Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1
|
|
- Amanda Fredriksen
- 8 år siden
- Visninger:
Transkript
1 Løsningsforslag til ksamn i MAT, 8/- Dl. (3 pong) Intgralt x x dx r lik: x x x + C x x + C x 3 3 x + C x / + C x x x3 3 x + C Riktig svar: a) x x x + C. Bgrunnls: Brukr dlvis intgrasjon md u = x, v = x. Da r u =, v = x, og vi får: x x dx = x x x dx = x x x + C. (3 pong) Hva gjør vi først når vi skal løs intgralt x +3x x+ (x )(x +x+) dx vd dlbrøkoppspalting? substiturr u = x + x + A Bx+C x +x+ sttr intgrandn lik x + smuglr dn drivrt av nvnrn inn i tllrn polynomdividrr x + 3x x + md x 3 + x sttr intgrandn lik A x + B x +x+ Riktig svar: d) polynomdividrr x + 3x x + md x 3 + x Bgrunnls: Gradn til tllrn r størr nn gradn til nvnrn. Obsrvr dssutn at (x )(x + x + ) = x 3 + x. 3. (3 pong) Hva får vi når vi substiturr u = arctan x i intgralt sin(arctan x) dx? /3 π/ sin u du sin u +u du / sin u du / sin u +u du π/ sin u cos u du Riktig svar: ) / sin u cos u du Bgrunnls: Når u = arctan x, r x = tan u. Drmd r dx = cos u du. D ny grnsn blir u() = arctan = og u() = arctan = π. Dtt gir: sin(arctan x) dx =. (3 pong) Hva r dn partilldrivrt f cos (xy) +x z x z y / sin u cos u du når f(x, y, z) = z cot(xy)?
2 zx tan(xy) sin (xy) Riktig svar: ) sin (xy) Bgrunnls: Drivrr mhp. y som om x og z r konstantr: ( ) y z cot(xy) = z sin (xy) x = sin (xy) 5. (3 pong) I hvilkn rtning voksr funksjonn f(x, y) = xy cos y raskst i punktt (, π): (, π) (π, ) (, ) (π, π) ( π, ) Riktig svar: ) ( π, ) Bgrunnls: Funksjonn voksr raskst i gradintns rtning. y cos y og f y = x cos y xy sin y, r Sidn f x = f(, π) = (π cos π, ( ) cos π ( )π sin π) = ( π, ). (3 pong) Hva r dn rtningdrivrt f (a; r) når f(x, y) = x xy, a = (, ) og r = (, )? 3 3 Riktig svar: c) Bgrunnls: Vi vt at f (a; r) = f(a) r. Sidn f(x, y) = ( xy +xy xy, x xy ), får vi f (a; r) = f(a) r = (3, ) (, ) = = 7. (3 pong) Områdt mllom x-aksn og grafn til f(x) = sin(x ), x π, dris n gang om y-aksn. Hva r volumt til omdriningslgmt? 3 9π 9 π 7 3 Riktig svar: d) π Bgrunnls: Ifølg formln for volumt til t omdriningslgm om y-aksn r V = π π x sin(x ) dx
3 Vi substiturr u = x. Da r du = xdx, og d ny grnsn r gitt vd u() = =, u( π) = ( π) = π. Drmd r V = π π x sin(x ) dx = π 8. (3 pong) Dt ugntlig intgralt konvrgrr og r lik 3 konvrgrr og r lik divrgrr konvrgrr og r lik 5 konvrgrr og r lik 5 Riktig svar: c) divrgrr Bgrunnls: Vi har u = ln x, r du = dx x Dmd r dx = lim x( + ln x) b x(+ln x) dx: b sin u du = π x(+ln x) dx = lim b x(+ln x) dx. Substiturr vi, og d ny grnsn blir u() = ln =, u(b) = ln b. b ln b dx = lim x( + ln x) b ( + u) dx = b = lim [ln( + u)]ln = lim [ln( + ln b) ln ] = b b n n i= sin( π n i)? 9. (3 pong) Hva r grnsvrdin lim n π 7π π 3 π 5 7 Riktig svar: d) Bgrunnls: Uttrykkt r n Rimann-sum for funksjonn f(x) = sin x ovr intrvallt [, π ]. Når n, nærmr uttrykkt sg drfor intgralt til f(x) ovr dtt intrvallt. Drmd har vi: lim n π n n i= sin( π n i) = sin x dx =. (3 pong) I n rgulrbar gasstank r trykkt P gitt som n funksjon P = F (V, T ) av volumt V og tmpraturn T. Drsom V og T r funksjonr av tidn t slik at V (t) = + t/ og T (t) = + sin( π t), hva r da dn drivrt av trykkt P md hnsyn på tidn t? F V (V (t), T (t)) + T (V (t), T (t)) V (V (t), T (t))( + t/ ) + F T (V (t), T (t))( + sin( π t)) P (t) = F V (V (t), T (t)) t/ + π F T (V (t), T (t)) cos( π t) V (V (t), T (t)) t/ + F T (V (t), T (t)) cos( π t) P (t) = V (t) t/ + π T (t) cos( π t) 3
4 Riktig svar: c) P (t) = F V (V (t), T (t)) t/ + π F T (V (t), T (t)) cos( π t). Bgrunnls: Kjrnrgln sir V (V (t), T (t))v (t) + F T (V (t), T (t))t (t) Sttr vi inn V (t) = t/ og T (t) = π cos( π t), får vi svart, DEL Oppgav : a) ( pong) Rgn ut d partilldrivrt av først ordn til funksjonn og finn dt stasjonær punktt. f(x, y) = (x + y ) x b) ( pong) Avgjør om dt stasjonær punktt r t sadlpunkt, t lokalt maksimum llr t lokalt minimum. Svar: a) Vi har og I d stasjonær punktn r f x = x + (x + y ) x = ( + x + y ) x f y = yx ( + x + y ) x = og y x = Dn sist ligningn r bar oppfylt når y =. Sttr vi dtt inn i dn først, sr vi at x =. Dt nst stasjonær punktt r altså (, ). b) Vi rgnr først ut d annnordns partilldrivrt: f x = x + ( + x + y ) x = ( + x + y ) x f y x = f x y = yx f y = x Dtt gir A = f x (, ) =, B = f x y (, ) =, C = f y (, ) =, D = AC B = =. Sidn D >, A >, fortllr annndrivrttstn oss at dtt r t lokalt minimum.
