16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt.
|
|
- Flemming Aronsen
- 7 år siden
- Visninger:
Transkript
1 Fasit Eksamn MAT Høstn 7 Oppgav Gitt punktn i koordinatsstmt: A (,, ) B (, 3, ) og C (,, ) AB + AC a) Bstm og AB AC Bstm vinkln A i trkantn ABC BC AB AC [,,] + [,, ] [9,, ] 3,, BC ( ) ( ) + + AB AC [,, ] [,, ] Drmd A 9 En vktor r gitt vd: n [,,] Vis at n står normalt på bgg vktorn AB og AC (dt vil si n AB ogn AC) Stt opp ligningn til t plan som går gjnnom punktn A, B og C n AB [,,] [,,] n AC [,,] [,, ] Plant gjnnom A, B og C: ( ) ( ) + ( z ) z ( + ) c) i) Rgn ut aralt til trkantn ABC vd hjlp av aral stning: A AB AC sin A ii) Bstm avstandn fra hjørnt A til sidn BC (hødn i trkantn ABC) Hint cii) Du kan bntt formln for aralt til trkantn ABC: A h BC dr h skal bstmms 9 A AB AC sin A 3 3, A h BC h 8 h, 8 Oppgav En funksjon f r dfinrt vd: f ( ) ; < a) Finn f ( ) Avgjør hvor funksjonn voksr og hvor funksjonn avtar f ( ) ( ) f ( ) 3 Funksjonn strngt stignd når > og strngt avtagnd når < < Bstm funksjonns vntull lokal og global maksimums- og minimumspunkt f (),85 f () 3, r globalt minimumspunkt og r lokalt maksimumspunkt
2 Oppgav 3 Bstm grnsvrdin: 3 ' 3 L Hopital 3 3 a) lim lim sin( ) cos( ) lim lim c) Finn Talor-polnomt F ( ) av andr grad til funksjonn f ( ) ln( + ) om f () F ( ) f () + f ()( ) + ( )! f ( ) ln( + ) f () f ( ) f () + f ( ) f () F( ) + ( ) d) Skriv funksjonn: g ( t) cos 9t 3sin 9t på formn f ( t) C cos9( t t ) Bstm C og t a cosωt + bsinωt C cos ω( t t) dr C a + b og tan( ω t) ( ) f t cos9t 3sin 9t C cos9( t t ) 3 3 C ( ) + ( 3) 5 9 Oppgav Bstm dn gnrll løsningn til følgnd diffrnsial likningr: dn d N N a) dt d N() () dn a) N N N( N ) a, A, B dt N( t),gitt N() k, N( t) t + k + k + tan(9 t) t (tan ( ) + π ), 5, d cos( ) d d cos( ) sin( ) sin( ) C d + C + llr Gitt () C og drmd sin( ) sin ( ) b a cos( ) t
3 c) En litrs tank r flt md % saltlak, dt vil si, lakn innholdr kg salt pr litr Vd tidn t bnnr man å tilfør,3 % salt lak md n hastight på litr/min Innholdt i tankn blands godt hl tidn, slik at vi kan anta at saltlakn r lik strk ovralt i tankn til nhvr tid Samtidig rnnr dt litr/min av dn blandnd lakn ut av tankn Man kan still opp følgnd diffrnsial likning for saltmngdn, S( t ), i tankn ds S dt Gitt S () Løs diffrnsiallikningn og bstm hvor lng tar dt før dt r 5 kg salt i tankn d at b Tp II: a + b ( t) C dt a ds S as b a, b, dt + t, t S( t) C C +, Gitt S() S() C +, C 39, S( t) 39, t +, t, S( t?) 5 S( t) 39, +, 5 t ln, 8, 39, Dt tar ca,8 min Oppgav 5 Løs intgralr: a) cos ( + sin ) 5 a) cos ( + sin ) d ( + sin ) + C 5 ' v ln d ln ln ln ln (ln ) d d du + C + C u 5 ' v u 5 c) En bdrift hadd n omstning på, milliardr i bgnnlsn av år 8 (t ) Dt r forvntt n årlig vkst på 5% i omstningn pr år i d nst 5 årn Bstm vha intgrasjon bdriftns forvntt samld omstning i sluttn av årt i) f ( t ),(,5) t dr t 5 (,5), ii) t, (,5) t dt, (,5 ), ln(,5) ln(,5) milliardr
4 a) f f Oppgav Gitt funksjonn: f (, ) a) Bstm partill drivrt av og ordn ( f, f, f, f og f ) Funksjonn har tt stasjonært punkt Bstm dtt punktt og avgjør om dt r lokalt minimum, lokalt maksimum llr ingn av dln c) Finn likningn for tangntplant i punktt dr (,, z ) (,, f (,)) f f + f f Lokalisring: f f + Karaktrisring: f f ( f ) 8 > og f > (, ) r t lokalt minimumspunkt c) Ligningn til Tangntplan: z z f ( ) + f ( ) P P ( ) ( ) ( ) z f, 9 z z Oppgav 7 I t laboratorium for mikrobiologi r dt to apparatr som tllr baktrir i ulik prøvr Dt n apparatt, A, kan btjns av studntr og krvr kort opplæringstid Dt andr apparatt, B, må btjns av n tknikr Laboratorit skal gransk ulik prøvr og har maksimalt 5 timr på dtt arbidt: Vd hjlp av opplsningn i tablln ndnfor kan man finn hvor lng hvrt apparat må disponrs for at lønnskostnadn skal bli lavst mulig Apparat Antall prøvr som tlls pr tim Timlønn for opratør Antall tll timr A B 8 Vd hjlp av opplsningn kan stills opp følgnd ulikhts sstm: +, + 5, a) Tgn områdt i plant avgrnst av ulikhtn Bstm all hjørnr i dtt områdt Lønnskostnad brgningn r å minimr P + 8 Hvor stor r lønnskostnadn i dtt tilfllt? a) Grafn til områdt (nst sid) Hjørnr: (, ) (5, ) (, ) og skjæringspunktt mllom linjn r : (75, 75)
5 f (, ) + 8 f (,) + 8 f (5, ) f (,) + 8 f (75, 75) Lavst kostnad r når d tar 75 timr hvr og lønnskostnadn r da kr (bmrk at slv om 5 r lavst kostand, mn (5, ) gir ikk mulight for å gransk prøvr
Løsningsforslag til eksamen
8. januar 6 Løsningsforslag til ksamn Emnkod: ITD Dato: 7. dsmbr Hjlpmidlr: Emn: Matmatikk først dlksamn Eksamnstid: 9.. Faglærr: To -ark md valgfritt innhold på bgg sidr. Formlhft. Kalkulator r ikk tillatt.
DetaljerLøsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1
Løsningsforslag til ksamn i MAT, 8/- Dl. (3 pong) Intgralt x x dx r lik: x x x + C x x + C x 3 3 x + C x / + C x x x3 3 x + C Riktig svar: a) x x x + C. Bgrunnls: Brukr dlvis intgrasjon md u = x, v = x.
Detaljer16 Integrasjon og differensiallikninger
Løsning til KONTROLLOPPGAVER Sinus Forkurs 6 Intgrasjon og diffrnsiallikningr OPPGAVE a) Vi sttr u cos. Da r du sin d du sin d sin d du sin d cos = u u Vi sttr inn igjn u cos og får sin d cos = du u du
DetaljerEKSAMEN Løsningsforslag
. juni 7 EKSAMEN Løsningsorslag Emnkod: ITD Emnnavn: Matmatikk ørst dlksamn Dato: 6. juni 7 Hjlpmidlr: - To A-ark md valgritt innhold på bgg sidr. - Formlht. - Kalkulator som dls ut samtidig md oppgavn.
DetaljerEKSAMEN Ny og utsatt Løsningsforslag
9. juni 5 EKSAMEN N og utsatt Løsningsorslag Emnkod: ITD5 Dato: 4. juni 5 Hjlpmidlr: Emn: Matmatikk ørst dlksamn Eksamnstid: 9.. Faglærr: - To A4-ark md valgritt innhold på bgg sidr. - Formlht. Christian
DetaljerEmnenavn: Eksamenstid: Faglærer: Christian F Heide
EKSAMEN Emnkod: ITD503 Emnnavn: Mmikk andr dlkamn Do: 20. mai 209 Hjlpmidlr: Ekamntid: 09.00 2.00 Faglærr: To A4-ark md valgfritt innhold på bgg idr. Formlhft. Kalkulor om dl ut amtidig md oppgavn. Chritian
DetaljerFlere utfordringer til kapittel 1
KAPITTEL 1 ALGERBA Oppgav 1 Rgn ut uttrykkn. a 6 (4 2) c 6 4 6 2 b 5 (10 7) d 5 10 5 7 Oppgav 2 Rgn ut uttrykkn. a 2 (3 4) c (2 3) 4 b 5 (6 7) d (5 6) 7 Oppgav 3 Rgn ut uttrykkn. a 25 (3 + 7) c 25 3 7
DetaljerLøsningsforslag Eksamen 8. august 2007 TFY4250 Atom- og molekylfysikk
Eksmn TFY45 8 ugust 7 - løsningsforslg Oppgv Løsningsforslg Eksmn 8 ugust 7 TFY45 Atom- og molkylfysikk I grnsn V r potnsilt V x t nklt bokspotnsil md vidd, V V for < x < og undlig llrs Dn normrt grunntilstndn
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Dt matmatisk-natuvitnskaplig fakultt Eksamn i MAT-INF 00 Modlling og bgning. Eksamnsdag: Fdag 6. dsmb 0. Tid fo ksamn: 9:00 :00. Oppgavsttt på 8 sid. Vdlgg: Tillatt hjlpmidl: Fomlak.
