Matematikk 1 (TMA4100)

Størrelse: px
Begynne med side:

Download "Matematikk 1 (TMA4100)"

Transkript

1 Matematikk 1 (TMA4100) Forelesning 4: Grenseverdi (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 20. august, 2012

2 Formell definisjon av grenseverdi

3 Formell definisjon av grenseverdi Uformell definisjon av grenseverdi:

4 Formell definisjon av grenseverdi Uformell definisjon av grenseverdi: Definisjon: Grenseverdi (uformell) La f (x) være definert på et åpent intervall rundt et punkt x 0, men ikke nødvendigvis i x 0. Vi sier at f har grenseverdien L når x går mot x 0 og skriver: lim x x 0 f (x) = L, hvis verdien av f (x) blir vilkårlig nær L for alle x tilstrekkelig nære x 0.

5 Formell definisjon av grenseverdi Uformell definisjon av grenseverdi: Definisjon: Grenseverdi (uformell) La f (x) være definert på et åpent intervall rundt et punkt x 0, men ikke nødvendigvis i x 0. Vi sier at f har grenseverdien L når x går mot x 0 og skriver: lim x x 0 f (x) = L, hvis verdien av f (x) blir vilkårlig nær L for alle x tilstrekkelig nære x 0

6 Formell definisjon av grenseverdi

7 Formell definisjon av grenseverdi Ny formell definisjon av grenseverdi:

8 Formell definisjon av grenseverdi Ny formell definisjon av grenseverdi: Definisjon: Grenseverdi La f (x) være definert på et åpent intervall rundt et punkt x 0, men ikke nødvendigvis i x 0. Vi sier at f har grenseverdien L når x går mot x 0 og skriver: lim x x 0 f (x) = L,

9 Formell definisjon av grenseverdi Ny formell definisjon av grenseverdi: Definisjon: Grenseverdi La f (x) være definert på et åpent intervall rundt et punkt x 0, men ikke nødvendigvis i x 0. Vi sier at f har grenseverdien L når x går mot x 0 og skriver: lim x x 0 f (x) = L, hvis det for en etthvert tall ɛ > 0 finnes et tilhørende tall δ > 0 slik at f (x) L < ɛ for alle x slik at 0 < x x 0 < δ.

10 Definisjon av grenseverdi (illustrasjon) Illustrasjon for lim x a f (x) = b,

11 Regning med definisjonen

12 Regning med definisjonen Oppskrift: Hvordan finne en δ > 0 for en gitt f, L, x 0, og ɛ > 0

13 Regning med definisjonen Oppskrift: Hvordan finne en δ > 0 for en gitt f, L, x 0, og ɛ > 0 1. Løs ulikheten f (x) L < ɛ for å finne et åpent intervall (a, b) som inneholder x 0 slik at ulikheten holder for alle x x 0 i dette intervallet.

14 Regning med definisjonen Oppskrift: Hvordan finne en δ > 0 for en gitt f, L, x 0, og ɛ > 0 1. Løs ulikheten f (x) L < ɛ for å finne et åpent intervall (a, b) som inneholder x 0 slik at ulikheten holder for alle x x 0 i dette intervallet. 2. Finn et tall δ > 0 slik at det åpne intervallet (x 0 δ, x 0 + δ) sentrert i x 0 ligger inni intervallet (a, b)

15 Regning med definisjonen Oppskrift: Hvordan finne en δ > 0 for en gitt f, L, x 0, og ɛ > 0 1. Løs ulikheten f (x) L < ɛ for å finne et åpent intervall (a, b) som inneholder x 0 slik at ulikheten holder for alle x x 0 i dette intervallet. 2. Finn et tall δ > 0 slik at det åpne intervallet (x 0 δ, x 0 + δ) sentrert i x 0 ligger inni intervallet (a, b) Den formelle definisjonen er ikke velegnet til å regne ut en spesifikk grenseverdi.

16 Regning med definisjonen Oppskrift: Hvordan finne en δ > 0 for en gitt f, L, x 0, og ɛ > 0 1. Løs ulikheten f (x) L < ɛ for å finne et åpent intervall (a, b) som inneholder x 0 slik at ulikheten holder for alle x x 0 i dette intervallet. 2. Finn et tall δ > 0 slik at det åpne intervallet (x 0 δ, x 0 + δ) sentrert i x 0 ligger inni intervallet (a, b) Den formelle definisjonen er ikke velegnet til å regne ut en spesifikk grenseverdi. Vi bruker heller den formelle definisjonen til å bevise teoremer og bruker teoremene til å regne ut grenseverdier.

17 Ensidige grenseverdier

18 Ensidige grenseverdier Vanlige grenseverdier kalles også tosidige grenseverdier.

19 Ensidige grenseverdier Vanlige grenseverdier kalles også tosidige grenseverdier. f (x) er definert på begge sider av punktet x 0 og må nærme seg den samme grenseverdien L fra begge sider.

20 Ensidige grenseverdier Vanlige grenseverdier kalles også tosidige grenseverdier. f (x) er definert på begge sider av punktet x 0 og må nærme seg den samme grenseverdien L fra begge sider. For ensidige grenseverdier ser vi kun på f (x) på en side av x 0, og hva som skjer når x går mot x 0 fra denne siden.

21 Ensidige grenseverdier Vanlige grenseverdier kalles også tosidige grenseverdier. f (x) er definert på begge sider av punktet x 0 og må nærme seg den samme grenseverdien L fra begge sider. For ensidige grenseverdier ser vi kun på f (x) på en side av x 0, og hva som skjer når x går mot x 0 fra denne siden. Når vi ser på venstre eller høyre side kalles grenseverdien henholdsvis venstresidig eller høyresidig.

