavuttrykk, kan vi bare trekke sammen ledd som har den samme variabelen. Hvis vi skal multiplisere eller dividere ulike bokstavledd med hverandre, multipliserer eller dividerer vi tall med tall og bokstavledd med bokstavledd. 5a + b + 2a -- 2b = 7a + b x 5y = 15xy a 2 2a = 6a 5 4x 7 : 2x = 2x 4 Bokstavuttrykk og parenteser Når vi løser opp en parentes med plusstegn foran, endrer vi ikke fortegnene inne i parentesen. 4x + ð2x + Þ = 4x + 2x + = 6x + Vi løser opp en parentes med minustegn foran ved å endre fortegnene på alle leddene inne i parentesen. 6x -- ðx -- yþ = 6x -- x + y = x + y Hvis det står et tall eller et bokstavuttrykk foran parentesen, multipliserer vi tallet eller bokstavuttrykket med alle leddene inne i parentesen. Hvis tallet eller bokstavuttrykket er negativt, må vi bytte fortegn på alle leddene inne i parentesen. 2xð5 + 7Þ = 2x 5 + 2x 7 = 10x + 14x = 24x --2xð5 -- 7Þ = --2x x ð--7þ = --10x + 14x = 4x 54

10 Multiplikasjon av to parentesuttrykk Når vi multipliserer to parentesuttrykk med hverandre, multipliserer vi hvert ledd i den første parentesen med hvert ledd i den andre parentesen. ða + 2Þ ð2a -- Þ = a 2a + a ð -- Þ + 2 2a + 2 ð -- Þ = 2a 2 -- a + 4a -- 6 = 2a 2 + a -- 6 Faktorisering Vi kan faktorisere variabeluttrykk. Tallene skrives da som produkt av primtallsfaktorer. 15x 2 y = 5 x x y Vi faktoriserer før vi forkorter en brøk. 4x 2 y 6xy = 2 2 x x y = 2x 2 x y Sammentrekking av brøkuttrykk Vi kan trekke sammen brøkuttrykk som inneholder bokstavuttrykk. 4x + 5 6x -- 2 x = 4x x x 4 = 9 12x x x = 11 12x Fellesnevner er 12x. Likninger og ulikheter Løsing av likninger I en likning er det to uttrykk som har samme verdi, ett på hver sin side av likhetstegnet. Å løse en likning vil si å bestemme den ukjente, slik at begge sider av likhetstegnet får samme verdi. x + 5 = 11 har løsningen x = 6, fordi = 11 55

11 Regneregler for likninger Vi kan addere, subtrahere, multiplisere eller dividere med samme tall på begge sidene av likhetstegnet i en likning. Addisjon x -- = 11 x -- + = 11 + x = 14 Subtraksjon x + 6 = 1 x = x = 7 Divisjon 4x = 20 4x 4 = 20 4 x = 5 Multiplikasjon x 7 = 4 x 7 7 = 4 7 x = 28 Å sette prøve på likninger Vi setter prøve på en likning ved å sette inn verdien for den ukjente og undersøke om venstre og høyre side av likhetstegnet får samme verdi. x + 4 = 8 + 2x x -- 2x = x = 4 Prøve: Venstre side: x Høyre side: 8 + 2x Setter inn 4 i stedet for x. Verdien av venstre side er lik verdien av høyre side. x = 4 er derfor riktig løsning. 56

12 Kvadratiske likninger Likninger av typen x 2 = 25 kaller vi kvadratiske likninger. Kvadratiske likninger har alltid to løsninger. x 2 = 25 p x = ffiffiffiffiffi pffiffiffiffiffi 25 og x = x = 5 og x = --5 Likninger med brøk Når vi skal løse en likning med brøk, multipliserer vi hvert ledd i likningen med fellesnevneren. 2x 12 2x -- x 4 = x x 12 = x x -- x = 2x + 8x -- x -- 2x = x = x = x = Her er fellesnevneren 12. Grafisk løsing av likninger Vi løser likningen x + 2 = 2x -- grafisk ved å tegne linjene y = x + 2 og y = 2x -- i det samme koordinatsystemet. Førstekoordinaten til skjæringspunktet gir løsningen y y = x y = 2x 2 1 Løsningen er x = x 57

13 Likninger med to ukjente Å løse to likninger med to ukjente vil si å finne verdier for de ukjente som passer i begge likningene. Løsning av likningssett ved regning: I 2x + y = 7 II y -- x = 1 II y = x + 1 Vi finner et uttrykk for en av de ukjente fra en av likningene. I 2x + x + 1 = 7 x = 6 x = 2 II y = x + 1 y = y = Vi setter dette uttrykket inn i den andre likningen og løser denne. Vi finner verdien av den andre ukjente ved å sette inn verdien til x. x = 2 og y = Grafisk løsning av likningssett: I 2x + y = 7 II y -- x = 1 I y = --2x + 7 II y = x + 1 Vi uttrykker y ved hjelp av x i begge likningene. 58

14 Vi tegner til slutt de to linjene i det samme koordinatsystemet og leser av koordinatene til skjæringspunktet y y = x y = 2x + 7 Løsningen er: x = 2 og y = x Ulikheter I en ulikhet kan vi flytte et ledd over på motsatt side av ulikhetstegnet hvis vi samtidig skifter fortegn på leddet. 2x -- < 7 2x < 7 + 2x < 10 x < 5 Vi kan dividere med positive tall på begge sider av ulikhetstegnet. x > 12 x > 12 x > 4 Vi kan dividere med negative tall på begge sider av ulikhetstegnet hvis vi samtidig snur ulikhetstegnet. --x > 12 --x -- < x <

15 Omforming av formler Vi kan bruke en formel til å lage en ny formel. Formelen for omkretsen O av et kvadrat er O = 4s, der s er siden i kvadratet. Vi kan lage en formel for s: O = 4s O 4 = 4s 4 O 4 = s s = O 4 Økonomi Merverdiavgift På de fleste varer og tjenester må vi betale merverdiavgift (mva.). Merverdiavgift blir ofte kalt moms. I 2008 var avgiften 25 % på de fleste varene. På matvarer var avgiften 14 %. Ekskl. mva. betyr at prisen er oppgitt uten merverdiavgift. Inkl. mva. betyr at prisen er oppgitt med merverdiavgift. Rabatt Rabatt er avslag i pris. Det betyr at en vare blir solgt for en lavere pris enn den opprinnelige. Rabatten blir ofte gitt i prosent. Rente Banken betaler oss renter når vi har penger i banken. På samme måte betaler vi renter til banken når vi låner penger av banken. Vi finner rentene for ett år ved å multiplisere renten i prosent med kapitalen. Kapitalen er 5000 kr. Renten er % p.a. Rentene for ett år er 0, kr = 150 kr Rentedager regner vi ut ved å telle dager på kalenderen. Rentene for én dag er Rente for ett år 65 Rente for 120 dager er: Rente for én dag