DetaljerGrafer og trær. MAT1030 Diskret matematikk. Eksempel. Eksempel. Forelesning 28: Grafer og trær, eksempler
MAT1030 Diskrt matmatikk Forlsning 28:, ksmplr Dag Normann Matmatisk Institutt, Univrsittt i Oslo 5. mai 2008 I dag skal vi s på n rkk ksmploppgavr, og gjnnomgå løsningn på tavla. All ksmpln r oppgavr
DetaljerEKSAMEN løsningsforslag
. mai EKSAMEN løningforlag Emnkod: ITD5 Emnnavn: Mamaikk andr dlkamn Dao:. mai Hjlpmidlr: - To A-ark md valgfri innhold på bgg idr. - Formlhf. - Kalklaor om dl amidig md oppgavn. Ekamnid: 9.. Faglærr:
DetaljerMer øving til kapittel 1
Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og = 10 + + + + + d + + Oppgv Rgn ut når t = 5, s = 10 og v = st st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4, = 5, z = og w =. zw
DetaljerNicolai Kristen Solheim
Oppgave 1. 1a) 1, 0, 2, sin 5 4cos sin 54cos sin 8 sin cos cos 54cos 8 sin cos 5cos 4cos 8sin cos 5cos 4cos Dersom vi plotter grafen for vil vi se hvor vokser og avtar. 1 Fra grafen for ser vi følgende
Detaljermed en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med
Lsningsantydning til kontinuasjonsksamn i 45060 Systmring Tirsdag 23. august 994 Kl. 0900 { 300 3. august 994 Oppgav, 5% S sidn 346 og 349: Dlsystmstruktur En oppdling av systmt i n mngd dlsystmr, sammn
DetaljerMer øving til kapittel 1
Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og c = 10 + c c c + c + + c + c d + c + c Oppgv Rgn ut når t = 5, s = 10 og v = st c st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4,
DetaljerMA1102 Grunnkurs i analyse II Vår 2014
Norgs tkiskaturvitskaplig uivrsitt Istitutt for matmatisk fag MA Grukurs i aalys II Vår 4 Løsigsforslag Øvig 8.8. a) Vi har fuksjo f(). Vi skal taylorrkk til f i puktt, kovrgsitrvallt til d rkk, og vis
DetaljerOptimal pengepolitikk hva er det?
Faglig-pdagogisk dag 2009, 5 januar 2009 Optimal pngpolitikk hva r dt? Av Pr Halvor Val* * Førstamanunsis vd Institutt for økonomi og rssursforvaltning (IØR), UMB, 1. Norsk pngpolitikk - t lit tilbakblikk
DetaljerOppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e
Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 98, B 1 % 95,89 C 1 3 5 % 17,99 D 1 4 6 % 113,93 a) Vi finnr nullkupongrntn slik: R 1 = 98. R 1 = 95.89 =.98 R = ln.98
DetaljerFYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4
FYS2140 Kvantfysikk, Oblig 10 Sindr Rannm Bildn,Grupp 4 23. april 2015 Obligr i FYS2140 mrks md navn og gruppnummr! Dtt r nok n oblig som drir sg om hydrognatomt og r n dl av n tidligr ksamnsoppgav. Oppgav
DetaljerOppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74
Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 97,53 B 1 % 94,74 C 1 3 3 % 1,19 D 1 4 4 % 13,3 a) Vi finnr nullkupongrntn slik: R 1 = 97.53 R 1 = 94.74 =.9753 R =
DetaljerOppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y =
MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. ) Oppgavr fra boka: Oppgav 2. (utg. 9) Modll: Y = µ Y x,x 2 + ε = β 0 + β x + β 2 x 2 + ε, dvs md n obsrvasjonr får vi n ligningr Y = β
DetaljerLØSNINGSFORSLAG EKSAMEN TEP 4115 TERMODYNAMIKK 1 Mandag 30. mai 2005 Tid: kl. 09:00-13:00
Sid 1 a 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 4115 TERMODYNAMIKK 1 Mandag 0. mai 005 Tid: kl. 09:00-1:00
DetaljerFAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVESITETET I AGDE Gimsta E K S A M E N S O P P G A V E : FAG: MA-9 Matmatikk LÆE: P Hnik Hogsta Klass: Dato:..7 Eksamnsti a-til: 9.. Eksamnsoppgavn bstå av ølgn Antall si: 6 inkl. osi vlgg Antall oppgav:
DetaljerFAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERITETET I AGDER Gimstad E K A M E N O P P G A V E : AG: MA-9 Matmatikk ÆRER: P Hnik Hogstad Klass: Dato:.. Eksamnstid, fa-til: 9.. Eksamnsoppgavn bstå av følgnd Antall sid: 6 inkl. fosid vdlgg Antall
DetaljerEKSAMEN Løsningsforslag
EKSAMEN Løningforlag 8. juni Emnkod: ITD5 Dao: 6. mai Emn: Mamaikk Ekamnid:.. Hjlpmidlr: - To A-ark md valgfri innhold på bgg idr. - Formlhf. Faglærr: Chriian F Hid Kalkulaor r ikk illa. Ekamnoppgavn:
DetaljerI et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x Y = ax + b:
OPPGAVE I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x 7 74 546 y 48 6 45 a) Plott Y ln y mot X ln x i et rettvinklet koordinatsystem. ) Finn en lineær sammenheng mellom
DetaljerEKSAME SOPPGAVE MAT-0001 (BOKMÅL)
EKSAME SOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : Tirsdag 21. februar 2012. Tid : 09.00-13.00. Sted: : Adm. bygget, B154. Tillatte hjelpemidler : Alle trykte og skrevne.
