Funksjoner, repetisjonsoppgaver.

Størrelse: px
Begynne med side:

Download "Funksjoner, repetisjonsoppgaver."

Transkript

1 Repetisjonsoppgaver, uke og, i Matematikk 0, Funksjoner, repetisjonsoppgaver. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke og Funksjoner, repetisjonsoppgaver. Oppgave Funksjoner gitt ved funksjonsuttrkk på formen f() = m + b, der m og b er konstanter, kalles lineære funksjoner. Vi varmer opp med å se litt på disse. a ) Lag en skisse av grafen til funksjonen gitt ved f() =, på området gitt av. Oppgaven bør løses uten bruk av elektroniske hjelpemidler. b ) Lag også en skisse av grafen til funksjonen gitt ved g() = + på samme område. c ) Konstantfunksjoner, som for eksempel funksjonen h() =, er det av og til hensiktsmessig åtenkepå som lineære funksjoner med m =0,dvs.f() =0 +. Skisser også denne grafen på samme område. d) Hvis vi generelt snakker om lineære funksjoner på formenf() =m + b kalles konstantene m og b for parametre. Det som kan sies om slike uten åspesifiserehvilketallm og b er gjelder for alle lineære funksjoner. Hva kan vi generelt si om grafen til alle lineære funksjoner (hvilken tpe kurver er de)? Hva sier parameteren b om funksjonen f() =m + b? Svar for eksempel med hvor vi lett finner b ved åsepågrafentilf. Hva sier parameteren m om f() =m + b En liten kommentar om språkbruken i oppgaven: Navnet på funksjonene i denne oppgaven er f, mensf() er funksjonsuttrkket, enformeltilå finne funksjonsverdien hvis vi setter inn. Korrekt språkbruk er altså som i innledningen og oppgave a) og b). Ofte bruker vi likevel den ikke helt korrekte, men kortere uttrkksmåten funksjonen f() =m + b, som i c) og d) oppgavene. Oppgave Funksjoner gitt ved funksjonsuttrkk på formen f() =a + b + c. der parametrene a, b og c er konstanter (og a 0) kalles andregradsfunksjoner. Hvis for eksempel a =ogb = c =0får vi f() =. Grafen til denne på området ertegnet her, til høre. Denne kurven, og grafen til alle andre andregradsfunksjoner, kalles parabler a) Lag en frihåndstegning av grafen til f() = (den som er vist her), og grafen til f() = på samme område og i samme diagram. b ) Lag også enfrihåndstegning av grafene til funksjonene gitt ved h() = og i() =.

2 Repetisjonsoppgaver, uke og, i Matematikk 0, Funksjoner, repetisjonsoppgaver. c ) Hvilken rolle spiller konstanten a for formen til grafen til andregradsfunksjoner? (Svar uformelt og muntlig, til deg selv.) d ) Lag en skisse (sammen med f() = )) av grafen til g() =( ) påområdet 0, for eksempel ved å regne ut f(), f(), f(), f() og f() og frihåndstegne en parabel gjennom disse punktene. Hva er sammenhengen mellom grafene til g() ogf() =? e) Hvis d er en konstant, og vi har en funksjon f kan vi danne en n funksjon g gitt ved g() =f( d). Funksjonsuttrkket til g finner vi da ved å erstatte alle forekomnster av i f() med d. Forrige deloppgave var et eksempel på dette, med f() =,såf( ) = ( ). Hva er, generelt, sammenhengen mellom grafen til f() ogg() =f( d)? f ) Hva er generelt sammenhengen mellom grafene til f()ogf()+e,dere er en konstant? Bruk dette til å tegne grafen til h() =( ), i samme diagram som du tegnet g() =( ). g) Ved bruk av. kvadratsetning kan vi regne sammen h() tilformena + b + c slik: h() =( ) = + = Vi kan generelt gjøre omformingen den motsatte vegen ved teknikken som kalles utflling til fullstendig kvadrat. En måte å gjøre dette på for andregradspolnomer er slik: a( d) + e = a( d + d )+e = a ad + d + e som skal være lik a + b + c Vi ser at a allerdede er riktig. Koeffisienten foran førstegradsleddene skal være like, det vil si ad = b, som vi får ved åvelged = b a. Konstantleddene skal også være like, det vil di at d + e = c som vi får ved åvelgee = c d. I eksemplet er a =,b = 6 ogc = 7, som gir d = b a = 6 =.Videreere = c d = 7 =. Ved å sette disse verdiene inn for a, d og e iformenh() =a( d) + e finner vi h() =( ) +( ) = ( ). Bruk teknikken beskrevet over til å skrive funksjonen j() = + påformen a( d) + e. Bruk så det som er sagt tidligere i denne oppgaven til å lage en frihåndstegning av grafen til j() utenå regne ut en eneste funksjonsverdi. h ) Andregradsfunksjoner har en en viktig smmetriegenskap, som lettest sees hvis de er ordnet til formen a( d) + e. Hva er det jeg sikter til? i) Andregradslikninger er likninger på formena + b + c = 0. Røttene i disse kan finnes fra formelen b ± b ac a der tegnet ± betr pluss eller minus, slik at vi (generelt) får to løsninger, også kallt røtter. Utledningen av formelen er en bruk av metoden med utflling av kvadratet som ikke taes med her. Denne formelen er det nok lurest ålære,denstår ikke i formelsamlinga til Haugan. Bruk denne formelen til å løse andregradslikningen + =0. Hvor finner du igjen disse røttene på grafen fra forrige deloppgave?