5 Oppgav : a) ( pong) Rgn ut intgralt b) ( pong) Rgn ut intgralt (Hint: Vis først at = sin x.) u du dx c) ( pong) Finn bulngdn til grafn til funksjonn f(x) = ln() fra x = til x = π. (Husk at formln for bulngd r L = b a + f (x) dx.) Svar: a) Sidn u = (u )(u + ), brukr vi dlbrøkoppspalting: u = A u + B u + Gangr vi md fllsnvnrn u og ordnr lddn på høyr sid, får vi: = (A + B)u + (A B) Dtt btyr at A + B =, A B =, som mdførr A =, B =. Drmd r u du = u du u + du = = ln u ln u + + C = ln u u + + C b) Vi har = intgralt sin x cos x = dx, får vi dx =. Substiturr vi u = sin x, du = dx i sin x sin x dx = u du Lgg mrk til d ny intgrasjonsgrnsn som skylds at u() = sin =, u( π ) = sin π =. Brukr vi dl a), har vi nå: dx = [ u du = ln u u + ] = ln + + ln + = ln 3 = ln 3 b) Vi rgnr først ut f (x) = vd L = sin x ( sin x) =. Drmd r bulngdn gitt + ( sin x ) dx = = + sin x cos x dx = 5
6 cos = x + sin x cos dx = x dr vi har brukt punkt b) i dt sist skrittt. cos x dx = dx = ln 3 Oppgav 3: ( pong) På figurn sr du n sirkl md radius r. Et traps r tgnt inn i sirkln slik at grunnlinjn til trapst r n diamtr i sirkln. D to andr hjørnn til trapst liggr på sirklomkrtsn. Finn dt størst aralt t slikt traps kan ha. Svar: Rgnstykkt blir litt forskjllig ttr hva man vlgr som variabl. Et valg som gir gri rgningr, r å dfinr x som på figurn ndnfor. x Da blir høydn i trapst h = r x, og aralt r gitt vd A(x) = r + x h = (r + x) r x Vi ønskr altså finn dn maksimal vrdin til dn kontinurlig funksjonn A(x) på dt lukkd og bgrnsd intrvallt [, r]. Vi vt fra kstrmalvrdistningn at dt må finns n maksimalvrdi. For å finn maksimumspunktt, drivrr vi: A (x) = r x x + (r + x) r x = r x x (r + x) r x Vi sttr dtt uttrykkt lik og løsr for x: r x x (r + x) r x = = r x x = (r + x) r x = r x = rx + x = x + rx r = = x = r ± r ( r ) = r ± 3r Av gomtrisk grunnr kan vi bar bruk dn positiv rotn x = r som gir t aral på A( r ) = (r + r ) r r = 3 3r. D andr mulig maksimalpunktn til aralt r ndpunktn x = og x = r. Sidn bgg diss vrdin r mindr nn 3 3r (vi har A() = r og A(r) = ), må dt størst aralt vær 3 3r. Oppgav : ( pong) Funksjonn f : R R r kontinurlig, og a, b R r tall slik at a < b og f(a) < f(b). Vis at da finns dt n c [a, b) slik at f(c) = f(a), mn f(x) > f(a) for all x (c, b).