DetaljerGrunntall 10 Kapittel 2 Algebra Fordypning
Grunntll 0 Kpittl Algr Forypning Kvrtstningn Fsit: I t kvrt r ll sin lik lng. Vi innr rlt v kvrtt v å multiplisr n si m sg slv. Dtt r t smm som å opphøy t tll i nr potns. Å opphøy t tll i nr potns klls
DetaljerØvinger uke 42 løsninger
Øvingr u løsningr Oppgav Når n potnsr r gomtris finnr u summn og onvrgnsområt irt fra forml. Når ra i r gomtris lønnr t sg å ta utgangspunt i n nærliggn gomtris r og tn lvis rivasjon llr intgrasjon av
DetaljerKONTINUASJONSEKSAMEN I EMNE TDT4195 BILDETEKNIKK MANDAG 6. AUGUST 2007 KL LØSNINGSFORSLAG - GRAFIKK
Sid av 7 NTNU Norgs tknisk-naturvitnskapig univrsitt Fakutt for informasjonstknoogi, matmatikk og ktrotknikk Institutt for datatknikk og informasjonsvitnskap KONTINUASJONSEKSAEN I ENE TDT495 BILDETEKNIKK
DetaljerLøsningsforslag sist oppdatert
Løsningsfoslag sist oppdatet.. BOKMÅL Oppgave En funksjon f e definet i intevallet ved f ( ) ( ) e a) Finn f ( ). Avgjø hvo funksjonen e stigende og hvo funksjonen e avtagende. Bestem funksjonens eventuelle
DetaljerBesøk fra Nannestad vgs. Absorpsjon av gamma. Jon Petter Omtvedt 8. November 2018
Bsøk fra Nannstad vgs Absorpsjon av gamma Jon Pttr Omtvdt 8. Novmbr 08 Timplan 08:5 Vlkommn 08:0 Hvordan vkslvirkr gammastråling? 09:00 Måling av absorpsjon i bly og marsjord Grupp : Blir md nd til laboratorit
DetaljerKorreksjoner til fasit, 2. utgave
Korreksjoner til fasit,. utgave Kapittel. Oppgave.. a): / Oppgave.. e):.887, 0.58 Oppgave..9: sin00πt). + ) x Oppgave.7.5 c): ln for 0 < x. x Oppgave.8.0: Uttrykket for a + b) 7 skal være a + b) 7 = a
DetaljerDans i Midsund. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen
Dans i Midsund Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans dg glad Dans dg i form Jan Risbakkn Jan Risbakkn Parkvin
DetaljerTillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1. 2 x
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Brukerkurs i matematikk Mandag 4. desember 9, kl. 9-4 BOKMÅL Tillatte hjelpemidler: Lærebok og kalkulator i samsvar
DetaljerBLOcks SUbstitution Matrices. Substitusjonsmatrisen BLOSUM og tilfeldig gange. Blokk. Eksempel på fire av blokkene fra Heinkoff & Heinkoff s database
LOcks SUbstitution Matrics Substitusjonsatrisn LOSUM og tilflig gang Hinkoff & Hinkoff 992 Skåringsatrisn brgns so logaritn til n liklioo ratio. yggr IKKE på n volusjonær oll Liklioon basrr sg n og aln
DetaljerEKSAMENSOPPGAVE. KalKUlator som ikke kan kommunisere med andre. Tabeller O.R; formelsa~~er -
I I høgskln i sl EKSAMESPPGAVE Emn: Fysikalsk kjmi Grupp(r): 2KA Eksamnsppgavn bstår av: Antall sidr (inkl frsidn): 4+1 Emnkd: L040IK Dat: 08.06.04 Antall ppgavr: 5 Faglig vildr Ingrid Gigstad Eksamnstid
DetaljerKONTINUASJONSEKSAMEN I EMNE TDT4195/SIF8043 BILDETEKNIKK MANDAG 2. AUGUST 2004 KL LØSNINGSFORSLAG - GRAFIKK
Si av 9 TU ogs tknisk-natuvitnskalig univsitt Fakultt fo infomasjonstknologi, matmatikk og lktotknikk Institutt fo atatknikk og infomasjonsvitnska KOTIUASJOSEKSAE I EE TDT95/SIF83 BILDETEKIKK ADAG. AUGUST
DetaljerKRAVFIL TIL KREDITORFORENINGEN [Spesialrapport]
KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R124 KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] Bskrivls sist rvidrt: År: 2008. Månd: 10. Dag: 01. KRAVFIL
DetaljerMundell-Fleming modellen ved perfekt kapitalmobilitet 1
Mundll-Flming modlln vd prfkt kapitalmobilitt 1 Stinar Holdn, 4. august 03 Kommntarr r vlkomn stinar.holdn@con.uio.no Mundll-Flming modlln vd prfkt kapitalmobilitt... 1 Kapitalmobilitt og rntparitt...
