= 5, forventet inntekt er 26

Størrelse: px
Begynne med side:

Download "= 5, forventet inntekt er 26"

Transkript

1 Eksempel på optimal risikodeling Hevdet forrige gang at i en kontrakt mellom en risikonøytral og en risikoavers person burde den risikonøytrale bære all risiko Kan illustrere dette i en enkel situasjon, uten noen prinsipal-agent-problemstilling Anta at de to skal dele rettighetene til en framtidig inntekt som kan ha to utfall, 32 eller 72 Sannsynlighet ½ for hvert av utfallene Den ene ønsker så høy forventet inntekt som mulig Den andre ønsker så høy forventet nytte som mulig, med en nyttefunksjon lik kvadratroten av inntekten Ikke klart hva det betyr å få negativ inntekt; derfor ser vi bare på delingsregler der begge får positiv inntekt Kunne dele likt; begge får halvparten, 16 eller Forventet nytte er = 5, forventet inntekt er Mulig å øke forventet nytte for den risikoaverse uten å redusere forventet inntekt for den risikonøytrale: Hvis den risikoaverse får 26 uansett hva utfallet blir, vil forventet nytte bli større enn 5; begrunnelse: Forventet nytte ved å få 25 uansett utfall blir 5; øker dette med 1 uansett utfall, åpenbart bedre Den risikonøytrale får nå = 6 i det dårlige utfallet, = 46 i det gode utfallet; forventet inntekt er uendret lik 26, har ikke tapt på dette Rom for å forbedre for begge: 25½ til risikoavers,... 1

2 Skjult atferd og optimale insentiver Forrige gang: Svært enkle modeller med bare to mulige nivåer for agentens innsats I dag: Agenten kan velge innsatsnivå fritt Velg e som et hvilket som helst positivt tall Mer komplisert for prinsipalen å utforme kontrakten Ikke tilstrekkelig å sørge for det høye innsatsnivået Jo sterkere insentiv, jo høyere vil innsatsnivået bli Samtidig må agenten ha høyere kompensasjon for å bære høy risiko, jfr. deltakerbetingelsen Skal studere en spesifikk modell som gir oss en formel for den optimale kontrakten I dette kurset: Forutsetter ikke matematiske forkunnskaper (ut over første klasse, vgs) Vil derfor bare gi en delvis begrunnelse for løsningen Ufullstendig informasjon, optimal lineær kontrakt Endring fra forrige gang: Antar nå at resultatet z (f.eks. produsert mengd er summen av innsatsen e og ytre faktorer x, summen vil som før avhenge av begge deler Bare resultatet, ikke innsatsen, er verifiserbar Kontrakten kunne gi en komplisert sammenheng mellom z og agentens inntekt, w Forenkler og konsentrerer oss om kontrakter av typen w = α + βz, der α og β er to konstante tall Leter altså etter en optimal lineær kontrakt 2

3 Sannsynlighetsfordeling og forventning En sannsynlighetsfordeling er en beskrivelse av mulige utfall for en usikker (stokastisk) variabel og sannsynlighetene for at de ulike utfallene skal inntreffe Hvis det er uendelig mange mulige utfall (f.eks. alle mulige desimaltall mellom 0 og 1), gir det vanligvis ikke mening å gi hvert enkelt-utfall en positiv sannsynlighet, for da kan summen av sannsynlighetene bli uendelig I stedet: Sannsynlighet for utfall i intervaller, f.eks. intervallet mellom 0 og 0,25, intervallet mellom 0,25 og 0,5, osv. I den økonomiske modellen på forrige side er x (de ytre omstendighetene, støyen) den grunnleggende stokastiske variabelen, mens e ikke er usikker Siden resultatet er z = e + x, vil z også være stokastisk og ha en sannsynlighetsfordeling Siden betalingen er w = α + βz, vil w også være stokastisk og ha en sannsynlighetsfordeling (hvis ikke β = 0) For hver sannsynlighetsfordeling: Kan regne ut forventet verdi, som skrives E( ), f.eks. E(x), E(w) Definerte denne forrige gang: Veid gjennomsnitt av mulige utfall, med sannsynlighetene som vekter Litt mer komplisert når uendelig mange mulige utfall Regneregler: Hvis a og b er stokastiske, mens c er konstant, så er E(a+b) = E(a) + E(b), og E(ca) = ce(a) 3