7 Hint: c = sup{x [a, b] : f(x) f(a)}. Svar: Mngdn A = {x [a, b] : f(x) f(a)} r ikk-tom (fordi a r md) og bgrnst (av b), og har drfor n minst øvr skrank c = sup{x [a, b] : f(x) f(a)} Obsrvr at sidn b r n øvr skrank for A, r c b. Pr dfinisjon av c r f(x) > f(a) for all x (c, b), og dt r drfor nok for oss å vis (*) f(c) = f(a) (i tillgg burd vi vis at c < b, mn dt vil følg automatisk av at f(c) = f(a) < f(b)). For å vis (*) obsrvrr vi først at for hvr n N må dt finns n x n slik at c n x n c og f(x n ) f(a) (llrs vill c n vært n øvr skrank for A og dt r umulig sidn c n r mindr nn dn minst øvr skrankn c). Sidn x n c, må f(x n ) f(c) (hr brukr vi at f r kontinurlig). Sidn f(x n ) f(a), må drmd f(c) f(a). Obsrvr at dtt mdførr at c < b. For tilstrkklig stor n N må da c + n < b og ifølg dfinisjonn av c btyr dtt at f(c + n ) > f(a). Sidn f(c) = lim n f(c + n ) (hr brukr vi igjn kontinuittn til f), mdførr dtt at f(c) f(a). Vi har drmd vist båd f(c) f(a) og f(c) f(a), og følglig må f(c) = f(a). Slutt 7
16 Integrasjon og differensiallikninger
Løsning til KONTROLLOPPGAVER Sinus Forkurs 6 Intgrasjon og diffrnsiallikningr OPPGAVE a) Vi sttr u cos. Da r du sin d du sin d sin d du sin d cos = u u Vi sttr inn igjn u cos og får sin d cos = du u du
DetaljerLøsningsforslag til eksamen
8. januar 6 Løsningsforslag til ksamn Emnkod: ITD Dato: 7. dsmbr Hjlpmidlr: Emn: Matmatikk først dlksamn Eksamnstid: 9.. Faglærr: To -ark md valgfritt innhold på bgg sidr. Formlhft. Kalkulator r ikk tillatt.
DetaljerEKSAMEN Løsningsforslag
. juni 7 EKSAMEN Løsningsorslag Emnkod: ITD Emnnavn: Matmatikk ørst dlksamn Dato: 6. juni 7 Hjlpmidlr: - To A-ark md valgritt innhold på bgg sidr. - Formlht. - Kalkulator som dls ut samtidig md oppgavn.
DetaljerEKSAMEN Ny og utsatt Løsningsforslag
9. juni 5 EKSAMEN N og utsatt Løsningsorslag Emnkod: ITD5 Dato: 4. juni 5 Hjlpmidlr: Emn: Matmatikk ørst dlksamn Eksamnstid: 9.. Faglærr: - To A4-ark md valgritt innhold på bgg sidr. - Formlht. Christian
DetaljerMA1102 Grunnkurs i analyse II Vår 2014
Norgs tkiskaturvitskaplig uivrsitt Istitutt for matmatisk fag MA Grukurs i aalys II Vår 4 Løsigsforslag Øvig 8.8. a) Vi har fuksjo f(). Vi skal taylorrkk til f i puktt, kovrgsitrvallt til d rkk, og vis
Detaljer16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt.
Fasit Eksamn MAT Høstn 7 Oppgav Gitt punktn i koordinatsstmt: A (,, ) B (, 3, ) og C (,, ) AB + AC a) Bstm og AB AC Bstm vinkln A i trkantn ABC BC AB AC [,,] + [,, ] [9,, ] 3,, BC ( ) ( ) + + AB AC [,,
DetaljerOppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e
Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 98, B 1 % 95,89 C 1 3 5 % 17,99 D 1 4 6 % 113,93 a) Vi finnr nullkupongrntn slik: R 1 = 98. R 1 = 95.89 =.98 R = ln.98
DetaljerGrafer og trær. MAT1030 Diskret matematikk. Eksempel. Eksempel. Forelesning 28: Grafer og trær, eksempler
MAT1030 Diskrt matmatikk Forlsning 28:, ksmplr Dag Normann Matmatisk Institutt, Univrsittt i Oslo 5. mai 2008 I dag skal vi s på n rkk ksmploppgavr, og gjnnomgå løsningn på tavla. All ksmpln r oppgavr
DetaljerLøsningsforslag Eksamen 8. august 2007 TFY4250 Atom- og molekylfysikk
Eksmn TFY45 8 ugust 7 - løsningsforslg Oppgv Løsningsforslg Eksmn 8 ugust 7 TFY45 Atom- og molkylfysikk I grnsn V r potnsilt V x t nklt bokspotnsil md vidd, V V for < x < og undlig llrs Dn normrt grunntilstndn
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Dt matmatisk-natuvitnskaplig fakultt Eksamn i MAT-INF 00 Modlling og bgning. Eksamnsdag: Fdag 6. dsmb 0. Tid fo ksamn: 9:00 :00. Oppgavsttt på 8 sid. Vdlgg: Tillatt hjlpmidl: Fomlak.
DetaljerFYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4
FYS2140 Kvantfysikk, Oblig 10 Sindr Rannm Bildn,Grupp 4 23. april 2015 Obligr i FYS2140 mrks md navn og gruppnummr! Dtt r nok n oblig som drir sg om hydrognatomt og r n dl av n tidligr ksamnsoppgav. Oppgav
DetaljerEKSAMEN Løsningsforslag
EKSAMEN Løningforlag 8. juni Emnkod: ITD5 Dao: 6. mai Emn: Mamaikk Ekamnid:.. Hjlpmidlr: - To A-ark md valgfri innhold på bgg idr. - Formlhf. Faglærr: Chriian F Hid Kalkulaor r ikk illa. Ekamnoppgavn:
DetaljerTillatt utvendig overtrykk/innvendig undertrykk
Tillatt utvndig ovrtrykk/innvndig undrtrykk For t uffrør vil ttningsringns vn til å tål undrtrykk oft vær dinsjonrnd. I t rør so blasts d t jvnt utvndig trykk llr innvndig undrtrykk vil dt oppstå spnningr,
DetaljerØvinger uke 42 løsninger
Øvingr u løsningr Oppgav Når n potnsr r gomtris finnr u summn og onvrgnsområt irt fra forml. Når ra i r gomtris lønnr t sg å ta utgangspunt i n nærliggn gomtris r og tn lvis rivasjon llr intgrasjon av
DetaljerFlere utfordringer til kapittel 1
KAPITTEL 1 ALGERBA Oppgav 1 Rgn ut uttrykkn. a 6 (4 2) c 6 4 6 2 b 5 (10 7) d 5 10 5 7 Oppgav 2 Rgn ut uttrykkn. a 2 (3 4) c (2 3) 4 b 5 (6 7) d (5 6) 7 Oppgav 3 Rgn ut uttrykkn. a 25 (3 + 7) c 25 3 7
DetaljerEKSAMEN løsningsforslag
. mai EKSAMEN løningforlag Emnkod: ITD5 Emnnavn: Mamaikk andr dlkamn Dao:. mai Hjlpmidlr: - To A-ark md valgfri innhold på bgg idr. - Formlhf. - Kalklaor om dl amidig md oppgavn. Ekamnid: 9.. Faglærr:
DetaljerOppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74
Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 97,53 B 1 % 94,74 C 1 3 3 % 1,19 D 1 4 4 % 13,3 a) Vi finnr nullkupongrntn slik: R 1 = 97.53 R 1 = 94.74 =.9753 R =
DetaljerOppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y =
MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. ) Oppgavr fra boka: Oppgav 2. (utg. 9) Modll: Y = µ Y x,x 2 + ε = β 0 + β x + β 2 x 2 + ε, dvs md n obsrvasjonr får vi n ligningr Y = β
DetaljerBesøk fra Nannestad vgs. Absorpsjon av gamma. Jon Petter Omtvedt 8. November 2018
Bsøk fra Nannstad vgs Absorpsjon av gamma Jon Pttr Omtvdt 8. Novmbr 08 Timplan 08:5 Vlkommn 08:0 Hvordan vkslvirkr gammastråling? 09:00 Måling av absorpsjon i bly og marsjord Grupp : Blir md nd til laboratorit
DetaljerSøknad om Grønt Flagg på Østbyen skole
Søknad om på Østbyn skol Østbyn skol startt opp md i 2007, og har sidn da vært n Grønt Flagg-skol som r opptatt av miljø Skoln hatt n dl utfordringr dt sist årt, som har gjort dt vansklig å følg opp intnsjonn
DetaljerFORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG
OREENINGNOAER I INORMAJONØKONOMI Gir B. Ashim, vårn 2001 (oppdatrt 2001.03.27. 3. UGUNIG UVAG Agntn har privat informasjon om rlvant forhold før kontrakt inngås. Undr symmtrisk informasjon vill kontraktn
DetaljerLØSNINGSFORSLAG EKSAMEN TEP 4115 TERMODYNAMIKK 1 Mandag 30. mai 2005 Tid: kl. 09:00-13:00
Sid 1 a 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 4115 TERMODYNAMIKK 1 Mandag 0. mai 005 Tid: kl. 09:00-1:00
DetaljerMundell-Fleming modellen ved perfekt kapitalmobilitet 1
Mundll-Flming modlln vd prfkt kapitalmobilitt 1 Stinar Holdn, 4. august 03 Kommntarr r vlkomn stinar.holdn@con.uio.no Mundll-Flming modlln vd prfkt kapitalmobilitt... 1 Kapitalmobilitt og rntparitt...
Detaljermed en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med
Lsningsantydning til kontinuasjonsksamn i 45060 Systmring Tirsdag 23. august 994 Kl. 0900 { 300 3. august 994 Oppgav, 5% S sidn 346 og 349: Dlsystmstruktur En oppdling av systmt i n mngd dlsystmr, sammn
Detaljer110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3.
Oppgav 1 (5 %) Vi har følgnd: Pålydnd Gjnværnd løptid (år) Kupong Kurs 1 1 1 16,75 1 1 11,7 1 8 111,1 1 4 6 15,8 a) Vi finnr nullkupongrntn slik: R 11 = 16.75 R. 1 + 11 = 11.7 =.975 R = ln.975 R =. R =.,
DetaljerOptimal pengepolitikk hva er det?
Faglig-pdagogisk dag 2009, 5 januar 2009 Optimal pngpolitikk hva r dt? Av Pr Halvor Val* * Førstamanunsis vd Institutt for økonomi og rssursforvaltning (IØR), UMB, 1. Norsk pngpolitikk - t lit tilbakblikk
DetaljerMer øving til kapittel 1
Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og c = 10 + c c c + c + + c + c d + c + c Oppgv Rgn ut når t = 5, s = 10 og v = st c st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4,
DetaljerPrøveeksamen i MAT 1100, H-03 Løsningsforslag
Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan
DetaljerEmnenavn: Eksamenstid: Faglærer: Christian F Heide
EKSAMEN Emnkod: ITD503 Emnnavn: Mmikk andr dlkamn Do: 20. mai 209 Hjlpmidlr: Ekamntid: 09.00 2.00 Faglærr: To A4-ark md valgfritt innhold på bgg idr. Formlhft. Kalkulor om dl ut amtidig md oppgavn. Chritian
DetaljerKorreksjoner til fasit, 2. utgave
Korreksjoner til fasit,. utgave Kapittel. Oppgave.. a): / Oppgave.. e):.887, 0.58 Oppgave..9: sin00πt). + ) x Oppgave.7.5 c): ln for 0 < x. x Oppgave.8.0: Uttrykket for a + b) 7 skal være a + b) 7 = a
DetaljerMuntlig eksamensøvelse. På en muntlig eksamen hjelper det ikke å kunne tenke svaret. Det må sies.