22 Ensidige grenseverdier Vanlige grenseverdier kalles også tosidige grenseverdier. f (x) er definert på begge sider av punktet x 0 og må nærme seg den samme grenseverdien L fra begge sider. For ensidige grenseverdier ser vi kun på f (x) på en side av x 0, og hva som skjer når x går mot x 0 fra denne siden. Når vi ser på venstre eller høyre side kalles grenseverdien henholdsvis venstresidig eller høyresidig.

23 Ensidige grenseverdier Vanlige grenseverdier kalles også tosidige grenseverdier. f (x) er definert på begge sider av punktet x 0 og må nærme seg den samme grenseverdien L fra begge sider. For ensidige grenseverdier ser vi kun på f (x) på en side av x 0, og hva som skjer når x går mot x 0 fra denne siden. Når vi ser på venstre eller høyre side kalles grenseverdien henholdsvis venstresidig eller høyresidig.

24 Definisjon høyresidig grenseverdi

25 Definisjon høyresidig grenseverdi Definisjon: Høyresidig grenseverdi La f (x) være definert på et åpent intervall (x 0, b) med b > x 0. Vi sier at f har grenseverdien L når x går mot x 0 fra høyre og skriver: lim f (x) = L, x x 0 + hvis det for en etthvert tall ɛ > 0 finnes et tilhørende tall δ > 0 slik at f (x) L < ɛ for alle x slik at x 0 < x < x 0 + δ.

26 Definisjon venstresidig grenseverdi Definisjon: Venstresidig grenseverdi La f (x) være definert på et åpent intervall (a, x 0 ) med a < x 0. Vi sier at f har grenseverdien L når x går mot x 0 fra venstre og skriver: lim x x 0 f (x) = L, hvis det for en etthvert tall ɛ > 0 finnes et tilhørende tall δ > 0 slik at f (x) L < ɛ for alle x slik at x 0 δ < x < x 0.

27 Sammenheng mellom ensidige og tosidige grenseverdier

28 Sammenheng mellom ensidige og tosidige grenseverdier Teorem: Likhet venstresidig, høyresidig og (tosidig) grenseverdi En funksjon f(x) har en grenseverdi når x går mot x 0 hvis og bare hvis den har en grenseverdi når x går mot x 0 fra høyre og venstre og disse ensidige grensene er like: lim f (x) = L lim x x 0 x x 0 f (x) = L og lim f (x) = L. x x 0 +

29 Den grunnleggende trigonometriske grenseverdien Teorem: Grunnleggende trigonometrisk grenseverdi. Når θ måles i radianer er: sin(θ) lim = 1 θ 0 θ

30 Den grunnleggende trigonometriske grenseverdien Teorem: Grunnleggende trigonometrisk grenseverdi. Når θ måles i radianer er: sin(θ) lim = 1 θ 0 θ x 0.2

31 Grenseverdier ved x ±

32 Grenseverdier ved x ± Symbolet for uendelig ( ) representerer ikke et reelt tall.

33 Grenseverdier ved x ± Symbolet for uendelig ( ) representerer ikke et reelt tall. x uttrykker at x vokser seg større enn alle endelige grenser.

34 Grenseverdier ved x ± Symbolet for uendelig ( ) representerer ikke et reelt tall. x uttrykker at x vokser seg større enn alle endelige grenser.

35 Grenseverdier ved x ± Symbolet for uendelig ( ) representerer ikke et reelt tall. x uttrykker at x vokser seg større enn alle endelige grenser. y = 1 x x

36 Grenseverdier ved x ± Definisjon: Grenseverdi når x Vi sier at f (x) har grenseverdien L når x går mot uendelig og skriver: lim f (x) = L, x hvis det for en etthvert tall ɛ > 0 finnes et tilhørende tall M > 0 slik at f (x) L < ɛ for alle x slik at x > M.

37 Grenseverdier ved x ± Definisjon: Grenseverdi når x Vi sier at f (x) har grenseverdien L når x går mot minus uendelig og skriver: lim f (x) = L, x hvis det for en etthvert tall ɛ > 0 finnes et tilhørende tall N slik at f (x) L < ɛ for alle x slik at x < N.

38 Grenseverdier ved x ± Teorem: Lover for grenseverdier når x ±

39 Grenseverdier ved x ± Teorem: Lover for grenseverdier når x ± La L, M og k være reelle tall og f (x) = L og lim g(x) = M, da lim

40 Grenseverdier ved x ± Teorem: Lover for grenseverdier når x ± La L, M og k være reelle tall og f (x) = L og lim g(x) = M, da lim 1. Regel for sum: lim (f (x) + g(x)) = L + M

41 Grenseverdier ved x ± Teorem: Lover for grenseverdier når x ± La L, M og k være reelle tall og f (x) = L og lim g(x) = M, da lim 1. Regel for sum: lim (f (x) + g(x)) = L + M 2. Differanseregel: lim (f (x) g(x)) = L M

42 Grenseverdier ved x ± Teorem: Lover for grenseverdier når x ± La L, M og k være reelle tall og f (x) = L og lim g(x) = M, da lim 1. Regel for sum: lim (f (x) + g(x)) = L + M 2. Differanseregel: lim (f (x) g(x)) = L M 3. Produktregel: lim (f (x) g(x)) = L M