16 Avbetaling Når vi kjøper noe på avbetaling, betaler vi bare en viss del kontant (med én gang). Resten betaler vi etter hvert, men da ofte med ganske store rentetillegg. Lønn Fast lønn er avtalt lønn for den tiden vi arbeider. Det kan være fast timelønn eller fast månedslønn. Skatt Skatt blir regnet ut etter et tabellkort eller etter en bestemt prosent av trekkgrunnlaget. Trekkgrunnlaget blir ofte regnet ut slik: Bruttolønn Pensjonstrekk -- Fagforeningskontingent = Trekkgrunnlag Serielån I et serielån er avdragene like store hver termin. Terminbeløpet er summen av renter og avdrag. Annuitetslån I et annuitetslån er terminbeløpene like store hver termin. Avdragene er minst i begynnelsen og blir større etter hvert. Forsikringer Forsikring er en ordning som sikrer oss økonomisk mot uventede forhold som brann, tyveri, trafikkuhell osv. Vi betaler en årlig sum, forsikringspremie, for de forskjellige forsikringsordningene. Budsjett og regnskap Et budsjett er en plan for hvordan vi skal bruke pengene. Vi setter det opp før vi skal bruke pengene. Et regnskap er en oversikt over hva vi faktisk har brukt pengene til. Regnskapet fører vi etter at vi har brukt pengene. 61

17 0 Geometri Linjer og punkter Et linjestykke har et startpunkt og et endepunkt. En stråle har et startpunkt, men ikke noe endepunkt. A B A En linje fortsetter uendelig i begge retninger. Et punkt tegnes ofte med et kryss eller en prikk. l P P P Skjæringspunktet mellom to linjer merkes med en stor bokstav. l To linjer er parallelle når avstanden mellom dem hele tiden er den samme. l Vi skriver: l m m P m Vinkler Venstre vinkelbein Toppunkt Slik måler vi en vinkel med gradskive: Høyre vinkelbein En spiss vinkel er En rett vinkel mindre enn 90 : er lik 90. En stump vinkel er større enn 90 : 62

18 Nabovinkler har samme toppunkt og ett vinkelbein felles. u + v = 180 u v Toppvinkler har samme toppunkt og felles vinkelbein i motsatt retning. u w v u = w = v x x Konstruksjon Når vi skal konstruere mangekanter, kan vi få bruk for disse konstruksjonene: Konstruksjon av 90 Konstruksjon av 60 Halvering av en vinkel Nedfelling av en normal fra et punkt til en linje Midtnormal P 6

19 Trekanter I en rettvinklet trekant er én av vinklene 90. I en likebeint trekant er to sider like lange og to vinkler like store. I en likesidet trekant er alle sidene like lange og alle vinklene 60. Vinkelsummen i en trekant er alltid = 180 Firkanter I et kvadrat er alle sidene like lange og alle vinklene 90. I et rektangel er to og to sider like lange og alle vinklene 90. I et trapes er to av sidene parallelle. I en rombe er alle sidene like lange og motstående vinkler like store. I et parallellogram er to og to sider like lange og parallelle. Motstående vinkler er like store. 64

20 Sirkelen Vi kaller linjestykket fra sentrum til sirkellinjen radius. Linjestykket fra et punkt på sirkellinjen til et annet, kaller vi en korde. Diameteren er den lengste korden vi kan trekke. sentrum korde radius Ei linje som rører ved (tangerer) sirkellinjen i et punkt, kaller vi en tangent. Tangenten står alltid vinkelrett på radien fra tangeringspunktet. sirkellinje diameter tangent Vinkelsummen i mangekanter Vi kan finne vinkelsummen i mangekanter ved å dele disse inn i trekanter. Vinkelsummen i femkanten er: 180 = 540 Regulær mangekant I en regulær mangekant er alle vinklene like store og alle sidene like lange. Figurer og mønstre Et regulært mønster består av like regulære mangekanter. Et semiregulært mønster består av to eller flere slag regulære mangekanter. 65

21 Det gylne snitt og det gylne rektangel Det gylne snitt deler en lengde i forholdet 1,618. I et gyllent rektangel er forholdet mellom den lengste siden og den korteste siden 1,618.,18 cm 5,15 cm 5,15 cm :,18 cm 1,62 Pytagoras-setningen Vi bruker Pytagoras-setningen til å finne en ukjent side i en rettvinklet trekant. Katet 2 + Katet 2 = Hypotenus 2 C Katet Katet A Hypotenus Spesielle trekanter og Pytagoras-setningen Trekanter med vinkler på 45 º, 45 º og 90 º I en slik trekant er katetene like lange. Dersom vi kjenner lengden til bare én av sidene, kan vi finne de ukjente sidene ved hjelp av Pytagoras-setningen. B 66

22 Vi finner katetene på denne måten: x 2 + x 2 = BC 2 2x 2 = 8 2 2x 2 = 64 x 2 = 64 2 = 2 p x = ffiffiffiffiffi 2 x 5,7 x C A x 8 cm B Trekanter med vinkler på 0 º, 60 º og 90 º I en rettvinklet trekant der vinklene er 0, 60 og 90, er hypotenusen dobbelt så lang som den minste kateten. Vi finner den minste kateten (x) og hypotenusen (2x) på denne måten når vi kjenner bare den lengste kateten (AC): x 2 + AC 2 = ð2xþ 2 C x = 4x 2 25 = 4x 2 --x 2 25 = x 2 25 = x2 x 2 8, p x ffiffiffiffiffiffiffiffi 8, x 2,9 0 5 cm 90 A x 2x 60 B Formlikhet Når to figurer er formlike, er vinklene parvis like store. Forholdet mellom ensliggende sider er likt. C 60 F 60 A 0 B D 0 E 4ABC 4DEF Trekant ABC er formlik med trekant DEF. 67

23 Kongruens To figurer er kongruente når den ene figuren nøyaktig kan dekke den andre. Det vil si at figurene er formlike og like store. C F A B D E 4ABC ffi 4DEF Trekant ABC er kongruent med trekant DEF. Kongruensavbildninger Speilingssymmetri En figur er symmetrisk hvis den kan deles i to kongruente figurer som dekker hverandre når vi bretter dem om symmetriaksen. En og samme figur kan ha flere symmetriakser. Symmetriakse Speiling ved hjelp av et koordinatsystem Når vi speiler en figur ved Andreaksen hjelp av et koordinatsystem, speiler vi figuren om førsteaksen eller andreaksen. y x Førsteaksen 68

24 Speiling ved hjelp av passer og linjal Når vi speiler en figur om en linje, bruker vi passer og linjal. Vi nedfeller normaler fra punkter på figuren til linja. Vi avsetter så avstanden fra punktet til motsatt side av normalen slik at vi får et nytt punkt. l Rotasjon Hvis det ikke er gitt beskjed om noe annet, utfører vi rotasjonen mot venstre. Rotasjon om punktet P. Rotasjon om hjørnet A. C B C B A C B P A B C A Parallellforskyving C C A B A B 69