3 Repetisjonsoppgaver, uke og, i Matematikk 0, Funksjoner, repetisjonsoppgaver. j ) Tegn kurvene gitt ved likningene = 6 +7 og = + inn i samme diagram. Finn eksakt verdi av koordinatene til de to skjæringspunktene mellom kurvene. ( Eksakt verdi betr i dette tilfellet talluttrkk som inneholder heltall og rottegn, i tillegg til brøkstrek, +, og.) Finn også røttene tilnærmet som desimaltall. (Her bør du bruke kalkulator eller et dataprogram). Oppgave La funksjonen f være gitt ved funksjonsuttrkket f() =( +)( )( ) a) Finn koordinatene der grafen til f skjærer aksen. b ) Vi kan ogsåskrivef() = +. Vis hvordan du omformer funksjonsuttrkket ( +)( )( ) til +. Hva er koordinaten der grafen skjærer aksen? c ) Regn ogsåutf( ) og f(), og lage en røff, håndtegnet skisse av grafen for. En til en skala, at en enhet langs aksen tegnes like lang som en enhet langs aksen, er nok ikke hensiktsmessig. Figuren blir nok tdeligere om enheter på aksen er omtrent like lang som en enhet langs aksen. Oppgave La f() = a) Hva er domenet (eng.: domain), også kallt definisjonsområdet, forf? b) Hva er verdimengden (eng.: range) tilf? c) Hva er f(0), f(), f(), f(9) og f(/)? Bruk disse punktene til åhåndtegne grafen til f for 0 0. d ) Tegn også grafentil i samme diagram. Oppgave Hvilke av følgende påstander stemmer for alle reelle tall og? Bortsett fra i a), b) og c) skal du forutsette at og ikke er negative. a) = b) = c) = d) + = + e) = f) 6 =6 g) / = / h) / = / i) 0 0 = , Hans Petter Hornæs

4 Repetisjonsoppgaver, uke og, i Matematikk 0, Funksjoner, repetisjonsoppgaver. Fasit, Funksjoner, repetisjonsoppgaver. Oppgave a), b) og c): Siden grafen til lineære funksjoner er rette linjer er det nok å finne to punkter for å tegne den, f.eks for =0 og =. For eksempel er f(0) = ogf() = =,så grafen er den rette linja som skjærer aksen for = oggår gjennom punktet med koordinater (, ) (der den skjærer den horisontale grafen til h()). Grafen som går nedover (mot høre) er g(). d) Grafen til lineære funksjoner er rette linjer. Parameteren b, konstantleddet, angir skjæring med aksen (eng.: intercept). Hvis aksen naturlig er innenfor utsnittet grafen tegnes gir dette et punkt på linja det er lett å finne og tegne. Parameteren m kalles stigningskoeffisienten. Den angir stigningen (eng.: slope) til linja som m =Δ/Δ f() =m + b forholdet mellom økning i retningen, Δ, når vi øker verdien med Δ i retningen. Δ Forholdet Δ/Δ blir det samme uansett hvor på linja du starter, og hvor lang du velger Δ (siden en Δ endring i Δ medfører en tilsvaredne endring i Δ). b Hvis m>0går linja oppover (mot høre), hvis m<0gårlinja nedover Oppgave Figur til a Figur til b Figur til d c) Konstanten a angir hvor bratt grafen er. Øker den, som her med en faktor, fordobles vertikal avsrtand til aksen, som blir det samme som at den klemmes sammen til halv bredde horisontalt. Avtar den med en faktor, til /, trekkes den ut til dobbel bredde. Blir den i tillegg negativ speiles den vertikalt så den åpner seg nedover istedenfor oppover. d) Grafen til g er grafen til f forskjøvet enheter mot høre. e) Grafen til g er forskjøvet d enheter mot høre. Hvis d<0 er forskvinga mot venstre. Dette kan også uttrkkes som f( + d), med positiv d