DetaljerSøknad om Grønt Flagg på Østbyen skole
Søknad om på Østbyn skol Østbyn skol startt opp md i 2007, og har sidn da vært n Grønt Flagg-skol som r opptatt av miljø Skoln hatt n dl utfordringr dt sist årt, som har gjort dt vansklig å følg opp intnsjonn
DetaljerKRAVFIL TIL KREDINOR [Spesialrapport]
KRAVFIL TIL KREDINOR [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R104 KRAVFIL TIL KREDINOR [Spsialrapport] Bskrivls sist rvidrt: År: 2009. Månd: 10. Dag: 05. KRAVFIL TIL KREDINOR [Spsialrapport]
DetaljerGenerelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen
Gnrlt format på fil vd innsnding av ksamnsrsultatr og mnr til Eksamnsdatabasn Til: Lærstdr som skal rapportr ksamnsrsultatr på fil 1 Bakgrunn Gjnnom Stortingsvdtak r samtlig norsk lærstdr pålagt å rapportr
DetaljerTDT4195 Bildeteknikk
D495 Bildtknikk Grafikk Vår 9 Forlsning 6 Jo Skjrmo Jo.skjrmo@idi.ntn.no Dpartmnt of Comptr And Information Scinc Jo Skjrmo D495 Bildtknikk D495 Forrig gang Gomtrisk transformasjonr dl Basistransformasjonr
DetaljerProduktspesifikasjon J100 Kartdata, versjon desember 2013. Produktspesifikasjon: J100 Kartdata
Produktspsifikasjon: J100 Kartdata Norsk Polarinstitutt Vrsjon dsmbr 2013 Norsk Polarinstitutt Sid 1 1 Innldning, historikk og ndringslogg... 3 1.1 Historikk og status... 3 2 Ovrsikt ovr produktspsifikasjonn...
DetaljerTillatt utvendig overtrykk/innvendig undertrykk
Tillatt utvndig ovrtrykk/innvndig undrtrykk For t uffrør vil ttningsringns vn til å tål undrtrykk oft vær dinsjonrnd. I t rør so blasts d t jvnt utvndig trykk llr innvndig undrtrykk vil dt oppstå spnningr,
DetaljerUniversitetet i Oslo Det matematisk-naturvitenskapelige fakultet
Univrsittt i Oslo Dt matmatisk-naturvitnskaplig fakultt Eksamn i: FYS60 Trmodynamikk og statistisk fysikk Dato: Tirsdag 9 dsmbr 003 Tid for ksamn: 0900-00 Oppgavsttt: 3 sidr Tillatt hjlpmidlr: Elktronisk
DetaljerUTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT
UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT - Sid 1 / 12 MR01 UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT Bskrivls sist rvidrt: År: 2007. Månd: 08. Dag: 28. UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT Hnsikt Formålt
Detaljer1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040?
OPPGAVE Den. januar 0 satte Ola Normann 00 tusen kroner på en bankkonto med faste renter 3% per år. Han planlegger å ta ut halvparten av rentebeløpet den. januar hvert år, og å legge kontantene til et
DetaljerDenne rapporten er erstattet av en nyere versjon. FFI-rapport 2006/02989
FFI RAPPORT RISIKOVURDERING AV FORSVARETS BRUK AV HVITT FOSFOR I TROMS md tillggsnotat FFI/NOTAT-2006/00512: Analystknisk problmr vd bstmmls av konsntrasjonn til hvitt fosfor i vann STRØMSENG Arnljot Enrid,
DetaljerHJEMMEEKSAMEN FYS2160 HØSTEN Kortfattet løsning. Oppgave 1
HJEMMEEKSAMEN FYS16 HØSTEN Kortfttt løsning Oppgv 1 ) b = P b =P T b = P /Nk = T T c =T (isotrm) Adibtligningn P CP = P, = = C c c b b c = 1 P c c = Nc = N Pc = P 1 b) Forndring i indr nrgi: U = Nk( T
DetaljerRetningslinjer for klart og tydelig språk i Statens vegvesen
Rtningslinjr for klart og tydlig språk i Statns vgvsn vgvsn.no EN KLAR TEKST Slik skrivr vi klar og tydlig tkstr: 1. Vi sørgr for at lsrn får dn informasjonn d trngr ikk mr, ikk mindr. 2. Vi startr tkstn
DetaljerEldre i Verdal Muligheter Rettigheter Aktiviteter/tilbud
Eldr i Vrdal Mulightr Rttightr Aktivittr/tilbud Eldrrådt Omsorg og vlfrd Omsorg og vlfrd i Vrdal r dlt inn i to virksomhtsområdr: Øra omsorg-og vlfrdsdistrikt Vinn og Vuku omsorg-og vlfrdsdistrikt Hva
DetaljerÅRSRAPPORT FOR HOME-START FAMILIEKONTAKTEN TRONDHEIM 2010
ÅRSRAPPORT FOR HOME-START FAMILIEKONTAKTEN TRONDHEIM 2010 Dn først Hom- Start avdlingn i Norg bl startt opp i Trondhim i 1995, og vi har firt 15 års jubilum dtt årt. Avdlingn bl startt som t bydlstiltak,
Detaljer1 MAT100 Obligatorisk innlevering 1. 1 Regn ut i) iii) ii) Regn ut i) ii)
1 MAT1 Obligatorisk innlevering 1 1 Regn ut 3 7 + 1 2. i) 13 14 ii) 11 14 iii) 9 14 2 Regn ut 8 9 + 3 4. i) 57 36 ii) 59 36 iii) 61 36 3 Regn ut 1 4 + 1 8. i) 3 16 ii) 3 8 iii) 5 8 4 Regn ut 1 8 + 1 16.