25 Perspektivtegning med ett eller to forsvinningspunkter Måling og enheter Omkretsen og arealet til mangekanter Vi finner omkretsen til en mangekant ved å summere alle sidene. Vi finner arealet til en mangekant ved å bruke formlene som er vist nedenfor: Rektangel b A = l b Parallellogram A = g h Trapes A = ða + bþ h 2 l h g h a b 70

26 Trekant A = g h 2 h g Omkretsen og arealet til en sirkel Vi regner ut omkretsen til en sirkel ved hjelp av denne formelen: O =. d der =,14 Arealet regner vi ut ved hjelp av denne formelen: A = r 2 radius (r) diameter (d) Enheter for lengde De vanligste lengdeenhetene er meter (m), desimeter (dm), centimeter (cm), millimeter (mm), kilometer (km) og mil. 1 m = 10 dm = 100 cm = 1000 mm 1 mil = 10 km = m Målestokk Målestokken er et mål for hvor stor en forstørring eller forminskning er. M = 20 : 1 betyr at 1 cm i virkeligheten svarer til 20 cm på tegningen. Det vil si at tegningen er en forstørring av virkeligheten. M = 1 : 10 betyr at 1 cm på tegningen svarer til 10 cm i virkeligheten. Det vil si at tegningen er en forminskning av virkeligheten. Vi finner målestokken til en forstørring ved å dividere forstørringen med den virkelige lengden. Vi finner målestokken til en forminskning ved å dividere den virkelige lengden med den målte lengden. 71

27 Enheter for areal De vanligste arealenhetene er kvadratmeter (m 2 ), kvadratdesimeter (dm 2 ), kvadratcentimeter (cm 2 ), kvadratmillimeter (mm 2 ), kvadratkilometer (km 2 ) og mål/dekar (daa). 1 m 2 = 100 dm 2 1 dm 2 = 100 cm 2 1 cm 2 = 100 mm 2 1 mål 1 daa = 1000 m 2 Enheter for volum De vanligste volumenhetene er kubikkmeter (m ), kubikkdesimeter (dm ), kubikkcentimeter (cm ) og kubikkmillimeter (mm ). 1 m = 1000 dm = 1000 liter 1 dm = 1000 cm = 1 liter 1 cm = 1000 mm 1 liter = 10 dl = 100 cl = 1000 ml Vei, fart og tid Vi bruker forskjellige enheter for tid, for eksempel timer (h), minutter (min), sekunder (s), dager, uker og år. 1 h = 60 min 1 min = 60 s 1 h = 60 min = s = 600 s Sammenhengen mellom vei, fart og tid kan vi skrive slik: veilengde = fart tid fart = veilengde : tid tid = veilengde : fart 72

28 Romgeometri og massetetthet Volumet og arealet av overflaten til et prisme Vi finner volumet V til et prisme ved å multiplisere arealet av grunnflaten G med høyden h. V = G h G h Overflaten til et rett firkantet prisme består av seks rektangler. Vi finner arealet til overflaten ved å summere arealene til rektanglene. Volumet og arealet av overflaten til en sylinder Vi finner volumet V til en sylinder ved å multiplisere arealet av grunnflaten G med høyden h. V = G h eller V = r 2 h G r h Overflaten til en sylinder er satt sammen av to like store sirkelflater og et rektangel. Arealet er: h A = 2r 2 + 2r h r Volumet til en pyramide Volumet V til en pyramide er: V = G h G h Volumet til en kjegle Volumet V til en kjegle er: V = G h = r2 h G h 7

29 Volumet og arealet av overflaten til en kule Volumet V til en kule er: V = 4r Arealet A av overflaten til en kule er: A = 4r 2 r Masse De vanligste enhetene for masse er kilogram (kg), hektogram (hg), gram (g), milligram (mg) og tonn. 1 kg = 10 hg = 1000 g 1 g = 1000 mg 1 hg = 100 g 1 tonn = 1000 kg Massetetthet Massetettheten til et stoff oppgis ofte i gram per kubikkcentimeter (g/cm ) eller i kilogram per kubikkdesimeter (kg/dm ). Massetettheten = massen (vekten) volumet Vi skriver det også slik: T = M V Gull har for eksempel massetettheten 19, g/cm. 1 tonn/m = 1 kg/dm = 1 g/cm 74

30 Statistikk Frekvens og relativ frekvens Frekvens er hvor mange ganger en bestemt observasjon eller hendelse forekommer. Relativ frekvens er frekvensen dividert på antall observasjoner. Vi kan skrive den relative frekvensen som: 1 4 = 0,25 = 25 % Brøk Desimaltall Prosent Vi presenterer frekvensene i en frekvenstabell: Kjønn Frekvens Relativ frekvens Jenter 12 Gutter 1 Sum = 0,48 = 48 % 25 1 = 0,52 = 52 % = 1,00 = 100 % 25 Gjennomsnitt Vi regner ut gjennomsnittet ved å summere alle observasjonene og dividere på antall observasjoner. Gjennomsnittet av tallene 4, 6 og 8 er = 6 75

31 Median Medianen er den midterste observasjonen når observasjonene er ordnet i stigende rekkefølge Medianen er 17. Hvis antall observasjoner er partall, finner vi gjennomsnittet av de to midterste observasjonene. Typetall Typetallet er den eller de observasjonene som har den høyeste frekvensen. Rød Blå Blå Gul Rød Grønn Blå Typetallet er blå. Variasjonsbredde Variasjonsbredden er differansen mellom den høyeste og den laveste verdien til observasjonene i en undersøkelse. 6 km 2 km 8 km km 9 km 9 km 2 km = 7 km Variasjonsbredden er 7 km. Søylediagram Vi bruker søylediagram når observasjonene ikke er tall. Frekvensen merker vi av på andreaksen. Antall elever Andreaksen Katt Hund Kjæledyr Førsteaksen 76

32 Stolpediagram Vi bruker stolpediagram når observasjonene er tall. Frekvensen merker vi av på andreaksen. Antall elever Karakter Linjediagram Vi bruker linjediagram når vi vil vise forandring eller utvikling over tid. Tidsenhetene merker vi av på førsteaksen. Centimeter snø Januar Februar Mars 77

33 Sektordiagram Vi finner gradtallet til hver sektor ved å multiplisere prosenten eller den relative frekvensen med 60. Svar (Alternativ) Frekvens Relativ frekvens Prosent Gradtall til sirkelsektorene Ja 5 = 0,6 0,6 100 = 60 % 0,6 60 = 216 Nei = 0,4 0,4 100 = 40 % 0,4 60 = 144 Sum % 60 Nei Ja Sannsynlighet Kombinatorikk Vi bruker kombinatorikk for å finne antallet kombinasjoner eller antallet mulige måter å kombinere ting på. Vi kan kombinere bokstavene A, B og C på seks ulike måter: ABC BAC CAB ACB BCA CBA Trediagrammet viser antallet mulige utfall på tre spørsmål der svaralternativene er JA eller NEI: 1. spørsmål JA 2. spørsmål JA NEI JA NEI. spørsmål JA NEI JA NEI JA NEI JA NEI Vi teller de nederste greinene for å finne antallet kombinasjoner. Her er det åtte mulige kombinasjoner eller utfall. NEI 78