43 Grenseverdier ved x ± Teorem: Lover for grenseverdier når x ± La L, M og k være reelle tall og f (x) = L og lim g(x) = M, da lim 1. Regel for sum: lim (f (x) + g(x)) = L + M 2. Differanseregel: lim (f (x) g(x)) = L M 3. Produktregel: lim (f (x) g(x)) = L M 4. Regel for multiplikasjon med konstant: (k f (x)) = k L lim

44 Grenseverdier ved x ± Teorem: Lover for grenseverdier når x ± La L, M og k være reelle tall og f (x) = L og lim g(x) = M, da lim 1. Regel for sum: lim (f (x) + g(x)) = L + M 2. Differanseregel: lim (f (x) g(x)) = L M 3. Produktregel: lim (f (x) g(x)) = L M 4. Regel for multiplikasjon med konstant: (k f (x)) = k L lim f (x) 5. Kvotientregel: lim g(x) = L M, M 0

45 Grenseverdier ved x ± Teorem: Lover for grenseverdier når x ± La L, M og k være reelle tall og f (x) = L og lim g(x) = M, da lim 1. Regel for sum: lim (f (x) + g(x)) = L + M 2. Differanseregel: lim (f (x) g(x)) = L M 3. Produktregel: lim (f (x) g(x)) = L M 4. Regel for multiplikasjon med konstant: (k f (x)) = k L lim f (x) 5. Kvotientregel: lim g(x) = L M, M 0 6. Potensregel: La r og s 0 være heltall uten en felles faktor. Da er lim (f (x))r/s = L r/s dersom L r/s er et reelt tall (L > 0 hvis s er et partall).

46 Uendelige grenseverdier

47 Uendelige grenseverdier I den forrige situasjonen gikk f (x) mot en endelig verdi når x gikk mot uendelig eller minus uendelig.

48 Uendelige grenseverdier I den forrige situasjonen gikk f (x) mot en endelig verdi når x gikk mot uendelig eller minus uendelig. En annen situasjon er den hvor f (x) vokser seg større enn ethvert positivt tall eller mindre enn etthvert negativt tall når x går mot x 0.

49 Uendelige grenseverdier I den forrige situasjonen gikk f (x) mot en endelig verdi når x gikk mot uendelig eller minus uendelig. En annen situasjon er den hvor f (x) vokser seg større enn ethvert positivt tall eller mindre enn etthvert negativt tall når x går mot x 0. f (x) har ingen grenseverdi i punktet x 0, men det har fortsatt nytteverdi å beskrive denne oppførselen.

50 Uendelige grenseverdier I den forrige situasjonen gikk f (x) mot en endelig verdi når x gikk mot uendelig eller minus uendelig. En annen situasjon er den hvor f (x) vokser seg større enn ethvert positivt tall eller mindre enn etthvert negativt tall når x går mot x 0. f (x) har ingen grenseverdi i punktet x 0, men det har fortsatt nytteverdi å beskrive denne oppførselen. Vi sier da at f (x) går mot henholdsvis uendelig eller minus uendelig når x går mot x 0.

51 Uendelige grenseverdier (illustrasjon) y = 1 x 2 når x x

52 Uendelige grenseverdier Definisjon: Uendelig grenseverdi Vi sier at f (x) går mot uendelig når x går mot x 0 og skriver: lim f (x) =, x x 0 hvis det for en etthvert positivt reelt tall B finnes et tilhørende tall δ > 0 slik at f (x) > B for alle x slik at 0 < x x 0 < δ.

53 Uendelige grenseverdier Definisjon: Minus uendelig grenseverdi Vi sier at f (x) går mot minus uendelig når x går mot x 0 og skriver: lim f (x) =, x x 0 hvis det for en etthvert negativt reelt tall B finnes et tilhørende tall δ > 0 slik at f (x) < B for alle x slik at 0 < x x 0 < δ.

54 Uendelige grenseverdier Definisjon: Minus uendelig grenseverdi Vi sier at f (x) går mot minus uendelig når x går mot x 0 og skriver: lim f (x) =, x x 0 hvis det for en etthvert negativt reelt tall B finnes et tilhørende tall δ > 0 slik at f (x) < B for alle x slik at 0 < x x 0 < δ. Disse definisjonene er enkle å utvide til ensidige grenser på samme måte som for vanlige grenseverdier.

55 Asymptoter

56 Asymptoter En asymptote til en funksjon er en rett linje som funksjonen nærmer seg når avstanden fra origo øker.

57 Asymptoter En asymptote til en funksjon er en rett linje som funksjonen nærmer seg når avstanden fra origo øker. Asymptoter klassifiseres som horisontale, skrå eller vertikale ut fra om den rette linjen er horisontal, skrå eller vertikal.

58 Asymptoter En asymptote til en funksjon er en rett linje som funksjonen nærmer seg når avstanden fra origo øker. Asymptoter klassifiseres som horisontale, skrå eller vertikale ut fra om den rette linjen er horisontal, skrå eller vertikal.