DetaljerMuntlig eksamensøvelse. På en muntlig eksamen hjelper det ikke å kunne tenke svaret. Det må sies.
FYS3 9 Uk 39 Oppgvr md løsningsforslg 39. Lplc spørsmål om polr LR og LRC... 39. Lplc rnsformson * sin... 39.3 LP-filr Konsrukson og nlys. s ksir md n dl puls... 5 39.6 Fourirrnsformson v rmp puls... 9
DetaljerLøsning til seminar 5
Løsning til sminar 5 Oppgav i) risnivå og BN -modlln inkludrr tilbudssida i n utvida IS LM/RR-modll, og inkludrr drmd prisffktr. Endringr i prisn kan påvirk BN gjnnom to hovdkanalr. For dt først kan t
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerENKELT, TRYGT OG LØNNSOMT!
Utli av fritidsindom: ENKELT, TRYGT OG LØNNSOMT! NYTT GRAM O R P S L E D FOR E R E: FOR UTLEI ort r på ssongk s ri p d o g Svært gsstdr n ri rv s å p t Rabat ulightr m s g in n j t n God in g rkdsavdlin
DetaljerKap. 2 DIMENSJONERINGSPRINSIPPER. Kap. 2 DIMENSJONERINGSPRINSIPPER INNHOLD
Kap. DIMNSJONRINGSPRINSIPPR INNHOLD. Innldning. lting vd nakst spnningstilstand. lting vd to akst spnningstilstand. Mohrs sirkl 5. lthpotsr Når bgnnr flting? 6. Inhomogn spnningstilstand MSK0 Maskinkonstruksjon
DetaljerVisma Flyt skole. Foresatte
Visma Flyt sol Forsatt 1 Forsatt Visma Flyt Sol sist ndrt: 30.11.2015 Innhold Vitig informasjon til Innlogging:... 3 all forsatt Ovrsitsbildt... 4 Forløpig i tilgjnglig Samty... for forsatt 5 Info/forsatt...
DetaljerForelesning uke 36 Laplace v(t)=u(t)*vb. u(t) er en nyttig funksjon. kan brukes til å modulere et batteri med bryter. Signalbyggesett. t=0.
Forlning uk 6 aplac 9 ut r n nyttig funkon vt=ut*vb kan bruk til å modulr t battri md brytr. Signalbyggtt t= d t t ut -ut-d d ut -ut-d Ekmpl på andr mulghtr Figur. Mang ulik ignalr kan lag av trinnfunkonn.
DetaljerDans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen
Dans Dans Dans Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans for voksn Dans dg glad Dans dg i form Jan Risbakkn Jan
DetaljerUke Område Kompetansemål Delmål/læringsmål Læremiddel/lærever k/ metode 2 u k e r. Kunne lese og bruke papirbaserte og digitale kart
ÅRSPLAN Tinn: 5 Piod: Høst og vå U Omåd Komptansmål Dlmål/læingsmål Læmiddl/læv / mtod Kat og od Fag vis fosjll Himmltning Atlas Et synlig tntt Kat på data Knn ls og b papibast og digital at Kat Om attgn
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte
DetaljerDisse strømforhold og strømretninger kan vi regne ut med metodene nedenfor.
3.6 KOPLNGE MED ASYMETSKE ENEGKLDE 3.6 KOPLNGE MED ASYMMETSKE ENEGKLDE Nå fl spnningskild ll ngikild koplt sammn og ha foskjllig ind sistans og lktomotoisk spnning dt asymmti. Dt fl mtod som kan bnytts
DetaljerFORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG
OREENINGNOAER I INORMAJONØKONOMI Gir B. Ashim, vårn 2001 (oppdatrt 2001.03.27. 3. UGUNIG UVAG Agntn har privat informasjon om rlvant forhold før kontrakt inngås. Undr symmtrisk informasjon vill kontraktn
DetaljerFelt P, Budor Nord. byggeklare tomter i vakre omgivelser
r s i l n! Ra rømm d hytt Flt P, Budor Nord byggklar tomtr i vakr omgivlsr 1 g d s o k u d n a k r H t r å l h 2 Vlkommn til Budor Md 1,5 tim kjørtid fra Oslo og 1 tim fra Gardrmon har Budor forstrkt sin
DetaljerHvite STUNDER 2017/2018. snøredska ST 1151E ,- oppgavene ,-
Hvit STUNDER 2017/2018 n g til vintr Forbrd d s ulik md STIGA pr snørdska øryddr, Elktrisk sn ST 1151E. 1.990,- - for d s ST 5266 PB. oppgavn tor 15.900,- www.stiga.no Ny gnrasjon snøfrsr! Invstr i n godt
DetaljerLØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 19. desember 2006 Tid: kl. 09:00-13:00
Sid a 7 NORGES EKNISK-NAURVIENSKAPELIGE UNIVERSIE (NNU) - RONDHEIM INSIU FOR ENERGI OG PROSESSEKNIKK LØSNINGSFORSLAG EKSAMEN EP 40 ERMODYNAMIKK irsdag 9. dsmbr 006 id: kl. 09:00 - :00 OPPGAVE (0%) a) rmodynamikkns.
DetaljerOppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab.
EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : tirsdag 4. desember 2012. Tid : 09.00-13.00. Sted: : Åsgårdvegen 9. Tillatte hjelpemidler : Alle trykte og skrevne.
DetaljerLØSNINGSFORSLAG TIL EKSAMEN AUGUST 2006
NTNU Norgs tknisk-naturvitnskaplig univrsitt Fakultt for naturvitnskap og tknologi Institutt for matrialtknologi Sksjon uorganisk kjmi TMT4110 KJEMI LØSNINGSFORSLAG TIL EKSAMEN AUGUST 2006 OPPGAVE 1 a)
DetaljerFasit, Kap : Derivasjon 2.
Ukeoppgaver, uke 37, i Matematikk 10, Kap. 3.5-3.8: Derivasjon. 1 Fasit, Kap. 3.5-3.8: Derivasjon. Oppgave 1 a) f (x) =x. Denne eksisterer over alt (det er vanligvis punkter med null i nevner som kan skaffe
Detaljerdg = ( g P0 u)ds = ( ) = 0
NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
DetaljerForoppgave i usikkerhetsanalyse Viskositet i glyserol
Oppgav 1 Lab i TFY4180 Foroppgav i usirhtsanalys Visositt i glysrol Institutt for fysi, NTNU 0B1. Innldning Hnsitn md dnn oppgavn r først og frmst å få øvls i analys av filildr og filforplanting. Måling
DetaljerLøsningsforslag for Eksamen i MAT 100, H-03
Løsningsforslag for Eksamen i MAT, H- Del. Integralet cos( ) d er lik: Riktig svar: b) sin( ) + C. Begrunnelse: Vi setter u =, du = d og får: cos( ) d = cos u du = sin u + C = sin( ) + C. Integralet ln(
Detaljerbrostein Det bor en nisse i oss alle Naturlig å dele mine erfaringer
brostin Bymisjonsmagasint www.bymisjon.no/drammn 5. årgang novmbr 2011 Dt bor n niss i oss all Torbjørn Andras Pttrsn har gjnnom t langt yrksliv som politimann blitt t kjnt ansikt i Drammn, mn d sist årn
DetaljerKonkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år.
Lærrvildning: Aksjon boligbrann Konkurrans for all skolklassr på llotrinnt: Saarbidsgruppa for brannvrn i skoln invitrr d dtt all skolklassr på llotrinnt til å bli d på konkurransn "Aksjon boligbrann".
DetaljerKorrosjon. Innledning. Korrosjonens kjemi. HIN Allmenn Maskin RA 09.01.03 Side 1 av 10
Sid 1 av 10 Korrosjon Innldning Rnt språklig btyr korrosjon å gnag bort. Gnrlt bruks ordt om uønskd raksjonr mllom matrialr og drs bruksmiljø. I dn vitnskaplig dfinisjonn bruks ordt korrosjon om all matrialr,
DetaljerPEDAL. Trykksaker. Nr. 4/2011. Organ for NORSK T-FORD KLUBB NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO
PEDAL Nr. 4/2011 Organ for NORSK T-FORD KLUBB Trykksakr A NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO FORMANNENS ORD: Årts løpsssong r på hll. Vi har omtalt non vtranbilarrangmntr i Pdal Ford n,
DetaljerMatematikk for IT, høsten 2018
Mtmtkk for IT, høst 8 Oblg Løsgsforslg 7. sptmbr 8.7. ) for >. 7 b) for >. 7 c) for >. 7 d) ) for >. 8 8 8 8 8 7 8 7 8 .7. ) for >. 7 8 b) for >. 7 ) 7 ) 7) ) 7 ) 7) c) for >..7.8 ) ) ) ) ). Bss:. Rkursjosforml:
DetaljerUkens tilbudsavis fra
Ukns tilbudsavis fra Hvordan blar man i tilbudsavisn? For å bla i tilbudsavisn så klikkr du ntn i t av hjørnn, llr du kan klikk på piln nd på mnylinjn. S nærmr på produktn? Du kan zoom inn på produktn
DetaljerOPPGAVESETT MAT111-H16 UKE 44. Oppgaver til seminaret 4/11
OPPGAVESETT MAT111-H16 UKE 44 Avsn. 5.5: 19, 41, 47 Avsn. 5.6: 9, 17, 47 Avsn. 5.7: 15 På settet: S.1, S.2. Oppgaver til seminaret 4/11 Oppgaver til gruppene uke 45 Løs disse først så disse Mer dybde Avsn.