4 Sannsynlighetsfordeling, forventning og varians Hittil: Har knyttet to tall til en sannsynlighetsfordeling Forventet utfall, også kalt forventning, et slags gjennomsnitt Forventet nytte, basert på at vi også kjenner en nyttefunksjon (i tillegg til sannsynlighetsfordelingen) Nå: Et tredje tall, varians Varians defineres ut fra sannsynlighetsfordelingen, uten å trekke inn noen nyttefunksjon Varians er et mål for usikkerheten, spredningen i utfall Mange tenkelige mål for spredning; kunne f.eks. tenke oss å se på forventet avvik fra forventningen Men dette er per definisjon lik null, siden positive og negative avvik akkurat vil oppveie hverandre når vi regner ut det veide gjennomsnittet E[x E(x)] Kunne tenke oss i stedet å se på forventet absoluttverdi av avvik, E[ x E(x) ]; et mulig mål for spredningen Lettere å regne med forventet avvik opphøyd i annen, E{[x E(x)] 2 }, som er definisjonen av variansen, var(x) For vårt formål nok å huske at dette er et mål for spredningen i en fordeling, der utfall langt fra E(x) teller mer ( fører til høyere varians ) hvis de har høy sannsynlighet Regneregler: Hvis a er stokastisk, mens c er konstant, så er var(c) = 0, var(c+a) = var(a), og var(ca) = c 2 var(a) 4

5 Forventet nytte, forventning varians Forventning og varians er to egenskaper ved mange slags sannsynlighetsfordelinger Ser nå på sannsynlighetsfordeling for inntekt, w Rimelig at folk foretrekker høy forventet inntekt framfor lav Hvis risikoaversjon: Vil foretrekke lav varians i inntekten framfor høy varians Kanskje preferansene bare avhenger av forventning og varians? Men forventet nytte avhenger også av nyttefunksjonen Alle individer har ikke like sterk risikoaversjon GH s. 119, nederst, hevder forventet nytte kan skrives som E(w) ½ r var(w) (Dette er en alternativ antakelse til E ( w), som vi har brukt tidliger (Denne antakelsen, s. 119, hos GH bygger egentlig på noen flere forutsetninger som han ikke nevner) (Nyttig for å forenkle modellen og finne en formel) Her er r en egenskap ved nyttefunksjonen, et tall som viser styrken av risikoaversjonen, koeffisienten for absolutt risikoaversjon Forskjell mellom ulike individers vurdering ligger i r En som er risikonøytral, har r lik null, og bryr seg dermed bare om forventningen, E(w) Jo større r, jo mer fradrag i forventet nytte pga. var(w) 5

6 Formel for optimal lineær kontrakt Trenger enda to forutsetninger for å komme fram til formel for hva slags kontrakt som er best for prinsipalen Forventet bruttoinntekt for prinsipalen er P(, en voksende funksjon av e Kostnaden for agenten ved å yte innsatsen e er C(, en voksende og konveks funksjon av e (En alternativ antakelse til det vi brukte tidligere, der kostnaden målt i nytteenheter var lik Konveks er det motsatte av konkav; betyr at jo større e blir, jo mer koster det å øke e ytterligere Prinsipalen ønsker høyest mulig P( E(w) Agenten ønsker høyest mulig E(w) ½ r var(w) C( Prinsipalen tilbyr først en kontrakt, {α, β} Agenten velger deretter å akseptere eller ikke; hvis aksept velger agenten deretter en innsats, e Begge kjenner sannsynlighetsfordelingen til x, sammenhengen z = e + x, og vet at betalingen vil bli w = α + βz Allerede når prinsipalen utformer kontraktstilbudet, vet prinsipalen at agenten kjenner til alt dette; prinsipalen vet også hva agentens alternative nyttenivå er, dvs. det agenten kan oppnå ved å avvise kontrakten; prinsipalen kjenner også størrelsen på r Prinsipalen kan derfor forutse agentens valg for ulike verdier av kontraktsparametrene {α, β} Dette er grunnlaget for prinsipalens tilbud av kontrakt 6