FYS3 9 Uk 39 Oppgvr md løsningsforslg 39. Lplc spørsmål om polr LR og LRC... 39. Lplc rnsformson * sin... 39.3 LP-filr Konsrukson og nlys. s ksir md n dl puls... 5 39.6 Fourirrnsformson v rmp puls... 9
DetaljerLøsning til seminar 5
Løsning til sminar 5 Oppgav i) risnivå og BN -modlln inkludrr tilbudssida i n utvida IS LM/RR-modll, og inkludrr drmd prisffktr. Endringr i prisn kan påvirk BN gjnnom to hovdkanalr. For dt først kan t
DetaljerENKELT, TRYGT OG LØNNSOMT!
Utli av fritidsindom: ENKELT, TRYGT OG LØNNSOMT! NYTT GRAM O R P S L E D FOR E R E: FOR UTLEI ort r på ssongk s ri p d o g Svært gsstdr n ri rv s å p t Rabat ulightr m s g in n j t n God in g rkdsavdlin
DetaljerKonkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år.
Lærrvildning: Aksjon boligbrann Konkurrans for all skolklassr på llotrinnt: Saarbidsgruppa for brannvrn i skoln invitrr d dtt all skolklassr på llotrinnt til å bli d på konkurransn "Aksjon boligbrann".
DetaljerDans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen
Dans Dans Dans Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans for voksn Dans dg glad Dans dg i form Jan Risbakkn Jan
DetaljerOppgave 1 (15%) KANDIDAT NR.:
ES DETTE FØRST: D 4 førs oppgavn bsvars vd a du sr kryss i valg alrnaiv og lvrr diss arkn s. 5 inn som svar sammn md din løsning av oppgav 5, som r n radisjonll rgnoppgav. Husk å skriv kandidanr på arkn!
DetaljerForelesning uke 36 Laplace v(t)=u(t)*vb. u(t) er en nyttig funksjon. kan brukes til å modulere et batteri med bryter. Signalbyggesett. t=0.
Forlning uk 6 aplac 9 ut r n nyttig funkon vt=ut*vb kan bruk til å modulr t battri md brytr. Signalbyggtt t= d t t ut -ut-d d ut -ut-d Ekmpl på andr mulghtr Figur. Mang ulik ignalr kan lag av trinnfunkonn.
DetaljerMer øving til kapittel 1
Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og = 10 + + + + + d + + Oppgv Rgn ut når t = 5, s = 10 og v = st st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4, = 5, z = og w =. zw
DetaljerMA1101 Grunnkurs Analyse I Høst 2017
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs Analyse I Høst 7 9.5. a) Har at + x b arctan b = π + x [arctan x]b (arctan b arctan ) f) La oss først finne en
DetaljerKommentarer til eksamen i MAT 1100, 8/12-04
Kommentarer til eksamen i MAT 00, 8/-04 Dette notatet gir en oppsummering av resultatene i MAT 00, høsten 004. Siden strykprosenten (30.7% av dem som leverte besvarelse) var atskillig høyere enn de foregående
DetaljerKONTINUASJONSEKSAMEN I EMNE TDT4195 BILDETEKNIKK MANDAG 6. AUGUST 2007 KL LØSNINGSFORSLAG - GRAFIKK
Sid av 7 NTNU Norgs tknisk-naturvitnskapig univrsitt Fakutt for informasjonstknoogi, matmatikk og ktrotknikk Institutt for datatknikk og informasjonsvitnskap KONTINUASJONSEKSAEN I ENE TDT495 BILDETEKNIKK
DetaljerMatematikk for IT, høsten 2018
Mtmtkk for IT, høst 8 Oblg Løsgsforslg 7. sptmbr 8.7. ) for >. 7 b) for >. 7 c) for >. 7 d) ) for >. 8 8 8 8 8 7 8 7 8 .7. ) for >. 7 8 b) for >. 7 ) 7 ) 7) ) 7 ) 7) c) for >..7.8 ) ) ) ) ). Bss:. Rkursjosforml:
DetaljerNTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 5. Avsnitt Vi vil finne dx ( cos t dt).