Detaljer2 = 4 x = x = 3000 x 5 = = 3125 x = = 5
Heldagsprøve i FO99A matematikk Dato: 7. desember 010 Tidspunkt: 09:00 14:00 Antall oppgaver 4 Vedlegg: Formelsamling Tillatte hjelpemidler: Godkjent kalkulator Alle svar skal grunngis. Forsøk å gi svarene
DetaljerFAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERSITETET I AGDER Gimstad E K S A M E N S O P P G A V E : AG: MA-9 Matmatikk ÆRER: P Hik Hogstad Klass: Dato:.. Eksamstid a-til: 9.. Eksamsoppgav bstå av ølgd Atall sid: 6 ikl. osid + vdlgg Atall oppgav:
DetaljerLøsningsforslag Eksamen M100 Våren 2002
Løsningsforslag Eksamen M00 Våren 00 Oppgave Evaluerer grensen cos( ) 0 ( sin( ) ) 0 6 0 6 5 0 sin( ) 0 sin( ) = Har brukt l Hôpitals regel (derivert teller og nevner hver for seg) i første og tredje overgang.
DetaljerBOKMÅL EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for fysikk, matematikk og informatikk Fredag 1. desember 2000 Tid:
Sid av 5 Nrgs tknisk-naturvitnskaplig univrsitt Institutt fr fysikk Faglig kntakt undr ksamn: Navn: Ola Hundri Tlf.: 934 BOKMÅL EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultt fr fysikk, matmatikk
DetaljerVårt mål er å lage verdens beste iskrem og sorbet!
Vårt ål r å lag vrdns bst iskr og sorbt! Historin o KULINARIS Dtt r dn lykklig historin o tr fyrr fra Kolbotn so ønskt sg no nytt i livt. Årt var 2002. Dt var Marius so fikk idn o å start iskrfabrikk.
DetaljerDen som har øre, han høre..
Dn som har ør, han hør.. Brvn til d syv kirkn i Johanns Åpnbaring Prosss Manual Introduksjon og vildning Utviklt av Andrs Michal Hansn Ovrsatt fra nglsk og tilrttlagt av Vgard Tnnbø 1. Innldning Dtt r
Detaljerutpostens dobbelttime
utpostns dobblttim s n t s o Utp lttim dobb Wium r P g m o og m. søndnå i S d l a r Har sunda t. jut av intrv Dt r tidlig på årt 1972: Kvld ttr kvld samls tr ung mnn i distriktslgbolign på Aukra på Mørkystn.
DetaljerOppgave 1 (15%) KANDIDAT NR.:
ES DETTE FØRST: D 4 førs oppgavn bsvars vd a du sr kryss i valg alrnaiv og lvrr diss arkn s. 5 inn som svar sammn md din løsning av oppgav 5, som r n radisjonll rgnoppgav. Husk å skriv kandidanr på arkn!
DetaljerJT 366 www.whirlpool.com
JT 366.hirlpool.com NO 1 INSTALLASJON FØR TILKOPLING KONTROLLER AT SPENNINGEN på typplatn stmmr md spnningn i strømnttt ditt hjmm. DU MÅ IKKE FJERNE BESKYTTELSESDEKSLENE for mikrobølgovnns luftinntak som
DetaljerISE matavfallskverner
ISE matavfallskvrnr ... dn nklst vin til t praktisk og hyginisk kjøkkn l t h y h i l n k l h t h y g i n m i l j ø h y g i n m n k l h t i l j ø n k l h y g i n h t h y g m i l j i n ø k m n k i n l j
Detaljer( ) ( Tosidig spektrum for x(t) = cos(100π t π/3) + 15 cos(400π t + π/4) 8 15/2 e jπ/4. absoluttverdi av a k 6. 5 e 5.
dr X A r n rll kontant og X k A k jφ k Forlning,. april 6 Pnum i bokn: - og -, no fra -4 ikk n dvndig å l, -6., INF4-8 -3. og -3.5 3- til 3-4 Ovrikt Spktrum for tignal, frkvninnholdt Bruk av Fourir-tranform
DetaljerLøsning eksamen R1 våren 2008
Løsning eksamen R våren 008 Oppgave a) f ( ) ln f ( ) ( ) ln (ln ) ln ln b) c) d) e) ( 4 6) : ( ) 4 6 6 0 64 ( 8) ( 8) 8 8 8 6 lim lim lim 8 8 6 8 ( 8) 8 lg( y ) lg y lg lg lg y lg y lg lg y lg lg y y
DetaljerIntern korrespondanse
BERGEN KOMMUNE Byrådsavdling for hls og omsorg Inrn korrspondans Saksnr.: 22858-9 Saksbhandlr: GHAL Emnkod: ESARK-44 Til: Fra: Hls og omsorg flls v/ Finn Srand Sksjon for hls og omsorg Dao: 15. mai 2013
DetaljerVT 265 VT 295. www.whirlpool.com
VT 265 VT 295.hirlpool.com 1 INSTALLASJON FØR TILKOPLING SJEKK AT SPENNINGEN på typplatn korrspondrr md spnningn dr du bor. DU MÅ IKKE FJERNE BESKYTTELSESDEKSLENE FOR MIK- ROBØLGEOVNENS luftinntak som
DetaljerLøysingsforslag Eksamen MAT111 Grunnkurs i Matematikk I Universitetet i Bergen, Hausten 2016
Løysingsforslag Eksamen MAT Grunnkurs i Matematikk I Universitetet i Bergen, Hausten 26 OPPGÅVE Det komplekse talet z = 3 i tilsvarar punktet eller vektoren Rez, Imz) = 3, ) i det komplekse planet, som
Detaljervære en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A
MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t
Detaljer