59 Asymptoter En asymptote til en funksjon er en rett linje som funksjonen nærmer seg når avstanden fra origo øker. Asymptoter klassifiseres som horisontale, skrå eller vertikale ut fra om den rette linjen er horisontal, skrå eller vertikal. Definisjon: Horisontal asymptote En linje y = b er en horisontal asymptote til grafen til en funksjon y = f (x) hvis enten: lim f (x) = b, eller lim f (x) = b. x x

60 Asymptoter En asymptote til en funksjon er en rett linje som funksjonen nærmer seg når avstanden fra origo øker. Asymptoter klassifiseres som horisontale, skrå eller vertikale ut fra om den rette linjen er horisontal, skrå eller vertikal. Definisjon: Horisontal asymptote En linje y = b er en horisontal asymptote til grafen til en funksjon y = f (x) hvis enten: lim f (x) = b, eller lim f (x) = b. x x Definisjon: Vertikal asymptote En linje x = a er en vertikal asymptote til grafen til en funksjon y = f (x) hvis enten: lim x a f (x) = ±, eller lim f (x) = ±. + x a

61 Eksempel: 3x2 +4 x 2 Asymptoter Vertikal asymptote x = 2 (sort) og skrå asymptote y = 3x +6 (rød) x 20 40

Fremdriftplan. Siste uke. I dag. Kap. 1 Funksjoner Grenseverdier

Fremdriftplan. Siste uke. I dag. Kap. 1 Funksjoner Grenseverdier 1 Fremdriftplan Siste uke Kap. 1 Funksjoner 2.1-2.2 Grenseverdier I dag 2.3 Den formelle definisjonen av grenseverdi 2.4 Ensidige grenser og grenser i uendelig 2.5 Uendelige grenser og vertikale asymptoter

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 5 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 5 Grenseverdier I dagens forelesning skal vi se på grenseverdier. 1 Hvorfor

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 6: Derivasjon Eirik Hoel Høiseth Stipendiat IMF NTNU 22. august, 2012 Stigningstallet i et punkt Stigningstallet i et punkt Vi vender nå tilbake til problemet med å finne

Detaljer

Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100

Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100 Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 24. august 2010 2 Grenselover for x ± L = lim f(x) M = lim g(x) 1. lim (f(x) ± g(x))

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, øst 2013 Forelesning 7 www.ntnu.no TMA4100 Matematikk 1, øst 2013, Forelesning 7 Derivasjon Denne uken skal vi begynne på tema 2 om derivasjon. I dagens forelesning skal vi se på

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 6 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 6 Grenseverdier I dagens forelesning skal vi se på følgende: 1 En formell definisjon

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 2: Funksjoner (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 16. august, 2012 Eksponentialfunksjoner Eksponentialfunksjoner Definisjon: Eksponentialfunksjon En

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 7: Derivasjon (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 23. august, 2012 Den deriverte som momentan endringsrate Den deriverte som momentan endringsrate Repetisjon

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

Deleksamen i MAT111 - Grunnkurs i Matematikk I

Deleksamen i MAT111 - Grunnkurs i Matematikk I Bergen, oktober. 2004. Løsningsforslag til Deleksamen i MAT - Grunnkurs i Matematikk I Mandag. oktober 2004, kl. 09-2. Oppgave Beregn grensen f.eks. ved hjelp av l Hôpitals regel. lim x ln x x Vi ser at

Detaljer

Notasjon i rettingen:

Notasjon i rettingen: UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Løsningsforslag med kommentarer) til Innlevering /4 i emnet MAT, høsten 207 Notasjon i rettingen: R Rett R Rett, men med liten tulle)feil

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA1102 Grunnkurs i analyse II Vår 2019 10.2.27 a) Vi skal vise at u + v 2 = u 2 + 2u v + v 2. (1) Som boka nevner på side 581,

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2010

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2010 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 200 2 Funksjon som en maskin x Funksjon f f(x) 3 Definisjon- og verdimengde x f(x) 4 Funksjon som en

Detaljer

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 9. september 2011 Kapittel 4.1. Funksjoners ekseremverdier fra og med lokale ekstrema

Detaljer

Fremdriftplan. I går. I dag. 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner

Fremdriftplan. I går. I dag. 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner 1 Fremdriftplan I går 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner I dag 1.3 Trigonometriske funksjoner 1.4 Eksponentialfunksjoner 1.5 Omvendte funksjoner, logaritmiske funksjoner, inverse

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 5

Løsningsforslag til utvalgte oppgaver i kapittel 5 Løsningsforslag til utvalgte oppgaver i kapittel 5 I kapittel 5 har mange av oppgavene et mer teoretisk preg enn du er vant til fra skolematematikken, og jeg har derfor lagt vekt på å lage løsningsforslag

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

Den deriverte og derivasjonsregler

Den deriverte og derivasjonsregler Den deriverte og derivasjonsregler Department of Mathematical Sciences, NTNU, Norway September 3, 2014 Tangenten til en funksjon i et punkt (kap. 2.1) Sekant til en funksjon gjennom to punkter 25 20 f(c+h)

Detaljer

Forelesning 10 MA0003, Tirsdag 18/ Asymptoter og skissering av grafer Bittinger:

Forelesning 10 MA0003, Tirsdag 18/ Asymptoter og skissering av grafer Bittinger: Forelesning 0 MA000, Tirsdag 8/9-0 Asymptoter og skissering av grafer Bittinger:.-. Asymptoter Definisjon. La f være en funksjon. Vi sier at linjen l() = a + b er en skrå asymptote for f dersom minst ett

Detaljer

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 13. september 2011 Kapittel 4.3. Monotone funksjoner og førstederivasjons-testen

Detaljer

Løsningsforslag til underveiseksamen i MAT 1100, H-06

Løsningsforslag til underveiseksamen i MAT 1100, H-06 Løsningsforslag til underveiseksamen i MAT, H-6. ( poeng) Det komplekse tallet z har polarkoordinater r = 4, θ = π 4. Da er z lik: + i + i + i i + i Riktig svar: c) + i Begrunnelse: z = r(cos θ + i sin