5 Repetisjonsoppgaver, uke og, i Matematikk 0, Funksjoner, repetisjonsoppgaver. f ) Dette forskver grafen a enheter oppover, nedover hvis a<0. I dette tilfellet forskves altså grafentil( ) enheter nedover. Siden denne var grafen til forskjøvet enheter mot høre er altså den samlede virkningen åforskvedennemot høre og nedover. Generelt vil f( ) forskve grafen til f enhetermot høre og nedover, og f( d)+e forskve grafen til fd enheter mot høre og e enheter oppover g ) Vi har allerede a =iorden.d = b a = /( ) =. e = c d = ( ) =. Det vil si at + =( ( )) =( +), og grafen er den samme parabelen som forskjøvet mot venstre og nedover. h ) Grafen er smmetrisk om den vertikale linja ved = d. i) b ± b ac = ± ( ) = ± + = ± a Ved å bruke minusroten er = =, mens plussroten er = + =. Dette er koordinatene der grafen skjærer aksen (hvis du bruker samme utsnitt av grafen som jeg har gjort tidligere havner disse akkurat på toppen). j ) Kurven gitt ved likningen = er det samme som grafen gitt ved h() = 6 + 7, tegnet i f oppgaven. koordinatene i skjæringene er de verdiene som gjør funksjonsuttrkkene like: 6 +7= ( +)= =0 +=0 Tegnet bruker vi til å angi overgangen mellom likninger som har samme løsningsmengde, og her har jeg bare trukket fra + på begge sider av likhetstegnet ( flttet + over på venstresiden ). Å finne skjæringspunktene er altsåå løse andregradslikningen +=0: Dette gir røttene = + ( ) ± ( ) og =. - - = ± 0 Dette lar seg ikke forenkle med eksakte verdier, eretirrasjonalt tall som ikke kan skrives som brøk mellom heltall. I masnge situasjoner ønsker vi svaret på denne formen (blant annet ved eksamen i Matematikk 0, som jo foregår uten kalkulator). Andre ganger ønsker vi dette tilnærmet med desimaltall, og da bruker vi normal elektroniske hjelpemidler og finner, hvis vi bruker gjeldende siffer: =.8, =.68 Sjekk at dette ser rimelig ut på figuren.

6 Repetisjonsoppgaver, uke og, i Matematikk 0, Funksjoner, repetisjonsoppgaver. Oppgave a ) Skjering med aksen er der f() =0 ( +)( )( ) = 0. b ) Et produkt er 0 hvis (og bare hvis) en av faktorene er 0, det vil si for + = 0 =, =0 =eller =0 =. Multipliserer først sammen de to første, dev å multiplisere hvert ledd i førsste parantes med hvert ledd i andre, eller alternativt ved. kvadratsetning: ( +)( )( ) = ( + ) + + ( ))( ) = ( )( ) Multiplliserer så sammen disse på samme måte: ( + ( ) + ( ) = + På den siste formen får vi skjering med aksen direkte fra konstantleddet, dvs. =. c) f( ) = ( ) ( ) ( ) + = 8 8++= og f() = Oppgave a ) b ) Vi kan ikke ta kvadratrot av negative tall (og få et reelt tall), f.eks. ville vært tallet som er slik at =. Siden negative tall også blir positive når de kvadreres, f.eks ( ) = ( )( ) = 9 ( minus ganger minus gir pluss ). For 0 og alle positive tall eksisterer derimot kvadratroten. Dette kan kalles alle ikke negative tall, men også kan skrives[0,.(det halvåpne intervallet fra og med 0 til uendelig). Dette er den begrensningen på domenet som følger av matematiske begrensninger i formelen. Det kan være tterligere begrensninger på domenet, f.eks i anvendelser der bare er praktisk mulig for et avgrenset intervall. Verdimengden er også [ 0, ], alle ikke negative tall er kvadratroten av noe, nemlig av =. = er per definisjon det ikke negative tallet slik at =. For eksempel er =, men også ( ) =.Daerkvadratrotendefinert slik at. c) f(0) = 0 siden 0 =0,f() = siden =,f() = siden =,f(9) = siden =9og f ( ) = ( siden ) = = =. Grafen er den til venstre i tegningen nedenfor. d) Grafen til =f( ) er grafen til f() = forskjøvet to enheter mot høre:

7 Repetisjonsoppgaver, uke og, i Matematikk 0, Funksjoner, repetisjonsoppgaver. Oppgave a ) Feil. Fella kom med en gang, omformingen i a) brukes ofte når vi kan forutsette 0, men er ikke riktig for <0. F.eks er ( ) = =. Dermed gjelder ikke denne for alle reelle tall. b ) Feil. Bortsett fra for =0får vi her kvadratroten av et negativt tall, som ikke er noe reelt tall. c) Riktig. er absoluttverdien, også kalt tallverdien. Det er ofte hensiktsmessig når man skal regne med absoluttverdifunksjonen å omforme den til =. d ) Feil. Bortsett fra om = 0 eller =0er + +. For eksempel med =9og =6er + = 9+6= = mens + = 9+ 6=+=7. e ) Riktig, kvadratrøtter (og andre røtter og potenser) kan taes faktor for faktor i et prodkt. f ) Feil. Det riktige, fra = med =6er 6 = 6 =. g ) Riktig. Røtter og potenser av brøker kan taes hver for seg i teller og nevner. Dette er egentlig bare en omforming av regelen fra e. h ) Riktig, dette er regelen fra forrige punkt med =. i ) Riktig, røtter kan taes faktor for faktor i et produkt, også som her med eller flere faktorer. 0 = 0 så =. = fordi ( ) 0 =( ( ) ) = =. Her har jeg brukt potensregelen a m n =(a m ) n og at =. Hans Petter Hornæs

Anvendelser av derivasjon.

Anvendelser av derivasjon. Ukeoppgaver, uke 39, i Matematikk, Anvendelser av derivasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk Ukeoppgaver uke 39 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea4

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Funksjoner (kapittel 1)

Funksjoner (kapittel 1) Ukeoppgaver, uke 34 og 35, i Matematikk 0, Funksjoner og grenser. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 34 og 35 Funksjoner (kapittel ) Oppgave Figuren til øyre viser

Detaljer

Repetisjon i Matematikk 1: Derivasjon 2,

Repetisjon i Matematikk 1: Derivasjon 2, Repetisjon i Matematikk 1: Derivasjon 2, 201. 1 Høgskolen i Gjøvik Avdeling TØL Repetisjonsoppgaver MATEMATIKK 1 REA1141 og REA1141F Derivasjon 2, 201. Oppgave 1 Denne oppgaven har forholdsvis enkle derivasjoner,

Detaljer

Kap : Derivasjon 1.