NTNU Instittt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 5 Avsnitt 5.4 ( + cos x)dx = dx + cos xdx = π + [sin x] π = π + (sin π sin) = π. 44 Vi vil finne d x dx ( cos t dt). Merk
DetaljerLøsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7
Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning
DetaljerKRAVFIL TIL KREDITORFORENINGEN [Spesialrapport]
KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R124 KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] Bskrivls sist rvidrt: År: 2008. Månd: 10. Dag: 01. KRAVFIL
DetaljerKRAVFIL TIL KREDINOR [Spesialrapport]
KRAVFIL TIL KREDINOR [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R104 KRAVFIL TIL KREDINOR [Spsialrapport] Bskrivls sist rvidrt: År: 2009. Månd: 10. Dag: 05. KRAVFIL TIL KREDINOR [Spsialrapport]
DetaljerGenerell info vedr. avfallshåndtering ved skipsanløp til Alta Havn
Gnrll info vdr. avfallshåndtring vd skipsanløp til Alta Havn Vdlgg 0 Forskrift om lvring og mottak av avfall og lastrstr fra skip trådt i kraft 12.10.03. Formålt r å vrn dt ytr miljø vd å sikr tablring
DetaljerPEDAL. Trykksaker. Nr. 4/2011. Organ for NORSK T-FORD KLUBB NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO
PEDAL Nr. 4/2011 Organ for NORSK T-FORD KLUBB Trykksakr A NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO FORMANNENS ORD: Årts løpsssong r på hll. Vi har omtalt non vtranbilarrangmntr i Pdal Ford n,
DetaljerISE matavfallskverner
ISE matavfallskvrnr ... dn nklst vin til t praktisk og hyginisk kjøkkn l t h y h i l n k l h t h y g i n m i l j ø h y g i n m n k l h t i l j ø n k l h y g i n h t h y g m i l j i n ø k m n k i n l j
DetaljerMAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430
MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.
DetaljerLØSNING AV EKSAMEN I EMNE TKT 4123 MEKANIKK 2
LØSNNG A EKSAMEN EMNE TKT MEKANKK Tirsdag 6. ai 9 Oga F F F Dforasjon a innkragt bjk (tab 5 F F x og x, hor x r utsing E E t ti d tynn søyn og x r utsingt ti dn idtrst søyn. E Ech Dt gir: F x x og E Ec
DetaljerVi feirer med 20-års jubileumspakker på flere av våre mest populære modeller
r d i v r Vi klatr Vi firr md 20-års jubilumspakkr på flr av vår mst populær modllr Hyundai i40 stolt vinnr av EuroCarBody 2011 Fra 113g/km 0,43 l/mil Utdrag av utstyrsnivå i40 Prmium: Hyundai i40 I dn
DetaljerHJEMMEEKSAMEN FYS2160 HØSTEN Kortfattet løsning. Oppgave 1
HJEMMEEKSAMEN FYS16 HØSTEN Kortfttt løsning Oppgv 1 ) b = P b =P T b = P /Nk = T T c =T (isotrm) Adibtligningn P CP = P, = = C c c b b c = 1 P c c = Nc = N Pc = P 1 b) Forndring i indr nrgi: U = Nk( T
DetaljerJT 369 www.whirlpool.com
JT 369.hirlpool.com 1 INSTALLASJON FØR TILKOPLING KONTROLLER AT SPENNINGEN på typplatn stmmr md spnningn i strømnttt ditt hjmm. DU MÅ IKKE FJERNE BESKYTTELSESDEKSLENE for mikrobølgovnns luftinntak som
DetaljerLøsningsforslag til eksamen i MAT 1100 H07
Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver
Detaljerhele egg, verken med reduserte fysiske, sensoriske eller mentale evner, eller mangel
VIKTIGE SIKKERHETSANVISNINGER LESES NØYE OG OPPBEVARES FOR FREMTIDIG REFERANSE IKKE VARM OPP ELLER BRUK BRANNFAR- EGG LIGE MATERIALER i llr nær ovnn. IKKE BRUK MIKROBØLGE- Dampn kan forårsak brann llr
DetaljerTILBAKEBLIKK JORDBÆR SEPTEMBER ICDP: Tema 2: Juster deg til barnet og følg dets initiativ.
Liakrokn barnhag TILBAKEBLIKK JORDBÆR SEPTEMBER 2018 ICDP: Tma 2: Justr dg til barnt og følg dts initiativ Når du r sammn md barnt, r dt viktig at du r oppmrksom på hva barnt ønskr, hva dt gjør og hva
DetaljerDans i Midsund. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen
Dans i Midsund Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans dg glad Dans dg i form Jan Risbakkn Jan Risbakkn Parkvin
DetaljerGenerelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen
Gnrlt format på fil vd innsnding av ksamnsrsultatr og mnr til Eksamnsdatabasn Til: Lærstdr som skal rapportr ksamnsrsultatr på fil 1 Bakgrunn Gjnnom Stortingsvdtak r samtlig norsk lærstdr pålagt å rapportr
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.
DetaljerIR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer
Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare
DetaljerJT 366 www.whirlpool.com
JT 366.hirlpool.com NO 1 INSTALLASJON FØR TILKOPLING KONTROLLER AT SPENNINGEN på typplatn stmmr md spnningn i strømnttt ditt hjmm. DU MÅ IKKE FJERNE BESKYTTELSESDEKSLENE for mikrobølgovnns luftinntak som
DetaljerEksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG
Institutt for matematiske fag Eksamensoppgave i MA/MA6 Grunnkurs i analyse I. LØSNINGSFORSLAG Faglig kontakt under eksamen: John Erik Fornæss /Kari Hag Tlf: 464944/483988 Eksamensdato: 8. desember 5 Eksamenstid
DetaljerARSPLAN. Stavsberg barnehage
ARSPLAN Stavsbrg barnhag 2015 2016 ! a urr H Vi blir 20 år i dtt barnhagårt! Stavsbrg barnhag Vi r n hldagsbarnhag, som bl byggt høstn/vintrn 1995! Barnhagn åpnt 28.12.95. Fra august 2015 r dt 51 barn(andlr)
DetaljerLØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x
LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)
DetaljerHøgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x
Oppgåve a) i) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) ii) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) Sidan både teljar og nemnar
DetaljerTjen penger til klubbkassen.