Detaljer

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 25. august 2010 2 Dagens pensum I dag vil vi se på følgende: Kontinuerlige funksjoner Den deriverte

Detaljer

Kontinuitet og grenseverdier

Kontinuitet og grenseverdier Kontinuitet og grenseverdier Avdeling for lærerutdanning, Høgskolen i Vestfold 5. januar 2009 1 Innledning Kontinuitetsbegrepet For å motivere og innlede til kontinuitetsbegrep skal vi først undersøke

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn

Detaljer

Trasendentale funksjoner

Trasendentale funksjoner Trasendentale funksjoner Department of Mathematical Sciences, NTNU, Norway September 9, 2014 Kap. 3.1 og 3.2. Forelesning 8. September. Inverse funksjoner, definisjon og eksistens Deriverte av inverse

Detaljer

Oppfriskningskurs i Matematikk

Oppfriskningskurs i Matematikk Oppfriskningskurs i Matematikk Dag 2 Stine M. Berge 06.07.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 06.07.19 1 / 16 Funksjoner Definisjon En funksjon f er en prosses som ett element i en

Detaljer

Funksjonsdrøfting MAT111, høsten 2017

Funksjonsdrøfting MAT111, høsten 2017 Funksjonsdrøfting MAT111, høsten 2017 Andreas Leopold Knutsen 11. Oktober 2017 Strengt voksende funksjon (Def. 6 i Ÿ2.8) f er strengt voksende på intervallet I dersom x 1 < x 2 i I = f (x 1 ) < f (x 2

Detaljer

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet 1 Fremdriftplan I går 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet I dag 2.7 Tangenter og derivasjon 3.1 Den deriverte til en funksjon 3.2 Derivasjonsregler 3.3 Den deriverte som endringsrate

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 20 2 Stigende og avtagende funksjoner Definisjon En funksjon f kalles stigende på intervallet I hvis

Detaljer

Forelesning Matematikk 4N

Forelesning Matematikk 4N Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 11. september 2006 2 Den høyrederiverte og venstrederiverte Definisjon Den høyrederiverte til en funksjon f(x) i punktet x er

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

Andre del av forelesningen om funksjoner bygger på dette notatet. Notatet bygger på læreboken og er noe mer utfyllende enn forelesningen.

Andre del av forelesningen om funksjoner bygger på dette notatet. Notatet bygger på læreboken og er noe mer utfyllende enn forelesningen. NOTAT TIL FORELESNING OM FUNKSJONER, DEL Andre del av orelesningen om unksjoner bygger på dette notatet. Notatet bygger på læreboken og er noe mer utyllende enn orelesningen. GRENSEVERDI Man kan or eksempel

Detaljer

Funksjonsdrøfting MAT111, høsten 2016

Funksjonsdrøfting MAT111, høsten 2016 Funksjonsdrøfting MAT111, høsten 2016 Andreas Leopold Knutsen 11. oktober 2016 Den deriverte f Newton-kvotienten f (x+h) f (x) h er stigningen til sekantlinjen gjennom punktene (x, f (x)) og (x + h, f

Detaljer

TMA4100: Repetisjon før midtsemesterprøven

TMA4100: Repetisjon før midtsemesterprøven TMA4100: Repetisjon før midtsemesterprøven 10.10.09 Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag October 1, 2009 L.S. (NTNU) TMA4100: Oversikt October 1, 2009 1 / 20 Kapittel 1: Funksjoner.

Detaljer

Oppgave 1. (a) Mindre enn 10 år (b) Mellom 10 og 11 år (c) Mellom 11 og 12 år (d) Mer enn 12 år (e) Jeg velger å ikke besvare denne oppgaven.

Oppgave 1. (a) Mindre enn 10 år (b) Mellom 10 og 11 år (c) Mellom 11 og 12 år (d) Mer enn 12 år (e) Jeg velger å ikke besvare denne oppgaven. Eksamen Prøve-eksamen for MET 11802 Matematikk Dato November 2015 - Alternativ 2 Oppgave 1. En bank-konto gir 3% rente, og renten kapitaliseres kontinuerlig. Vi setter inn 100.000 kr på denne kontoen.

Detaljer

MAT jan jan feb MAT Våren 2010

MAT jan jan feb MAT Våren 2010 MAT 1012 Våren 2010 Mandag 25. januar 2010 Forelesning Vi fortsetter med å se på det bestemte integralet, bl.a. på hvordan vi kan bruke numeriske beregninger til å bestemme verdien når vi ikke nødvendigvis

Detaljer

Flere anvendelser av derivasjon

Flere anvendelser av derivasjon Flere anvendelser av derivasjon Department of Mathematical Sciences, NTNU, Norway September 30, 2014 Forelesning 17.09.2014 Fikspunkt-iterasjon Newtons metode Metoder for å finne nullpunkter av funksjoner:

Detaljer

OPPGAVESETT MAT111-H17 UKE 36. Oppgaver til seminaret 8/9. Husk at seminaret finnes i to varianter, begge fredag :

OPPGAVESETT MAT111-H17 UKE 36. Oppgaver til seminaret 8/9. Husk at seminaret finnes i to varianter, begge fredag : OPPGAVESETT MAT111-H17 UKE 36 Avsnitt 1.4: 17, 29, 32 Avsnitt 2.2: 12 Avsnitt 2.3: 41, 52 På settet: S.1 Oppgaver til seminaret 8/9 Husk at seminaret finnes i to varianter, begge fredag 12.15-14.00: Seminar