Kap : Derivasjon 1. Ukeoppgaver, uke 36, i Matematikk 0, Kap. 3.-3.4: Derivasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 36 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/ing/allmennfag/emnesider/rea042

Detaljer

Fasit, Separable differensiallikninger.

Fasit, Separable differensiallikninger. Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. 3 Fasit, Separable differensiallikninger. a ) Denne er ferdig på formenf(y)y = g(x) medf(y) =3y 2 og g(x) =2x: 3y 2 dy dx =2x 3y2 dy

Detaljer

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon.

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon. Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter

Detaljer

Løsningsforslag. a) Løs den lineære likningen (eksakt!) 11,1x 1,3 = 2 7. LF: Vi gjør om desimaltallene til brøker: x =

Løsningsforslag. a) Løs den lineære likningen (eksakt!) 11,1x 1,3 = 2 7. LF: Vi gjør om desimaltallene til brøker: x = Prøve i FO99A - Matematikk Dato: 1. desember 014 Målform: Bokmål Antall oppgaver: 8 (0 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Forelesning 10 MA0003, Tirsdag 18/ Asymptoter og skissering av grafer Bittinger:

Forelesning 10 MA0003, Tirsdag 18/ Asymptoter og skissering av grafer Bittinger: Forelesning 0 MA000, Tirsdag 8/9-0 Asymptoter og skissering av grafer Bittinger:.-. Asymptoter Definisjon. La f være en funksjon. Vi sier at linjen l() = a + b er en skrå asymptote for f dersom minst ett

Detaljer

Enkel matematikk for økonomer. Del 1 nødvendig bakgrunn. Parenteser og brøker

Enkel matematikk for økonomer. Del 1 nødvendig bakgrunn. Parenteser og brøker Vedlegg Enkel matematikk for økonomer I dette vedlegget går vi gjennom noen grunnleggende regneregler som brukes i boka. Del går gjennom de helt nødvendige matematikk-kunnskapene. Dette må du jobbe med

Detaljer

Separable differensiallikninger.

Separable differensiallikninger. Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 46 I løpet av uken blir løsningsforslag lagt ut på emnesiden

Detaljer

Hans Petter Hornæs,

Hans Petter Hornæs, Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter

Detaljer

1T eksamen høsten 2017 løsning

1T eksamen høsten 2017 løsning 1T eksamen høsten 017 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform. 105000 0,15

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA1102 Grunnkurs i analyse II Vår 2019 10.2.27 a) Vi skal vise at u + v 2 = u 2 + 2u v + v 2. (1) Som boka nevner på side 581,

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 5..7 EKSAMEN Løsningsforslag Emnekode: ITD5 Dato:. desember 7 Hjelpemidler: - To A-ark med valgfritt innhold på begge sider. - Formelhefte. - Kalkulator som deles ut samtidig med oppgaven. Emnenavn: Matematikk

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2013

Eksamen MAT1013 Matematikk 1T Våren 2013 DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgave (1 poeng) Løs likningssystemet x3y7 5xy8 Velger å løse likningen

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Løsning, Oppsummering av kapittel 10.

Løsning, Oppsummering av kapittel 10. Ukeoppgaver, uke 36 Matematikk 3, Oppsummering av kapittel. Løsning, Oppsummering av kapittel. Oppgave a) = +, = + z og z =z +. b) f(,, z) = +, + z,z + så (f(, 3, ) = +3, 3+, +3=7, 3, 5 c ) Gradienten

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag Eksamen i FO99A Matematikk Underveiseksamen Dato. desember 6 Tidspunkt 9. -. Antall oppgaver Vedlegg Tillatte hjelpemidler Ingen Godkjent kalkulator Godkjent formelsamling Oppgave Vi løser likningene ved

Detaljer

I løpet av uken blir løsningsforslag lagt ut på emnesiden Delvis integrasjon må brukes to ganger.

I løpet av uken blir løsningsforslag lagt ut på emnesiden  Delvis integrasjon må brukes to ganger. Ukeoppgaver, uke 45, i Matematikk, Delvis integrasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk Ukeoppgaver uke 45 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea4

Detaljer

Her er C en funksjon av F

Her er C en funksjon av F Kapittel 9 FUNKSJONER C F 50 58 40 40 0 0 4 0 4 0 0 50 0 68 0 86 40 04 50 9 F C + 5 Her er F en funksjon av C Dette er like ra C 5 9 F 60 9 Her er C en funksjon av F Kapittel 9 FUNKSJONER Det norske oljeeventyret

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator Oppgave 1 Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt 09.00-14.00 Antall oppgaver 6 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag a) Likningen

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA1102 Grunnkurs i analyse II Vår 2019 Først en kommentar. I læreboka møter man kjeglesnitt på standardform, som ellipser x

Detaljer

8 Likninger med to ukjente rette linjer

8 Likninger med to ukjente rette linjer 8 Likninger med to ukjente rette linjer 8. Likninger med to ukjente Per vil teste kameratens matematiske kunnskaper. Han forteller at han har ni mnter med en samlet verdi på 40 kroner i lommeboken sin.