DEL UT TIL LAGLEDEREN Tjn pngr til klubbkassn Slg kakr, llr, kjkssjokolad og knkkbrød! Total fortjnst: 35000 kr Vårn 2015 God og lttsolgt! Vi tjnt 32000,- Ls mr! En nkl måt å tjn 1000-vis av kronr Hvrt
DetaljerLøsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5
Løsning av utvalgte øvingsoppgaver til Sigma R kapittel 5 5.5 Ce kx y = kce kx Vi setter inn i y + ky og ser om vi får 0: 5.5 ax + a y = ax Vi setter inn i y 5.54 kce kx + k Ce kx = 0 x x + y: ax x(ax
DetaljerLøsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)
DetaljerTDT4195 Bildeteknikk
D495 Bildtknikk Grafikk Vår 9 Forlsning 6 Jo Skjrmo Jo.skjrmo@idi.ntn.no Dpartmnt of Comptr And Information Scinc Jo Skjrmo D495 Bildtknikk D495 Forrig gang Gomtrisk transformasjonr dl Basistransformasjonr
DetaljerTraversering av grafer
Trvrsring v grr Algoritmr og tstrukturr Øvingsorlsning 8 Trvrsring v grr Algoritmr og tstrukturr Øvingsorlsning 8 v Hnrik Grønch Agn Hvoror lær om grr Rprsntsjon v grr BFS DFS Topologisk sortring Øving
DetaljerLøsningsforslag til utvalgte oppgaver i kapittel 10
Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men
DetaljerTMA4240 Statistikk Høst 2013
TMA44 Statistikk Høst Norgs tkisk-aturvitskaplig uivrsitt Istitutt for matmatisk fag Øvig ummr, blokk II Løsigsskiss Oppgav a) Th probability is R.9.5 6x( x) dx = R.9.5 (6x 6x ) dx =[x x ].9.5 =.47. b)
DetaljerChristiania Spigerverk AS, Postboks 4397 Nydalen, 0402 Oslo BYGNINGSBESLAG
Christiania Spigrvrk AS, Postboks 4397 Nydaln, 0402 Oslo BYGNINGSBESLAG www.spigrvrkt.no www.gunnbofastning.com Bygningsbslag fra Christiania Spigrvrk AS Dimnsjonringsundrlag Bygningsbslag r produsrt av
DetaljerFaktor. Eksamen våren 2005 SØK 1003: Innføring i makroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto
Fakor -n ksamnsavis ugi av Paro ksamn vårn 2005 SØK 1003: Innføring i makroøkonomisk analys Bsvarls nr 1: OBS!! D r n ksamnsbvarls, og ikk n fasi. Bsvarlsn r un ndringr d sudnn har lvr inn. Bsvarlsn har
DetaljerLøsningsforslag Eksamen M100 Høsten 1998
Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim
DetaljerLØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005
LØSNINGSFORSLAG TMA45 Matematikk 8. August 5 Oppgave Vi introduserer funksjonen g(x, y, z) x +y z slik at flaten z x + y er gitt ved g(x, y, z). I dette tilfellet utgjør gradienten til g en normalvektor
DetaljerVT 265 VT 295. www.whirlpool.com
VT 265 VT 295.hirlpool.com 1 INSTALLASJON FØR TILKOPLING SJEKK AT SPENNINGEN på typplatn korrspondrr md spnningn dr du bor. DU MÅ IKKE FJERNE BESKYTTELSESDEKSLENE FOR MIK- ROBØLGEOVNENS luftinntak som
DetaljerÅRSRAPPORT FOR HOME-START FAMILIEKONTAKTEN TRONDHEIM 2010
ÅRSRAPPORT FOR HOME-START FAMILIEKONTAKTEN TRONDHEIM 2010 Dn først Hom- Start avdlingn i Norg bl startt opp i Trondhim i 1995, og vi har firt 15 års jubilum dtt årt. Avdlingn bl startt som t bydlstiltak,
DetaljerLøsningsforslag til prøveeksamen i MAT1100, H-14 DEL 1
Løsningsforslag til prøveeksamen i MT, H- DEL. ( poeng Hva er den partiellderiverte f y sin(xy cos(xy y sin(xy x sin(xy cos(xy xy sin(xy cos(xy y sin(xy + xy sin(xy når f(x, y = y cos(xy? Riktig svar:
DetaljerOPPGAVE 1 LØSNINGSFORSLAG
LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT - Grunnkurs i matematikk I torsdag 5.desember 20 kl. 09:00-4:00 OPPGAVE a Modulus: w = 2 + 3 2 = 2. Argument
DetaljerTFY4115: Løsningsforslag til oppgaver gitt
Institutt for fysikk, NTNU. Høsten. TFY45: Løsningsforslag til oppgaver gitt 6.8.9. OPPGAVER 6.8. Vi skal estemme Taylorrekkene til noen kjente funksjoner: a c d sin x sin + x cos x sin 3 x3 cos +... x
DetaljerLøsningsforslag til Eksamen i MAT111
Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse
DetaljerIR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer
Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke
DetaljerAMW 526 www.whirlpool.com