Detaljer

Krasjkurs MAT101 og MAT111

Krasjkurs MAT101 og MAT111 Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart Forelesning 3 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart Forelesning 3 Tema Logikk Definisjoner og Teoremer Mengder og Egenskaper ved de Reelle Tall

Detaljer

1+2 x, dvs. løse ligningen mhp. x. y = x y(1 + 2 x ) = = 100 y y x ln 2 = ln 100 y y x = 1. 2 x = 1. f 1 (x) =

1+2 x, dvs. løse ligningen mhp. x. y = x y(1 + 2 x ) = = 100 y y x ln 2 = ln 100 y y x = 1. 2 x = 1. f 1 (x) = NTNU Institutt for matematiske fag TMA4 Matematikk høsten 2 Løsningsforslag - Øving Avsnitt.5 59 a) Vi skal invertere f() +2, dvs. løse ligningen mhp.. + 2 ( + 2 ) 2 ln 2 ln ln 2 ln Vi btter om på og :

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA400 Matematikk, høst 203 Forelesning 2 www.ntnu.no TMA400 Matematikk, høst 203, Forelesning 2 Transcendentale funksjoner I dagens forelesning skal vi se på følgende: Den naturlige logaritmen. 2 Eksponensialfunksjoner.

Detaljer

a) Blir produktet av to vilkårlige oddetall et partall eller et oddetall? Bevis det.

a) Blir produktet av to vilkårlige oddetall et partall eller et oddetall? Bevis det. Prøve i R1 04.1.15 Del 1 Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Husk å begrunne alle svar. Det skal gå klart frem av besvarelsen hvordan du har tenkt. Oppgave

Detaljer

Løsningsforslag øving 6

Løsningsforslag øving 6 Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Tall SKOLEPROSJEKT MAT VÅR 2014 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM. Date: March 31,

Tall SKOLEPROSJEKT MAT VÅR 2014 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM. Date: March 31, Tall SKOLEPROSJEKT MAT400 - VÅR 204 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM Date: March 3, 204. 2. Innledning Vårt skoleprosjekt omhandler ulike konsepter innenfor det matematiske området

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 10 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 10 Derivasjon I dagens forelesning skal vi se på følgende: 1 Antideriverte. 2 Differensiallikninger

Detaljer

1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x

1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x NTNU Institutt for matematiske fag TMA400 Matematikk Høsten 20 Løsningsforslag - Øving Avsnitt.5 59 a) Vi skal invertere y f(x) 00 +2 x, dvs. løse ligningen mhp. x. y 00 +2 x y(+2 x ) 00 2 x 00 00 y y

Detaljer

Prøveeksamen i MAT 1100, H-03 Løsningsforslag

Prøveeksamen i MAT 1100, H-03 Løsningsforslag Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan

Detaljer

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 18. feb Eksamenstid:

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 18. feb Eksamenstid: . EKSAMEN EMNE: MA61 FAGLÆRER: Svein Olav Nyberg, Morten Brekke Klasser: (div) Dato: 18. feb. 4 Eksamenstid: 9 1 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 8 Antall oppgaver: 5 Antall

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA405 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 6 3..9: Vi starter med å finne de kritiske punktene. De deriverte blir T x (x, y) = ( x xy)e x y T y (x, y) = ( y xy)e x y, slik at de kritiske

Detaljer

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der: Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn

Detaljer

Stigende og avtagende funksjoner Definisjon. Horisontal og vertikal forskyvning. Trigonometriske funksjoner

Stigende og avtagende funksjoner Definisjon. Horisontal og vertikal forskyvning. Trigonometriske funksjoner Funksjoner Forelesning i Matematikk TMA00 Hans Jako Rivertz Institutt for matematiske fag 9. august 0 Stigende og avtagende funksjoner En funksjon f kalles stigende på intervallet I vis f (x ) < f (x )

Detaljer

Repetisjon i Matematikk 1: Derivasjon 2,

Repetisjon i Matematikk 1: Derivasjon 2, Repetisjon i Matematikk 1: Derivasjon 2, 201. 1 Høgskolen i Gjøvik Avdeling TØL Repetisjonsoppgaver MATEMATIKK 1 REA1141 og REA1141F Derivasjon 2, 201. Oppgave 1 Denne oppgaven har forholdsvis enkle derivasjoner,

Detaljer

NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN

NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT2 VED UNIVERSITETET I BERGEN ANDREAS LEOPOLD KNUTSEN OG ARNE STRAY. Innledning og definisjoner Vi vil i dette notatet betrakte reelle funksjoner

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Kalkulus Kapittel 1 Oppgave 1. a) en funksjon b) en funksjon c) ikke en funksjon d) ikke en funksjon Oppgave 2. a) 12,1 b) 4 c)

Detaljer

TMA4100 Matematikk1 Høst 2008

TMA4100 Matematikk1 Høst 2008 TMA400 Matematikk Høst 008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 4 4..3 Vi skal finne absolutt maksimum og absolutt minimum verdiene for funksjonen

Detaljer

Oppfriskningskurs i Matematikk

Oppfriskningskurs i Matematikk Oppfriskningskurs i Matematikk Dag 3 Stine M. Berge 07.08.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 07.08.19 1 / 19 Polynomer Polynomer er de enkleste funksjonene Definert og kontinuerlig