Detaljer

Løsningsforslag MAT102 Vår 2018

Løsningsforslag MAT102 Vår 2018 Løsningsforslag MAT102 Vår 2018 Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT102 Tirsdag 12 juni 2018, kl 0900-1400 Oppgavesettet har fem oppgaver Hver deloppgave

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

GeoGebra 6 for Sinus 1P

GeoGebra 6 for Sinus 1P SIGBJØRN HALS TORE OLDERVOLL GeoGebra 6 for Sinus 1P SINUS 1P ble skrevet med utgangspunkt i GeoGebra 5. I boka er det også lagt opp til at elevene har en enkel lommeregner i tillegg til datamaskin. I

Detaljer

Høgskoleni østfold EKSAMEN. LSV1MAT12 Matematikk Vl: Tall, algebra og funksjoner 1

Høgskoleni østfold EKSAMEN. LSV1MAT12 Matematikk Vl: Tall, algebra og funksjoner 1 13/. Høgskoleni østfold EKSAMEN Emnekode: Emne: LSV1MAT1 Matematikk Vl: Tall, algebra og funksjoner 1 Dato: 1.1.013 Eksamenstid: kl. 9 til kl. 15 Hjelpemidler: Kalkulator uten grafisk skjerm. Faglærer:

Detaljer

Eksamen MAT1013 Matematikk 1T Va ren 2014

Eksamen MAT1013 Matematikk 1T Va ren 2014 Eksamen MAT1013 Matematikk 1T Va ren 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform,5 10 3,0 10 15 5 15 ( 5) 10,5 3,0 10 7,5 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig

Detaljer

Eksamen S1 høsten 2014 løsning

Eksamen S1 høsten 2014 løsning Eksamen S1 høsten 014 løsning Tid: timer Hjelpemiddel: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Løs likningene a) x 10 xx 5 x x 10 x 5x 7x 10 0 7 49 40

Detaljer

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.

Detaljer

Oppfriskningskurs i matematikk Dag 2

Oppfriskningskurs i matematikk Dag 2 Oppfriskningskurs i matematikk Dag 2 Petter Nyland Institutt for matematiske fag Tirsdag 7. august 2018 Beskjeder Rombytte: EL5 i dag og i morgen. F1 igjen på torsdag. Skal fikse fasit (til tallsvar) på

Detaljer

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker.

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker. Heldagsprøve i matematikk, 1. desember 006 Forkurs for Ingeniørutdanningen ved HiO, 006/07 Antall oppgaver: Antall timer: 5 timer fra klokken 0900 til klokken 100. Hjelpemidler: Kalkulator og Formelsamling

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 4 110 Funksjoner og andregradsuttrykk Studentene skal kunne benytte begrepet funksjoner og angi definisjonsmengde og verdimengde til funksjoner regne med lineære funksjoner og andregradsfunksjoner og bestemme

Detaljer

Ubestemt integrasjon.

Ubestemt integrasjon. Ukeoppgaver, uke 4, i Matematikk 0, Ubestemt integrasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 4 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea04

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

SALG > KOSTNAD når mer enn 100 produkt selges. Virksomheten går da med overskudd.

SALG > KOSTNAD når mer enn 100 produkt selges. Virksomheten går da med overskudd. SALG > KOSTNAD y = 20x Salg y = 0 000 Kostnad 20x > 0 000 SALG > KOSTNAD mer enn 00 produkt selges. Virksomheten går da med overskudd. Slik kan ulikheter løses grafisk En ulikhet består av en venstre side,

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer.

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer. Eksamen i FO99A Matematikk Underveiseksamen Dato 30. mars 007 Tidspunkt 09.00-14.00 Antall oppgaver 4 Vedlegg Tillatte hjelpemidler Sirkelskive i radianer Godkjent kalkulator Godkjent formelsamling Oppgave

Detaljer

Eksamen MAT1013 Matematikk 1T Høsten 2014

Eksamen MAT1013 Matematikk 1T Høsten 2014 Eksamen MAT1013 Matematikk 1T Høsten 01 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 50000000000,0005 10 10 ( ) 6 7,510 5,010,55,010 1,510 1,510 Oppgave (1 poeng) Løs likningen 16 lg lg16

Detaljer

Oppfriskningskurs i matematikk Dag 1

Oppfriskningskurs i matematikk Dag 1 Oppfriskningskurs i matematikk Dag 1 Petter Nyland Institutt for matematiske fag Mandag 6. august 2018 Om meg Bachelor- og mastergrad i matematiske fag (2014, 2016) Doktorgradsstipendiat i matematikk (2016

Detaljer

Løsningsforslag Eksamen M1 Onsdag 14.desember 2005

Løsningsforslag Eksamen M1 Onsdag 14.desember 2005 Løsningsforslag Eksamen M Onsdag.desember 005 Her følger et kort løsningsforslag, med forbehold om at det kan ha sneket seg inn enkelte feil... Oppgave (0) a) V basskasse dm 5,5dm 5,0dm 75,dm 75, l Basskassen