34 Sannsynlighet Hvis alle utfallene for en hendelse er like sannsynlige, finner vi sannsynligheten for et utfall slik: Sannsynligheten = antallet gunstige utfall antallet mulige utfall Sannsynligheten for en hendelse er alltid et tall mellom 0 og 1 og oppgis som brøk, desimaltall eller prosent. Sannsynlighet ved flere utfall Når sannsynligheten bestemmes av flere utfall, kan vi bruke et trediagram for å finne alle mulighetene. 1. kast krone mynt 2. kast krone mynt krone mynt Antall mulige utfall er fire. Sannsynligheten for å få krone i første kast og mynt i andre kast er 1 4 : Vi kan også bestemme sannsynligheten ved hjelp av multiplikasjon. P ðkrone, myntþ = = 1 = 0,25 = 25 % 4 Sannsynlighet bestemt ved forsøk Vi kan bestemme sannsynligheten for et utfall ved forsøk. Den relative frekvensen er omtrent lik sannsynligheten for utfallet. Vi finner den relative frekvensen slik: Den relative frekvensen = antall ganger vi får utfallet antall forsøk Jo flere forsøk vi gjør, jo bedre verdier vil vi finne for sannsynligheten. 79

35 Funksjoner Koordinatsystem Et koordinatsystem består av to akser, førsteaksen og andreaksen. Aksene står vinkelrett på hverandre. Aksene skjærer hverandre i origo. Andreaksen 5 4 A 2 1 Origo Førsteaksen Koordinater Alle punktene i et koordinatsystem er bestemt av et tallpar som vi kaller koordinatene til punktet. Vi finner førstekoordinaten på førsteaksen, og andrekoordinaten på andreaksen. Koordinatene til punktet A ovenfor er (2, ). Funksjon En størrelse y er en funksjon av en annen størrelse x hvis det til hver verdi av x svarer én verdi av y. y er for eksempel en funksjon av x gitt ved formelen y = 70 x: 80

36 Grafen til en funksjon En graf viser sammenhengen mellom to variabler x og y. Når vi lager grafen, velger vi verdier for x og regner ut verdier for y. De tallene vi velger, skal stå langs førsteaksen. De tallene vi regner ut, skal stå langs andreaksen. Vi kan tegne en graf på grunnlag av en likning eller funksjonsuttrykk: y = 2x Grafen til funksjonen y = 2x er en rett linje. Vi velger verdier for førstekoordinaten og setter opp en tabell. Så regner vi ut verdiene for andrekoordinatene og tegner grafen til likningen. x 2 4 y

37 Lineære funksjoner En lineær funksjon er av typen y = ax + b. 7 y Tallet b i uttrykket kaller vi konstantleddet. Dette forteller hvor linja skjærer andreaksen. Tallet a i uttrykket kaller vi stigningstallet for linja. Stigningstallet forteller hvor mye y øker eller minker når x øker med Hvis tallet b er 0, går linja gjennom origo. Funksjonen y = 2x + er et eksempel på en lineær funksjon. Her er konstantleddet, og linja skjærer andreaksen gjennom tallet. Stigningstallet er 2. Når x øker med 1, øker y med origo x Kvadratiske funksjoner y = x er et eksempel på en kvadratisk funksjon. Grafen til en kvadratisk funksjon er en parabel. x 2 1 0,5 0 0,5 1 2 y 2 1 1,75 2 1, y x

38 Proporsjonale størrelser Sammenhengen mellom to proporsjonale størrelser x og y kan vi alltid uttrykke på formen y = k x, der k er et hvilket som helst tall bortsett fra 0. Grafen til proporsjonale størrelser er alltid en rett linje gjennom origo. Til høyre ser du grafen til funksjonen y = 2x. 4 y x y y = 2x x 1 Omvendt proporsjonale størrelser Sammenhengen mellom to størrelser x og y som er omvendt proporsjonale, kan vi uttrykke på formen y = k, der k kan være et hvilket som helst tall x bortsett fra 0. Grafen til omvendt proporsjonale størrelser er en hyperbel. På neste side ser du grafen til funksjonen y = 10 x : x y ,

39 10 y x 84

Primtall og sammensatte tall Primtall er naturlige tall som bare er delelige med 1 og seg selv.

Primtall og sammensatte tall Primtall er naturlige tall som bare er delelige med 1 og seg selv. Oppsummering Faktor 8 10 Oppsummering Faktor 8 10 Tall og algebra Naturlige tall Naturlige tall er hele tall som er større enn 0. 1 2 3 4 5 6... Vi kan skrive naturlige tall på utvidet form. 1234 = 1 1000

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm

Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI. 1. Måleenheter. 1.1 Lengdeenheter. 1.2 Arealenheter. Eksempel 1: Gjør om 5 m til dm, cm og mm Matematikk GS3 Temaer våren 2013 DEL 1: GEOMETRI 1. Måleenheter 1.1 Lengdeenheter Eksempel 1: Gjør om 5 m til dm, cm og mm m dm 5 m = 5 10 dm = 50 dm m cm 5 m = 5 10 10 cm = 5 10 2 cm = 500 cm m mm 5 m

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 10. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34 UKE 39 Tema: Tall og algebra Kunne skrive tall på ulike måter. Skrive veldig store og små tall

Detaljer

Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m.

Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m. SI-systemet Lengde Masse Volum Et internasjonalt môlesystem. OgsÔ kalt det metriske systemet. Den grunnleggende SI-enheten for môling av lengde er meter. Symbolet for meter er m. Den grunnleggende SI-enheten

Detaljer

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2016-2017 Side 1 av 9 Periode 1: UKE 33-UKE 39 Tema: Tall og tallforståelse sammenligne og omregne hele tall,

Detaljer

Sandefjordskolen LOKAL LÆREPLAN I MATEMATIKK BREIDABLIKK UNGDOMSSKOLE

Sandefjordskolen LOKAL LÆREPLAN I MATEMATIKK BREIDABLIKK UNGDOMSSKOLE Sandefjordskolen LOKAL LÆREPLAN I MATEMATIKK BREIDABLIKK UNGDOMSSKOLE. -. Trinn KOMPETANSEMÅL FRA LÆREPLANEN Eleven skal kunne TALL OG ALGEBRA sammenligne og omregne hele tall, desimaltall, brøker, prosent,

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016 Side 1 av 9 Periode 1: UKE 34-UKE 39 Tema: Statistikk gjennomføre undersøkelser og bruke databaser