Detaljer

OPPGAVESETT MAT111-H16 UKE 36. Oppgaver til seminaret 9/9. Husk at seminaret finnes i to varianter, begge fredag :

OPPGAVESETT MAT111-H16 UKE 36. Oppgaver til seminaret 9/9. Husk at seminaret finnes i to varianter, begge fredag : OPPGAVESETT MAT111-H16 UKE 36 Avsnitt 1.4: 17, 29, 32 Avsnitt 2.2: 12 Avsnitt 2.3: 41, 52 På settet: S.1 Oppgaver til seminaret 9/9 Husk at seminaret finnes i to varianter, begge fredag 12.15-14.00: Seminar

Detaljer

R1 -Fagdag

R1 -Fagdag R1 -Fagdag 3-05.11.2015 Kommentarer Hovedfokus: Trene på å bruke GeoGebra. Fordype oss i fagstoff om logaritmer, funksjoner og grenseverdier I Logaritmer 1) Bevis at lgx ln x ln 10 og at lgx lge ln x.

Detaljer

Oppfriskningskurs i matematikk Dag 3

Oppfriskningskurs i matematikk Dag 3 Oppfriskningskurs i matematikk Dag 3 Petter Nyland Institutt for matematiske fag Onsdag 8. august 2018 Dagen i dag Tema 4 Polynomer: Faktorisering, røtter, polynomdivisjon, kvadratiske ligninger og rasjonale

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. november 2011 Kapittel 8.8. Taylorrekker og Maclaurinrekker 3 Taylor-polynomer Definisjon (Taylorpolynomet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT00 Kalkulus Eksamensdag: Fredag 9. oktober 205 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 5 sider. Vedlegg: Svarark, formelsamling.

Detaljer

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Andreas Leopold Knutsen 4. oktober 2017 Problem og hovedidé Problem: Finn løsning(er) r på en ligning

Detaljer

Enkel matematikk for økonomer. Del 1 nødvendig bakgrunn. Parenteser og brøker

Enkel matematikk for økonomer. Del 1 nødvendig bakgrunn. Parenteser og brøker Vedlegg Enkel matematikk for økonomer I dette vedlegget går vi gjennom noen grunnleggende regneregler som brukes i boka. Del går gjennom de helt nødvendige matematikk-kunnskapene. Dette må du jobbe med

Detaljer

Følger og rekker. Department of Mathematical Sciences, NTNU, Norway. November 10, 2014

Følger og rekker. Department of Mathematical Sciences, NTNU, Norway. November 10, 2014 Department of Mathematical Sciences, NTNU, Norway November 10, 2014 Forelesning (03.01.2014): kap 9.1 og 9.2 Beskrivelse av følger eksempler og definisjon Egenskaper med følger Grenseverdi for følger (og

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag Eksamen i FO99A Matematikk Underveiseksamen Dato. desember 6 Tidspunkt 9. -. Antall oppgaver Vedlegg Tillatte hjelpemidler Ingen Godkjent kalkulator Godkjent formelsamling Oppgave Vi løser likningene ved

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA1102 Grunnkurs i analyse II Vår 2019 Først en kommentar. I læreboka møter man kjeglesnitt på standardform, som ellipser x

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011 Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner

Detaljer

Løsningsforslag i matematikk

Løsningsforslag i matematikk Løsningsforslag i matematikk 060808 Oppgave (a) ( a b ) b 4 a (ab) = a b b 4 a a b = a b = b a = a + b + 4 a b = a + + b + 4 + (b) Omskrivning av likningen gir sin(x) + cos(x) = 0 sin(x) cos(x) = tan(x)

Detaljer

1 Mandag 1. februar 2010

1 Mandag 1. februar 2010 Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL MAT - Høst 03 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Grunnkurs i Matematikk I Mandag 6. desember 03, kl. 09- Tillatte hjelpemidler: Lærebok ( Calculus

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 1. november 2011 Kapittel 8.7. Potensrekker (fra konvergens av) 3 Konvergens av potensrekker Eksempel For

Detaljer

Oppsummering MA1101. Kristian Seip. 23. november 2017

Oppsummering MA1101. Kristian Seip. 23. november 2017 Oppsummering MA1101 Kristian Seip 23. november 2017 Forelesningen 23. november Denne forelesningen beskriver de store linjer og sammenhengen mellom de ulike deltemaene i MA1101 noen tips for eksamensperioden

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA112 Grunnkurs i analyse II Vår 219 8.4.1 Vi skal finne lengden til kurven x = 3t 2, y = 2t 3 der t 1. Som boka beskriver på

Detaljer

x 2 2 x 1 =±x 2 1=x 2 x 2 = y 3 x= y 3

x 2 2 x 1 =±x 2 1=x 2 x 2 = y 3 x= y 3 Obligatorisk om funksjonar og deriverte Oppgåve f 3 f = ±, =R Funksjonen f er ein parabel med botnpunkt på (,y) = (0,3) og definisjonsmengda er difor heile tallinja. Sidan f = f er funksjonen symmeterisk

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer.

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer. Eksamen i FO99A Matematikk Underveiseksamen Dato 30. mars 007 Tidspunkt 09.00-14.00 Antall oppgaver 4 Vedlegg Tillatte hjelpemidler Sirkelskive i radianer Godkjent kalkulator Godkjent formelsamling Oppgave

Detaljer

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00 Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte

Detaljer

Oppfriskningskurs i matematikk Dag 2

Oppfriskningskurs i matematikk Dag 2 Oppfriskningskurs i matematikk Dag 2 Petter Nyland Institutt for matematiske fag Tirsdag 7. august 2018 Beskjeder Rombytte: EL5 i dag og i morgen. F1 igjen på torsdag. Skal fikse fasit (til tallsvar) på

Detaljer

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon.