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår 3 Løsningsforslag Øving 7 9.4.5 La A = (,, 3) og B = (,, ). Finn vektorrepresentasjonen til

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Eksamen R2, Høst 2012, løsning

Eksamen R2, Høst 2012, løsning Eksamen R, Høst 0, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Deriver funksjonene a) cos f e Vi bruker produktregelen

Detaljer

Eksamen R2, Høsten 2015, løsning

Eksamen R2, Høsten 2015, løsning Eksamen R, Høsten 05, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f( ) 5cos( ) f 5 sin 0sin

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for i dag og i morgen Dag 1: 09.00-11.45 Del 1: teori. 11.45-12.30 Lunsj 12.30-13.15 Del 2: bruk av GeoGebra. 13.15-15.15 Oppgaveregning, del 1. Dag 2: 09.00-10.45

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 4: Grenseverdi (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 20. august, 2012 Formell definisjon av grenseverdi Formell definisjon av grenseverdi Uformell definisjon

Detaljer

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5.

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5. Prøve i FO99A - Matematikk Dato: 3. desember 01 Målform: Bokmål Antall oppgaver: 5 (0 deloppgaver) Antall sider: Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet CAS GeoGebra Innhold CAS GeoGebra... 1 REGNING MED CAS-VERKTØYET... 2 Rette opp feil, slette linjer... 3 Regneuttrykk... 4 FAKTORISERE TALL... 4 BRØK... 4 Blandet tall... 5 Regneuttrykk med brøk... 5 POTENSER...

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Oppfriskningskurs i Matematikk

Oppfriskningskurs i Matematikk Oppfriskningskurs i Matematikk Dag 2 Stine M. Berge 06.07.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 06.07.19 1 / 16 Funksjoner Definisjon En funksjon f er en prosses som ett element i en

Detaljer

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er 7.5 Potensfunksjoner Funksjonen f gitt ved f () = 3 er et eksempel på en potensfunksjon. For alle potensfunksjoner er funksjonsuttrykket på formen f () = a k der tallet a og eksponenten k kan være både

Detaljer

2T kapittel 3 Modellering og bevis Løsninger til innlæringsoppgavene

2T kapittel 3 Modellering og bevis Løsninger til innlæringsoppgavene T kapittel 3 Modellering og bevis Løsninger til innlæringsoppgavene 3.1 a Modellen gir følgende verdier for årene i oppgaven: År 1955 1985 015 Folketall (millioner) 3,5 4, 4,8 b Setter vi inn for = 00

Detaljer

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning.

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning. KANDIDATNUMMER: EKSAMEN EMNENAVN: Matematikk. EMNENUMMER: REA42/REA42F EKSAMENSDATO: Mandag 9. august 2 KLASSE: Ingeniør- og Fleksibel ingeniørutdanning. TID: kl. 9. 3.. FAGANSVARLIG: Hans Petter Hornæs

Detaljer

S1 eksamen høsten 2016 løsningsforslag

S1 eksamen høsten 2016 løsningsforslag S1 eksamen høsten 016 løsningsforslag Oppgave 1 (4 poeng) Løs likningene a) x 1 3 x 5 3 4 6 Fellesnevner blir 1 x1 3x 5 1 1 1 3 4 6 (x 1)4 (3x )3 5 8x 4 9x 6 10 x 10 6 4 0 x 0 b) lg(x 6) 10 10 lg(x6) x

Detaljer

Eksamen 1T våren 2015 løsning

Eksamen 1T våren 2015 løsning Eksamen T våren 05 løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003

Detaljer

Når du har arbeidet deg gjennom dette kapittelet, er målet at du skal kunne

Når du har arbeidet deg gjennom dette kapittelet, er målet at du skal kunne Funksjoner i praksis Innhold Kompetansemål Funksjoner i praksis, Vg2P... 1 Modul 1: Lineære funksjoner... 2 Modul 2: Andregradsfunksjoner... 8 Modul 3 Tredjegradsfunksjoner... 12 Modul 4: Potensfunksjoner...

Detaljer

Matematikk 01 - Matematikk for data- og grafiske fag.

Matematikk 01 - Matematikk for data- og grafiske fag. Høgskolen i Gjøvik Avdeling for teknologi Versjon per. juni 004 Matematikk 0 - Matematikk for data- og grafiske fag. y x Hans Petter Hornæs hans.hornaes@hig.no Forord Dette kompendiet er skrevet for faget

Detaljer

Eksamen S1 Va ren 2014 Løsning

Eksamen S1 Va ren 2014 Løsning Eksamen S1 Va ren 014 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Løs likningene a) x 3x 3 3 x x x x 3 3 3 0 x

Detaljer

Eksamen REA3022 R1, Våren 2010

Eksamen REA3022 R1, Våren 2010 Eksamen REA0 R1, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 a) Deriver funksjonene 1) ln f 1 f ) g ln ln ln 1 4e

Detaljer

Noen regneregler som brukes i Keynes-modeller

Noen regneregler som brukes i Keynes-modeller Forelesningsnotat nr 5, august 2009, Steinar Holden Noen regneregler som brukes i Keynes-modeller Først litt repetisjon ) Vi kan sette en felles faktor utenfor en parentes: Y ty = Y(-t) der det siste uttrykket