Detaljer

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter

Detaljer

FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn

FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Vurderingskriterier vedleggsnummer Samanlikne

Detaljer

FAG: Matematikk TRINN: 10

FAG: Matematikk TRINN: 10 FAG: Matematikk TRINN: 10 Områder Kompetansemål Fra Udir Operasjonaliserte læringsmål - Breidablikk Vurderingskriteri er Tall og algebra *kunne samanlikne og rekne om heile tal, desimaltal, brøkar, prosent,

Detaljer

Sandefjordskolen LOKALE KJENNETEGN FOR MÅLOPPNÅELSE

Sandefjordskolen LOKALE KJENNETEGN FOR MÅLOPPNÅELSE Sandefjordskolen LOKAL LÆREPLAN I MATEMATIKK. -. Trinn KOMPETANSEMÅL FRA LÆREPLANEN Eleven skal kunne TALL OG ALGEBRA sammenligne og omregne hele tall, desimaltall, brøker, prosent, promille og tall på

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR 2015-2016. Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR 2015-2016. Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATTE 10.TRINN SKOLEÅR 2015-2016 Side 1 av 9 Periode 1: UKE 34-UKE 39 Tall og Algebra Analysere sammensatte problemstillinger, identifisere

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 9. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34-38 Tema: Kap.1 «Tall og tallforståelse» sammenligne og omregne hele tall ( ) og tall på standardform,

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 8. TRINN SKOLEÅR 2014-2015

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 8. TRINN SKOLEÅR 2014-2015 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 8. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34 37 Tema: Tall og tallforståelse Samanlikne og rekne om mellom heile tal, desimaltal ( ) og tal

Detaljer

Universell Matematikk Ungdom etter læreplanmål

Universell Matematikk Ungdom etter læreplanmål Universell Matematikk Ungdom etter læreplanmål Læreplanmål Kapittel Innhold Tall og algebra Sammenligne og regne med hele tall, desimaltall, brøk, prosent, promille, tall på standardform og uttrykke slike

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅR 2015-2016 Side 1 av 7 Periode 1: UKE 34 - UKE 37 Sammenligne og regne om mellom hele tall, desimaltall, brøker,

Detaljer

ÅRSPLAN. Grunnleggende ferdigheter

ÅRSPLAN. Grunnleggende ferdigheter ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for

Detaljer

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 Lærer: Knut Brattfjord og Hege Skogly Læreverk: Grunntall 5 a og b, 6 a og b og 7 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene

Detaljer

ÅRSPLAN I MATEMATIKK 9. TRINN 2015/ 2016

ÅRSPLAN I MATEMATIKK 9. TRINN 2015/ 2016 Læreverk: Faktor 2 matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen, men emnene vil bli de samme. Frosta skole, 20.08.2015 Faglærere:

Detaljer

ÅRSPLAN I MATEMATIKK 9. TRINN 2014/ 2015

ÅRSPLAN I MATEMATIKK 9. TRINN 2014/ 2015 Læreverk: Faktor 2 matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen, men emnene vil bli de samme. Frosta skole, 18.08.2014 Faglærere:

Detaljer

Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011

Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011 Årsplan i matematikk 8 trinn. Svelvik ungdomsskole 2010/2011 Tema/kapittel Tidsrom Læreplanmål Arbeidsmåter Vurdering 1. Tall 34 Regne med de 4 regneartene i hele - regneartene 35 tall, desimaltall og

Detaljer

1. trinn. 2. trinn 3. trinn 4. trinn 5. trinn 6. trinn 7. trinn

1. trinn. 2. trinn 3. trinn 4. trinn 5. trinn 6. trinn 7. trinn 1 Levanger kommune, læreplaner NY LÆREPLAN 2006: Matematikk Grunnleggende ferdigheter: - å kunne uttrykke seg muntlig i matematikk - å kunne uttrykke seg skriftlig i matematikk - å kunne lese i matematikk

Detaljer

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra:

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra: Kartlegging / vurdering av nivå Begynn året med et kort kurs i tall-lære og matematiske symboler. Deretter kartlegging som plasserer elevene i nivågruppe. De som kan dette, jobber med tekstoppgaver / problemløsning.

Detaljer

Lokal læreplan i Matematikk Trinn 8

Lokal læreplan i Matematikk Trinn 8 Lokal læreplan i Matematikk Trinn 8 1 Trinn 8 Hovedtema 1 og 2 Tall og algebra Kompetansemål Mål for opplæringa er at eleven skal kunne: samanlikne og rekne om heile tal, desimaltal, brøkar, prosent, promille

Detaljer

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra:

MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: MATEMATIKK kjennetegn på måloppnåelse HOVEDOMRÅDE Tall og algebra: 1. sammenligne og regne om mellom hele tall, desimaltall, brøker, prosent, promille og tall på standardform, uttrykke slike tall på varierte

Detaljer

ÅRSPLAN I MATEMATIKK 8. TRINN 2013 / 2014

ÅRSPLAN I MATEMATIKK 8. TRINN 2013 / 2014 Læreverk: Faktor 1- matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen, men emnene vil bli de samme. Frosta skole, 06.09.2013 Faglærer:

Detaljer

Kopieringsoriginal 1. 3x 2y x + 2y. x y. 2 + x. x + y. 4y 3x. Start/mål. y 2x. x ( y) 0 x + y 2x 2y. x + y. x + y

Kopieringsoriginal 1. 3x 2y x + 2y. x y. 2 + x. x + y. 4y 3x. Start/mål. y 2x. x ( y) 0 x + y 2x 2y. x + y. x + y Kopieringsoriginal 1 Algebraløpet Spill sammen to og to. Spillerne plasserer hver sin spillebrikke på startfeltet og slår to terninger med forskjellig farge annenhver gang. Den ene terningen representerer

Detaljer

Årsplan matematikk 9. klasse skoleåret 2015/2016

Årsplan matematikk 9. klasse skoleåret 2015/2016 Årsplan matematikk 9. klasse skoleåret 01/01 Læreverk: Faglærer: Grunntall, Elektronisk Undervisningsforlag AS Heidi Angelsen Arbeidsmåter Skriftlig oppgaveløsing, individuelt og i gruppe Muntlig bruk

Detaljer

Matematikk. Arbeidsgruppe: Revidert 22.01.15:

Matematikk. Arbeidsgruppe: Revidert 22.01.15: Matematikk Arbeidsgruppe: Revidert.0.: Anne Grethe Tjelta DeBoer Helge Dyrøy Per Gunnar Rødland Charlotte Børve Trine Jensen Tastarustå skole Ullandhaug skole Kannik skole Lunde skole Teinå skole Anne

Detaljer

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2010-2011

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2010-2011 ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2010-2011 Lærer: Knut Brattfjord og Hege Skogly Læreverk: Grunntall 5 a og b, 6 a og b og 7 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene

Detaljer

Hovedområder Kompetansemål

Hovedområder Kompetansemål Årstrinn Nr Hovedområder 5 hovedområder 8 9 10 1 Tall og algebra 9 kompetansemål 113 læringsmål 8 9 10 2 Geometri 6 kompetansemål 45 læringsmål 8 9 10 3 Måling 3 kompetansemål 35 læringsmål 8 9 10 4 Statistikk,

Detaljer

Espen Hjardar Jan-Erik Pedersen Illustratør: Line Jerner. Faktor 3. Grunnbok

Espen Hjardar Jan-Erik Pedersen Illustratør: Line Jerner. Faktor 3. Grunnbok Espen Hjardar Jan-Erik Pedersen Illustratør: Line Jerner Faktor 3 Grunnbok Bokmål # J.W. Cappelens Forlag AS, Oslo 2007 Materialet i denne publikasjonen er omfattet av åndsverklovens bestemmelser. Uten

Detaljer

Lokal læreplan i Matematikk Trinn 9

Lokal læreplan i Matematikk Trinn 9 Lokal læreplan i Matematikk Trinn 9 1 9. trinn Hovedtema 1 Tall og algebra Kompetansemål Mål for opplæringa er at eleven skal kunne: samanlikne og rekne om heile tal, desimaltal, brøkar, prosent, promille

Detaljer

Regelbok i matematikk 1MX og 1MY

Regelbok i matematikk 1MX og 1MY Regelbok i matematikk 1MX og 1MY Utgave 1.4 Skrevet av Bjørnar Tollaksen. Hele regelboka er et sammendrag av læreboka. Dette er ment som et supplement til formelheftet, ikke en erstatning. Skrivefeil kan

Detaljer

Løsning del 1 utrinn Høst 13

Løsning del 1 utrinn Høst 13 //06 Løsning del utrinn Høst - matematikk.net Løsning del utrinn Høst Contents DEL EN Oppgave + 679 = 0 89 78 = 8 c) 7,, 6 = 6, 6 d) : 0, = 0 : = 80 Oppgave 78 dl = 7,8 L, mil = kilometer = 000 m c), t

Detaljer

PROSJEKT MÅLOPPNÅELSE

PROSJEKT MÅLOPPNÅELSE PROSJEKT MÅLOPPNÅELSE EMNE 1 TALL OG ALGEBRA Sammenligne og regne om hele tall, desimaltall, brøker, prosent, promille og tall på standardform, og uttrykke slike tall på varierte måter. DE FIRE REGNINGSARTENE

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Målark 1. Kapittel 1 God start. Navn: Delmål Kan Må arbeide mer med. TUSEN MILLIONER 6A Målark. Kunne forskjellen på siffer og tall

Målark 1. Kapittel 1 God start. Navn: Delmål Kan Må arbeide mer med. TUSEN MILLIONER 6A Målark. Kunne forskjellen på siffer og tall Målark 1 Kapittel 1 God start Kunne forskjellen på siffer og tall Kunne plassverdiene for hele tall i titallsystemet Kunne plassverdiene for desimaltall Vite hva desimaltegnet betyr Kunne stille opp og

Detaljer

Lokal læreplan i matematikk (8. trinn, 9. trinn og 10. trinn)

Lokal læreplan i matematikk (8. trinn, 9. trinn og 10. trinn) Lokal læreplan i matematikk (8. trinn, 9. trinn og 10. trinn) Hoved- områder Tall og Algebra Fokus (læringsmål) Tall Addere, subtrahere, multiplisere og dividere med heltall, flersifrete tall og desimaltall

Detaljer

FORMELHEFTE ENT3R UMB 2012

FORMELHEFTE ENT3R UMB 2012 FORMELHEFTE ENT3R UMB 2012 2 Innhold TALL OG ALGEBRA... 4 Å REGNE MED NEGATIVE TALL: ADDISJON OG SUBTRAKSJON... 4 Å REGNE MED NEGATIVE TALL: MULTIPLISERE MED NEGATIVE TALL... 5 Å REGNE MED NEGATIVE TALL:

Detaljer

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...

Detaljer

ÅRSPLAN FAG: MATEMATIKK

ÅRSPLAN FAG: MATEMATIKK Begby barne- og ungdomsskole ÅRSPLAN FAG: MATEMATIKK TRINN: 8 Tid Kompetansemål Tema med emner Fokus/grunnleggende STATISTIKK 5 uker - hente fakta ut av tabeller - lese av, tolke og lage ulike diagrammer

Detaljer

Kompetansemål etter 7. årstrinn.

Kompetansemål etter 7. årstrinn. Kompetansemål etter 7. årstrinn. Tall og algebra: 1. Beskrive plassverdisystem for desimaltall, rene med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje. 2.

Detaljer

Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere:

Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere: Årsplan Matematikk 2014 2015 Årstrinn: 7. årstrinn Lærere: Cordula Norheim, Åsmund Gundersen, Renate Dahl Akersveien 4, 0177 OSLO, Tlf: 23 29 25 00 Kompetansemål Tidspunkt Tema/Innhold Lærestoff Arbeidsmåter

Detaljer

Årsplan i matematikk for 5., 6. og 7. klasse 2011/2012 For hvert kapittel/nytt emne vil det bli laget egne periodeplaner

Årsplan i matematikk for 5., 6. og 7. klasse 2011/2012 For hvert kapittel/nytt emne vil det bli laget egne periodeplaner Årsplan i matematikk for 5., 6. og 7. klasse 2011/2012 For hvert kapittel/nytt emne vil det bli laget egne periodeplaner - Gjennom hele året: Vurdering - Ukesluttprøver utgangspunkt i ukas undervisningsmål

Detaljer

ÅRSPLANAR FOR 8.TRINN 9.TRINN 10.TRINN ÅRSPLAN MATEMATIKK 8. TRINN STRANDA UNGDOMSSKULE

ÅRSPLANAR FOR 8.TRINN 9.TRINN 10.TRINN ÅRSPLAN MATEMATIKK 8. TRINN STRANDA UNGDOMSSKULE ÅRSPLANAR FOR 8.TRINN 9.TRINN 10.TRINN ÅRSPLAN MATEMATIKK 8. TRINN STRANDA UNGDOMSSKULE HOVUDEMNE UNDEREMNE MÅL KAP 1 Tal (s.9-62) Kap 2 Brøk (s.63-86) Kap 3 Prosent og promille (s.87-102) Kap 4 Teikning

Detaljer

Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering

Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering Kyrkjekrinsen skole Plan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 9. trinn Lærer: Torill Birkeland Uke Årshjul Geometri Hovedtema Kompetansemål Delmål Arbeidsmetode Vurdering

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Espen Hjardar Jan-Erik Pedersen Illustratør: Line Jerner. Faktor. Grunnbok. Bokmål