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon. Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter

Detaljer

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker.

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker. Heldagsprøve i matematikk, 1. desember 006 Forkurs for Ingeniørutdanningen ved HiO, 006/07 Antall oppgaver: Antall timer: 5 timer fra klokken 0900 til klokken 100. Hjelpemidler: Kalkulator og Formelsamling

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

x 2 + y 2 z 2 = c 2 x 2 + y 2 = c 2 z 2,

x 2 + y 2 z 2 = c 2 x 2 + y 2 = c 2 z 2, TMA45 Matematikk 2 Vår 25 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 4 Alle oppgavenummer referer til 8. utgave av Adams & Esse Calculus: A Complete

Detaljer

EKSAMEN. V3: Tall og algebra, funksjoner 2 ( trinn)

EKSAMEN. V3: Tall og algebra, funksjoner 2 ( trinn) EKSAMEN Emnekode: LSV3MAT Emne: V3: Tall og algebra, funksjoner (5.-0. trinn) Dato: 3. desember 08 Eksamenstid: kl. 09.00 til kl. 5.00 Hjelpemidler: Kalkulator uten grafisk vindu Vedlagt formelark Faglærere:

Detaljer

Notasjon i rettingen:

Notasjon i rettingen: UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Løsningsforslag med kommentarer) til Innlevering /4 i emnet MAT, høsten 07 Notasjon i rettingen: R = Rett R = Rett, men med liten tulle)feil

Detaljer

EKSEMPLER TIL ETTERTANKE MAT1100 KALKULUS

EKSEMPLER TIL ETTERTANKE MAT1100 KALKULUS EKSEMPLER TIL ETTERTANKE MAT00 KALKULUS Simon Foldvik. Oktober 207 Dette dokumentet inneholder eksempler på hvor «ting går galt» og har til hensikt å vise eksempler på hva man ikke kan konkludere. Alle

Detaljer

Oblig 1 - MAT Oppgave 1. Fredrik Meyer. Vi lar α > 1 og x 1 > α. Vi definerer en følge (x n ) ved. x n+1 = α + x n 1 + x n.

Oblig 1 - MAT Oppgave 1. Fredrik Meyer. Vi lar α > 1 og x 1 > α. Vi definerer en følge (x n ) ved. x n+1 = α + x n 1 + x n. Oblig 1 - MAT2400 Fredrik Meyer 1 Oppgave 1 Vi lar α > 1 og x 1 > α. Vi definerer en følge (x n ) ved Lemma 1 (a). x n > 1 n N x n+1 = α + x n = x n + α x2 n Bevis. Siden α > 1 er α + x n >, så 1 = 1+xn

Detaljer

SALG > KOSTNAD når mer enn 100 produkt selges. Virksomheten går da med overskudd.

SALG > KOSTNAD når mer enn 100 produkt selges. Virksomheten går da med overskudd. SALG > KOSTNAD y = 20x Salg y = 0 000 Kostnad 20x > 0 000 SALG > KOSTNAD mer enn 00 produkt selges. Virksomheten går da med overskudd. Slik kan ulikheter løses grafisk En ulikhet består av en venstre side,

Detaljer

Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005

Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 3, onsdag 3. november 5 Del Oppgave Funksjonen f(x) er

Detaljer

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 3. des Eksamenstid:

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 3. des Eksamenstid: . EKSAMEN EMNE: MA61 FAGLÆRER: Svein Olav Nyberg, Morten Brekke Klasser: (div) Dato: 3. des. 3 Eksamenstid: 9 1 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 7 Antall oppgaver: 6 Antall

Detaljer

UNIVERSITETET I OSLO. Løsningsforslag

UNIVERSITETET I OSLO. Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29 MA0003 Ole Jacob Broch Norwegian University of Science and Technology MA0003 p.1/29 Oversikt, torsdag 13/1 Avsnitt 1.3: intervaller og intervallnotasjon definisjons- og verdimengden til en funksjon Avsnitt

Detaljer

TMA 4140 Diskret Matematikk, 4. forelesning

TMA 4140 Diskret Matematikk, 4. forelesning TMA 4140 Diskret Matematikk, 4. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) September 9, 2011 Haaken Annfelt Moe (NTNU) TMA

Detaljer

En studentassistents perspektiv på ε δ

En studentassistents perspektiv på ε δ En studentassistents perspektiv på ε δ Øistein Søvik 16. november 2015 5 y ε 4 3 ε 2 1 1 δ 1 δ 2 x Figur 1: Illustrerer grenseverdien lim x 1 2x + 1. Innledning I løpet av disse korte sidene skal vi prøve

Detaljer

x, og du dx = w dy (cosh u) = sinh u H sinh w H x = sinh w H x. dx = H w w > 0, så h har ikke flere lokale ekstremverdier.

x, og du dx = w dy (cosh u) = sinh u H sinh w H x = sinh w H x. dx = H w w > 0, så h har ikke flere lokale ekstremverdier. NTNU Institutt for matematiske fag TMA400 Matematikk høsten 00 Løsningsforslag - Øving 3 Avsnitt 3. u 49 a) Fra tabell 3.4 på sie i boka: (cosh u) = sinh u. Her har vi at u = w H, og u = w y H. Det følger

Detaljer