AMW 526.hirlpool.com 1 INSTALLASJON MONTERE APPARATET FØLG DEN VEDLAGTE gn montringsanvisningn når du skal installr apparatt. FØR TILKOPLING KONTROLLER AT SPENNINGEN på typplatn stmmr md spnningn i strømnttt
DetaljerProblem 1. Problem 2. Problem 3. Problem 4
Oppsummeringsproblemer som utgangspunkt til ekstraforelesninger i uke 48 i emnet MAT111, høsten 2008 Problem 1 Bruk den formelle definisjonen av grenseverdi til å vise at x 4 1 x 1 x + 1 = 4. Problem 2
DetaljerGrunntall 10 Kapittel 2 Algebra Fordypning
Grunntll 0 Kpittl Algr Forypning Kvrtstningn Fsit: I t kvrt r ll sin lik lng. Vi innr rlt v kvrtt v å multiplisr n si m sg slv. Dtt r t smm som å opphøy t tll i nr potns. Å opphøy t tll i nr potns klls
DetaljerEKSAMEN Løsningsforslag
EKSAMEN Løsnngsorslag Emnkod: ITD Dato:. dsmbr Emn: Matmatkk Eksamnstd:.. Hjlpmdlr: To A-ark md valgrtt nnhold på bgg sdr. Formlht. Kalkulator r kk tllatt. Faglærr: Chrstan F Hd Eksamnsoppgavn: Oppgavsttt
DetaljerTMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2
TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x
DetaljerHøring - regional vannforvaltningsplan med tilhørende tiltaksprogram og tiltakstabell
HOVEDKONTORET S list ovr mottakr Drs rf.: Vår rf.: 2014/2096-4 Arkiv nr.: 413.1 Saksbhandlr: Elisabth Voldsund Andrassn Dato: 19.12.2014 Høring - rgional vannforvaltningsplan md tilhørnd tiltaksprogram
DetaljerLangnes barnehage 2a rsavdelinga. Ma nedsbrev & plan for april 2016.
Langns barnhag 2a rsavdlinga. Ma ndsbrv & plan for april 206. Barngruppa i måndn som har gått. Vi har hatt n jmpfin månd md my godt vær ndlig har vi bgynt å s t hint av vår, no som har gjort dt mulig for
DetaljerOppgavesettet har 10 punkter 1, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen.
NTNU Institutt for matematiske fag SIF55 Matematikk 2 4. mai 999 Løsningsforslag Oppgavesettet har punkter, 2ab, 3ab, 4ab, 5abc som teller likt ved bedømmelsen. i alternativ (3, ii alternativ (2. 2 a For
DetaljerTjen penger til klubbkassen.
DEL UT TIL LAGLEDEREN Tjn pngr til klubbkassn Slg kakr, llr, kjkssjokolad og knkkbrød! Antall salgspriodr: 3 Total fortjnst: 32000 kr Høstn 2014 God og lttsolgt! Vi tjnt 25000,- Ls mr! En nkl måt å tjn
DetaljerEksamen i MAT1100 H14: Løsningsforslag
Eksamen i MAT H4: Løsningsforslag Oppgave. ( poeng) Dersom f(x, y) x sin(xy ), er f y lik: A) sin(xy ) + xy cos(xy ) B) x cos(xy ) C) x y cos(xy ) D) sin(xy ) + x y cos(xy ) E) cos(xy ) Riktig svar: C):
DetaljerAnbefalte oppgaver - Løsningsforslag
Anbefalte oppgaver - Løsningsforslag Uke 6 12.6.4: Vi finner først lineariseringen i punktet (2, 2). Vi har at Lineariseringen er derfor 2x + y f x (x, y) = 24 (x 2 + xy + y 2 ) 2 2y + x f y (x, y) = 24
DetaljerTMA4100 Matematikk1 Høst 2009
TMA400 Matematikk Høst 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 8926 Vi serieutvikler eksponentialfunksjonen e u om u 0 og får e u + u +
DetaljerBYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8
Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)
DetaljerLøsningsforslag til eksamen i MAT 1100, H06
Løsningsforslag til eksamen i MAT, H6 DEL. poeng Hva er den partiellderiverte f z xyz cosxyz x sinyz + xyz cosyz xy cosyz x sinyz + xz cosyz cosyz xyz sinyz når fx, y, z = xz sinyz? Riktig svar b: x sinyz
DetaljerLØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 19. desember 2006 Tid: kl. 09:00-13:00
Sid a 7 NORGES EKNISK-NAURVIENSKAPELIGE UNIVERSIE (NNU) - RONDHEIM INSIU FOR ENERGI OG PROSESSEKNIKK LØSNINGSFORSLAG EKSAMEN EP 40 ERMODYNAMIKK irsdag 9. dsmbr 006 id: kl. 09:00 - :00 OPPGAVE (0%) a) rmodynamikkns.
DetaljerProduktspesifikasjon J100 Kartdata, versjon desember 2013. Produktspesifikasjon: J100 Kartdata
Produktspsifikasjon: J100 Kartdata Norsk Polarinstitutt Vrsjon dsmbr 2013 Norsk Polarinstitutt Sid 1 1 Innldning, historikk og ndringslogg... 3 1.1 Historikk og status... 3 2 Ovrsikt ovr produktspsifikasjonn...
Detaljer