Detaljer

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. og setter f u ln

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. og setter f u ln Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) 3 f( ) 3 f 3 4 3 b) g( ) ln( ) Vi bruker kjerneregelen

Detaljer

Eksamen R2, Våren 2015, løsning

Eksamen R2, Våren 2015, løsning Eksamen R, Våren 05, løsning Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f () =- 3cos f =- 3 - sin

Detaljer

ANNENGRADSLIGNINGER OG PARABELEN

ANNENGRADSLIGNINGER OG PARABELEN ANNENGRADSLIGNINGER OG PARABELEN Espen B. Langeland realfagshjornet.wordpress.com espenbl@hotmail.com 9.mars 017 Dagens artikkel omhandler annengradsligninger, og deres grafer parabler. 1 Annengradsligninger

Detaljer

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER INNHOLD ALGEBRA OG FUNKSJONER... PARENTESER... USYNLIGE PARENTESER... USYNLIGE MULTIPLIKASJONSTEGN... DE TI GRUNNLEGGENDE ALGEBRAISKE LOVENE... REGNEUTTRYKK INNSATT FOR VARIABLER... 3 SETTE OPP FORMLER...

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 15. oktober 004 Tid for eksamen: 11:00 13:00 Oppgavesettet er på 8 sider.

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Fasit. Funksjoner Vg1T. Innhold

Fasit. Funksjoner Vg1T. Innhold Fasit Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjoner... 15 Andregradsfunksjoner... 15 Polynomfunksjoner... 18 Rasjonale funksjoner... 19 Potensfunksjoner og eksponentialfunksjoner...

Detaljer

MET Matematikk for siviløkonomer

MET Matematikk for siviløkonomer SENSORVEILEDNING - Fagoppgave MET 804 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 28.02.209 Kl. 09:00 Innlevering: 07.03.209 Kl. 2:00 For mer informasjon om formalia, se eksamensoppgaven.

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for i dag og i morgen Dag 1: 09.00-11.45 Del 1: teori med oppgaver. 11.45-12.30 Lunsj 12.30-13.15 Del 2: bruk av GeoGebra. 13.15-15.15 Oppgaveregning. Dag 2: 09.00-11.45

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL Uten hjelpemidler Oppgave ( poeng) Regn ut og skriv svaret på standardform 5000000000 0,0005 Oppgave ( poeng) Løs likningen 6 Oppgave 3 ( poeng) Løs likningen lg( 3) 0 Oppgave 4 ( poeng) Løs ulikheten

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen MAT1013 Matematikk 1T Høsten 2014

Eksamen MAT1013 Matematikk 1T Høsten 2014 Eksamen MAT03 Matematikk T Høsten 04 Oppgave ( poeng) Regn ut og skriv svaret på standardform 50000000000,0005 Oppgave ( poeng) Løs likningen 6 Oppgave 3 ( poeng) Løs likningen lg( 3) 0 Oppgave 4 ( poeng)

Detaljer

Eksamen R2 høst 2011, løsning

Eksamen R2 høst 2011, løsning Eksamen R høst 0, løsning Oppgave (4 poeng) a) Deriver funksjonene f e ) Bruker produktregelen for derivasjon, uv uv uv f e e e e ) g sin Bruker kjerneregelen på uttrykket cos der u og g u sinu Vi har

Detaljer

S1 eksamen våren 2016 løsningsforslag

S1 eksamen våren 2016 løsningsforslag S1 eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Løs likningene a) x x 0 4 1 x 1 9 8 x 1 x x 1

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

Dette er en FORELØBIG versjon fra 13. juni 2001, for korrektur og kommentarer!

Dette er en FORELØBIG versjon fra 13. juni 2001, for korrektur og kommentarer! MATEMATIKK Dette er en FORELØBIG versjon fra 3. juni 00, for korrektur og kommentarer! Det har tatt adskillig mer tid å skrive dette enn antatt. Noen konsekvenser av dette: Kapittel 8, lineær algebra,

Detaljer

Fasit. Innhold. Tall og algebra Vg1T

Fasit. Innhold. Tall og algebra Vg1T Tall og algebra VgT Fasit Innhold Innhold.... Tallregning... 3 Tall og tallmengder... 3 Regningsarter... 4 Å regne med negative tall... 5 Addisjon og subtraksjon av brøker... 5 Multiplikasjon og divisjon

Detaljer

Kapittel 8. Potensregning og tall på standardform

Kapittel 8. Potensregning og tall på standardform Kapittel 8. Potensregning og tall på standardform I potensregning skriver vi tall som potenser og forenkler uttrykk som inneholder potenser. Standardform er en metode som er nyttig for raskt å kunne skrive

Detaljer

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.).

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.). KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: F74A EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 Ingeniørstudenter som tar opp igjen eksa- KLASSE: men 6stp.). TID: kl. 9. 4.. FAGLÆRER:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Torsdag 12. oktober 26. Tid for eksamen: 9: 11:. Oppgavesettet er på 8 sider.

Detaljer

Høgskoleni østfold EKSAMEN. LSVIMAT12 Matematikk 1, V 1: Tall og algebra. funksjoner 1. Dato: 16. desember Eksamenstid: kl til kl 15.