Espen Hjardar Jan-Erik Pedersen Illustratør: Line Jerner. Faktor. Grunnbok. Bokmål Espen Hjardar Jan-Erik Pedersen Illustratør: Line Jerner Faktor 9 Grunnbok Bokmål Hei til deg som skal bruke Faktor! Dette er Faktor 9 Grunnbok. Til grunnboka hører det en oppgavebok. Her ser du ungdommene

Detaljer

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34-45

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34-45 MAL ÅRSPLAN I MATEMATIKK FOR 6 TRINN 2014/2015. Utarbeidet av: Britt G. Reigstad Læreverk: Multi 6a, 6b, Oppgavebok, Parallellbok, Multi kopiperm og Multi grublishefte 5-7 UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL

Detaljer

JULETENTAMEN, 9. KLASSE, 2015. FASIT

JULETENTAMEN, 9. KLASSE, 2015. FASIT JULETENTAMEN, 9. KLASSE, 2015. FASIT DELPRØVE 1. OPPGAVE 1.1: 367 + 254 = 621 c: 67. 88 536 536 = 5896 e: 18,4-9,06 = 9,34 24,8 + 7,53 = 32,33 d: 3,2 : 0,8 = 32 : 8 = 4 32 f: 12 2. 5 2 = 12 2. 25 = 12

Detaljer

ANDEBU KOMMUNE ANDEBU UNGDOMSSKOLE

ANDEBU KOMMUNE ANDEBU UNGDOMSSKOLE ANDEBU KOMMUNE ANDEBU UNGDOMSSKOLE FORSLAG TIL FAGPLAN I MATEMATIKK 8. KLASSE- Justert 27.09.2011 Periode Tema Kompetansemål Aktiviteter/innhold Kilder Vurdering August og September (ca. 6 uker) Tall og

Detaljer

Årsplan i Matematikk

Årsplan i Matematikk Årsplan i Matematikk Tidspunkt (uke eller mnd) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 5A Kap 1: God start Kunne utvikle og bruke ulike regnemetoder for addisjon og subtraksjon

Detaljer

Tema. Beskrivelse. Husk!

Tema. Beskrivelse. Husk! Dette er ment som en hjelpeoversikt når du bruker boka til å repetisjon. Bruk Sammendrag etter hvert kapittel som hjelp. Verktøykassen fra side 272 i boka er og til stor hjelp for repetisjon til terminprøve.

Detaljer

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å legge sammen tall. Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor

Detaljer

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler.

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler. 196 FAKTA De naturlige tallene bestôr av ett eller ere sifre: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...Alle de hele positive tallene kaller vi naturlige tall, og tallmengden kaller vi N. NÔr vi tar med 0 og

Detaljer

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra FAGPLANER Breidablikk ungdomsskole FAG: Matte TRINN: 9.trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra Eleven skal kunne -

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

5 Geometri. Trigonometri

5 Geometri. Trigonometri MTEMTIKK: 5 Geometri. Trigonometri 5 Geometri. Trigonometri Ordet geometri kan deles opp i geo, som betyr jord eller land, og metri, som betyr å måle. Geometri kan oversettes med jordmåling eller landmåling.

Detaljer

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING Tall

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING Tall ÅRSPLAN I MATEMATIKK FOR 7 TRINN 2015/2016 Utarbeidet av: Britt G. Reigstad Læreverk: Multi 7a, 7b, Oppgavebok, Parallellbok og Multi kopiperm, Multi`s hjemmeside, kikora UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL

Detaljer

Sum 20 15 10 15 60 NORSK ትግርኛ EKSEMPEL DIAGRAM ዲያግራም/ ስእላዊ መግለጺ. Mal መሕበሪ መስመር. Vunnet Tapt Uavgjort 3 2 4 ሰሌዳ ዝርዝራት. Tabell.

Sum 20 15 10 15 60 NORSK ትግርኛ EKSEMPEL DIAGRAM ዲያግራም/ ስእላዊ መግለጺ. Mal መሕበሪ መስመር. Vunnet Tapt Uavgjort 3 2 4 ሰሌዳ ዝርዝራት. Tabell. NORSK ትግርኛ EKSEMPEL DIAGRAM ዲያግራም/ ስእላዊ መግለጺ Mal መሕበሪ መስመር Tabell ሰሌዳ ዝርዝራት Vunnet Tapt Uavgjort 3 2 4 Søylediagram ቻርት( ዓንዲ ሓባሪ ሰሌዳ) 100 90 80 70 60 50 40 30 20 10 0 Øst Vest Nord Stolpediagram ቻርት( ዓንዲ

Detaljer

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b. KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0

Detaljer

Lag et bilde av geometriske figurer, du også!

Lag et bilde av geometriske figurer, du også! Lag et bilde av geometriske figurer, du også! 6 Geometri 1 MÅL I dette kapitlet skal du lære om firkanter trekanter sammensatte figurer sirkler KOPIERINGSORIGINALER 6.1 Tangram 6.4 Felles problemløsing

Detaljer

Årsplan i 7. klasse matematikk 2016-2106

Årsplan i 7. klasse matematikk 2016-2106 Årsplan i 7. klasse matematikk 2016-2106 Antall timer pr : 4 Lærere: Marianne Fjose Læreverk: Multi 7a og 7b, Gyldendal undervisning Nettstedene: gyldendal.no/multi Moava.org Grunnleggende ferdigheter:

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

Årsplan i Matematikk 7. klasse 2016-2017

Årsplan i Matematikk 7. klasse 2016-2017 Antall timer pr uke: 4 Lærere: Randi Minnesjord Læreverk: Multi 7a og 7b, Gyldendal undervisning Nettstedene: gyldendal.no/multi Moava.org Grunnleggende ferdigheter: Å kunne uttrykke seg muntlig i matematikk

Detaljer

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013 Tentamen matematikk GS3 Mandag 22. april 2013 DEL 1 Excel Oppgave 1. Hans låner 90 000 kr i banken til 4 % rente pr år. Nedbetalingstiden for lånet er 6 år. a) Lag tabellen nedenfor i Excel. År % rente

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Geometri. Mål. for opplæringen er at eleven skal kunne

Geometri. Mål. for opplæringen er at eleven skal kunne 8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke geometri i planet til å analysere og løse sammensatte teoretiske og praktiske problemer knyttet til lengder, vinkler og areal 1.1 Vinkelsummen

Detaljer

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2014-2015

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2014-2015 ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2014-2015 Lærer: Knut Brattfjord og June Brattfjord Læreverk: Grunntall 5 a og b, 6 a og b og 7 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS

Detaljer

Årsplan i matematikk 5.klasse 2015/16

Årsplan i matematikk 5.klasse 2015/16 Årsplan i matematikk 5.klasse 2015/16 Emne/Innhold Uke Presisering Læremidler Kompetansemål Hele tall 34- Tall og algebra Multi s. 4-10 Multi 5a Kap 1 39 Bestemme tallverdien til sifrene i tall med opp

Detaljer

Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen

Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Standarder (gjennom hele semesteret) : - Å kunne uttrykke seg muntlig. Å forstå og kunne bruke det matematiske språket, implementeres

Detaljer

Dette samspillet kan illustreres i følgende modell:

Dette samspillet kan illustreres i følgende modell: Hva betyr kompetanseene i Kunnskapsløftet for vårt arbeid? Alle ene i K 06 er kompetanse, og hvert omfatter tre komponenter som til sammen utgjør kompetansen. De tre komponentene er ferdigheter, forståelse

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.