Høgskoleni østfold EKSAMEN. LSVIMAT12 Matematikk 1, V 1: Tall og algebra. funksjoner 1. Dato: 16. desember Eksamenstid: kl til kl 15. Høgskoleni østfold EKSAMEN Emnekode: Emne: LSVIMAT12 Matematikk 1, V 1: Tall og algebra. funksjoner 1 Dato: 16. desember Eksamenstid: kl 09.00 til kl 15.00 2015 Hjelpemidler: Faglærer: Khaled Jemai Kalkulator

Detaljer

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t

Detaljer

Underveiseksamen i MAT-INF 1100, 17. oktober 2003 Tid: Oppgave- og svarark

Underveiseksamen i MAT-INF 1100, 17. oktober 2003 Tid: Oppgave- og svarark Underveiseksamen i MAT-INF 1100, 17. oktober 003 Tid: 9.00 11.00 Kandidatnummer: De 15 første oppgavene teller poeng hver, de siste 5 teller 4 poeng hver. Den totale poengsummen er altså 50. Det er 5 svaralternativer

Detaljer

Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03

Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03 Løsningsforslag til prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De

Detaljer

4 Funksjoner og andregradsuttrykk

4 Funksjoner og andregradsuttrykk 4 Funksjoner og andregradsuttrkk KATEGORI 1 4.1 Funksjonsbegrepet Oppgave 4.110 Regn ut f (0), f () og f (4) når a) f () = + b) f () = 4 c) f () = + 5 d) f () = 3 3 Oppgave 4.111 f() = + + 1 4 3 1 0 1

Detaljer

= 5, forventet inntekt er 26

= 5, forventet inntekt er 26 Eksempel på optimal risikodeling Hevdet forrige gang at i en kontrakt mellom en risikonøytral og en risikoavers person burde den risikonøytrale bære all risiko Kan illustrere dette i en enkel situasjon,

Detaljer

Eksamen S1, Høsten 2013

Eksamen S1, Høsten 2013 Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df f

Detaljer

Løsningsforslag oppgave 1: En måte å løse oppgave på, er å først sette inn tall for de eksogene variable og parametre, slik at vi får

Løsningsforslag oppgave 1: En måte å løse oppgave på, er å først sette inn tall for de eksogene variable og parametre, slik at vi får Steinar Holden, oktober 29 Løsningsforslag til oppgave-sett Keynes-modeller Oppgave Betrakt modellen: () Y C (2) C Y >, < < der Y er BNP, C er konsum, og er realinvesteringer. Y og C er de endogene variable,

Detaljer

Løsning, Trippelintegraler

Løsning, Trippelintegraler Ukeoppgaver, uke 7 Matematikk, rippelintegraler Løsning, rippelintegraler Oppgave a) b) c) 6 x + + ) d d dx x + +/) d dx x) d d dx x + + /] d dx x + /+/] dx x +6)dx 8 6 d ) ) d xdx 6 ) ) ) d d xdx 6 8

Detaljer

Normal- og eksponentialfordeling.

Normal- og eksponentialfordeling. Ukeoppgaver i Statistikk, uke 8 : Normal- og eksponentialfordeling. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke 8 I løpet av uken blir løsningsforslag lagt

Detaljer

EKSAMEN. Tall og algebra, funksjoner 2

EKSAMEN. Tall og algebra, funksjoner 2 EKSAMEN Emnekode: LSV3MAT12 Emne: Tall og algebra, funksjoner 2 Dato: 06/12/2012 Eksamenstid: kl. 09.00 til kl. 15.00 Hjelpemidler: Kalkulator Faglærer: Petter Løkkeberg Eksamensoppgaven: Oppgavesettet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Torsdag 1. oktober 2005. Tid for eksamen: 9:00 11:00. Oppgavesettet er på

Detaljer

Andre del av forelesningen om funksjoner bygger på dette notatet. Notatet bygger på læreboken og er noe mer utfyllende enn forelesningen.

Andre del av forelesningen om funksjoner bygger på dette notatet. Notatet bygger på læreboken og er noe mer utfyllende enn forelesningen. NOTAT TIL FORELESNING OM FUNKSJONER, DEL Andre del av orelesningen om unksjoner bygger på dette notatet. Notatet bygger på læreboken og er noe mer utyllende enn orelesningen. GRENSEVERDI Man kan or eksempel

Detaljer

Løsning, funksjoner av flere variable.

Løsning, funksjoner av flere variable. Ukeoppgaver, uke 3 Matematikk 3, funksjoner av flere variable 1 Løsning, funksjoner av flere variable Oppgave 1 a) = +=, b) =, =y3 d ) e ) = 3+= 3 Selv om ikke x er med kan det betraktes som funksjon av

Detaljer

R2 eksamen våren 2018 løsningsforslag

R2 eksamen våren 2018 løsningsforslag R eksamen våren 08 løsningsforslag DEL Uten hjelpemidler Oppgave ( poeng) Deriver funksjonene a) f ( x) = cos ( x ) f ( x) = sin( x ) = sin( x ) b) g ( x) = x sin x g ( x) = sin x + x cos x = sin x + x

Detaljer