Detaljer

LOKAL FAGPLAN MATEMATIKK 8.-10. TRINN

LOKAL FAGPLAN MATEMATIKK 8.-10. TRINN LOKAL FAGPLAN MATEMATIKK 8.-10. TRINN Grunnleggjande ferdigheiter Grunnleggjande ferdigheiter er integrerte i kompetansemåla, der dei medverkar til å utvikle fagkompetansen og er ein del av han. I matematikk

Detaljer

Lokal læreplan i Matematikk Trinn10

Lokal læreplan i Matematikk Trinn10 Lokal læreplan i Matematikk Trinn10 1 10. trinn Hovedtema 1 Tall og algebra Kompetansemål Mål for opplæringa er at eleven skal kunne: samanlikne og rekne om heile tal, desimaltal, brøkar, prosent, promille

Detaljer

Tall og enheter. Mål. for opplæringen er at eleven skal kunne

Tall og enheter. Mål. for opplæringen er at eleven skal kunne 8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Uke nr. Kap. Emne/Tema: Kompetansemål etter 7. årstrinn: 34-39 Kap. 1 Hele tall. Beskrive og bruke Titallsystemet. plassverdisystemet for Tall og Avrunding. desimaltal, rekne med regning Addisjon og positive

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Årsplan i matematikk 6.trinn 2015/2016 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 36 /37 Tall og tallforståelse -siffer og tall -beskrive plassverdisystemet

Detaljer

INNHOLD. Åstveit skole - lokal læreplan i matematikk 2 INNLEDNING... 3

INNHOLD. Åstveit skole - lokal læreplan i matematikk 2 INNLEDNING... 3 INNHOLD INNLEDNING... 3 DE FEM GRUNNLEGGENDE FERDIGHETER:... 3 MATEMATISKE KOMPETANSER... 3 VURDEINGSKRITERIER FOR MATEMATIKK... 5 8. TRINN GEOMETRI... 6 VURDERINGSKRITERIER: GEOMETRI... 7 HELE TALL...

Detaljer

Sinus 1T > Tallregning og algebra

Sinus 1T > Tallregning og algebra 8 Sinus T book.indb 8 Sinus T > Tallregning og algebra 04-0- 6:7:0 Tallregning og algebra MÅL for opplæringen er at eleven skal kunne regne med rotuttrykk, potenser med rasjonal eksponent og tall på standardform,

Detaljer

Karakter 3 og 4 Beskrivelse av nokså god / god kompetanse

Karakter 3 og 4 Beskrivelse av nokså god / god kompetanse Fag: Matematikk Skoleår: 2008/ 2009 Klasse: 9 Lærer: Miriam Vikan Oversikt over læreverkene som benyttes, ev. andre hovedlæremidler: Faktor 2 Vurdering: a) Karakteren 1 uttrykker at eleven har svært lav

Detaljer

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.

Detaljer

Er hvitveisen speilsymmetrisk?

Er hvitveisen speilsymmetrisk? Er hvitveisen speilsymmetrisk? 11 Geometri 2 MÅL I dette kapitlet skal du lære om flytting av figurer ved speiling, parallellforskyving og dreining speilingssymmetri KOPIERINGSORIGINALER 11.1 Speiling

Detaljer

Løsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6

Løsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Geometri Del Løsningsforslag til del av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Oppgave.1 a Lengden til golvet på tegningen blir: 400 cm 8cm Bredden til golvet på tegningen blir: 300

Detaljer

11 Nye geometriske figurer

11 Nye geometriske figurer 11 Nye geometriske figurer Det gylne snitt 1 a) Mål lengden og bredden på et bank- eller kredittkort. Regn ut forholdet mellom lengden og bredden. Hvilket tall er forholdet nesten likt, og hva kaller vi

Detaljer

KAN MÅ ARBEIDE MER MED

KAN MÅ ARBEIDE MER MED MÅLARK 1 KAPITTEL 1 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut fra tallinjer Kunne tegne en tallinje og dele den riktig opp

Detaljer

GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE

GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE GEOMETRISKE FIGURER FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til geometriske figurer G - 2 2 Grunnleggende om geometriske figurer G - 3 3 1-dimensjonale figurer

Detaljer

Tal og algebra. 8.trinn Læringsmål 9.trinn Læringsmål 10.trinn Læringsmål Kompetansemål etter 10.trinn

Tal og algebra. 8.trinn Læringsmål 9.trinn Læringsmål 10.trinn Læringsmål Kompetansemål etter 10.trinn 8.trinn Læringsmål 9.trinn Læringsmål 10.trinn Læringsmål Kompetansemål etter 10.trinn Tall og regning Hva siffer, tall og tallsystem er Hva partall, oddetall, primtall og sammensatte tall er Kunne primtallfaktorisering

Detaljer

ÅRSPLAN I MATEMATIKK 8. TRINN 2014 / 2015

ÅRSPLAN I MATEMATIKK 8. TRINN 2014 / 2015 Læreverk: Faktor 1- matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen, men emnene vil bli de samme. Frosta skole, 02.09.2014 Faglærer:

Detaljer

Kapittel 7. Lengder og areal

Kapittel 7. Lengder og areal Kapittel 7. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger.

Menylinje og de vanligste funksjonene. Her gjør du de tilpasningene du trenger. GeoGebra GeoGebra 1 GeoGebra er et dynamisk geometriprogram. Ved hjelp av dette programmet kan du framstille forskjellige geometriske figurer, forskjellige likninger (likningssett) og ulike funksjonsuttrykk,

Detaljer

ÅRSPLAN FOR 9. TRINN 2015-2016

ÅRSPLAN FOR 9. TRINN 2015-2016 ÅRSPLAN FOR 9. TRINN 2015-2016 Lindås ungdomsskule 5955 LINDÅS Tlf. 56375054 Klasse: 9.trinn Fag: Matematikk Faglærar: Turid Åsebø Angelskår, Hanne Vatshelle og Anne Britt Svendsen Hovudkjelder: Nye Mega

Detaljer

Brøk Vi på vindusrekka

Brøk Vi på vindusrekka Brøk Vi på vindusrekka Brøken... 2 Teller og nevner... 3 Uekte brøk... 5 Blanda tall... 6 Desimalbrøk... 8 Pluss/minus... 9 Multiplikasjon... 11 Likeverdige brøker... 12 Utviding... 13 Forkorting... 14

Detaljer