7 Løsningen for β Skal ikke forklare matematikken i løsningsmetoden Løsningen for parameteren β er følgende formel: β = 1+ r P'( var( x) C''( Her er P '( (den deriverte av P) et mål for hvor bratt P-funksjonen er; tillegget i P ved å øke e med en enhet Her er C ''( (den deriverte av C ') et mål for hvor krum C-funksjonen er; tillegget i C ' ved å øke e med en enhet Optimal β vil være større, jo større telleren er, men mindre, jo større nevneren er; altså: Høyere P '( gjør det gunstig med høyere β Tre forskjellige faktorer opptrer i nevneren: Høyere r, var(x) og/eller C ''( gjør det gunstig med lavere β Forklaringer: Høyere P '( betyr at det er viktigere for prinsipalen å få agenten til å yte mer, siden det har større effekt Høyere r betyr at det er uheldig å la agenten bære mer risiko (via høy β), siden agenten misliker det mer Høyere var(x) betyr at agenten utsettes for mer risiko via β enn om variansen hadde vært lavere C ''( har å gjøre med hvor sterkt agentens valg av e påvirker agentens nytte 7

8 Løsningen for α Prinsipalen velger β ved hjelp av formelen foran Har hittil ikke tatt hensyn til om agenten vil akseptere Den andre kontraktsparameteren, α, velges utelukkende ut fra deltakerbetingelsen Velger α slik at når agenten får vite {α, β}, vil agenten se at e kan velges slik at det så vidt er bedre (målt i forvente nytt å akseptere kontrakten enn å avvise den Siden så vidt er et upresis begrep, vil vi vanligvis være fornøyd med en løsning der deltakerbetingelsen holder nøyaktig, dvs. er oppfylt med likhet, ikke ulikhet Ikke mulig for agenten å velge e på noen annen måte som gir høyere forventet nytte Prinsipalen utnytter fordelen ved å ha første trekk fullt ut 8

9 Mer kompliserte situasjoner: Problem med målbarhet Så langt: Antok resultatet kunne måles Åpenbart ikke alltid enkelt Blant annet vanskeligere å måle kvalitet enn mengde Dessuten dyrt å måle i detalj, overvåke Mer kompliserte situasjoner: Flere dimensjoner Så langt: Antok agentens oppdrag var endimensjonalt Resultatet kunne måles som ett tall, ikke flere Men arbeidstakere har ofte mange oppgaver Og: En enkelt oppgave har ofte flere aspekter, f.eks. mengde og kvalitet Bør hver deloppgave, hvert aspekt, belønnes? Ja, hvis en oppgave måles og belønnes, bør alle andre også måles og belønnes (Beslektet med målbarhetsproblemet ovenfor) Alternativ: Gi opp insentivlønn fullstendig Begrunnelse: Ved å belønne bare noen deloppgaver, mens andre, viktige deloppgaver ikke kan måles eller belønnes, vil alt fokus bli rettet mot de som belønnes Enda sterkere teoretisk resultat: Må belønne hver deloppgave like sterkt (i en viss forstand) Kalles prinsippet om lik kompensasjon Ellers blir fokus vridd mot det som belønnes sterkest, og alle andre deloppgaver kan bli fullstendig neglisjert 9

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

Teori om preferanser (en person), samfunnsmessig velferd (flere personer) og frikonkurranse

Teori om preferanser (en person), samfunnsmessig velferd (flere personer) og frikonkurranse Teori om preferanser (en person), samfunnsmessig velferd (flere personer) og frikonkurranse Flere grunner til å se på denne teorien tidlig i kurset De neste gangene skal vi bl.a. se på hva slags kontrakter

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

Prinsipal-agent-modeller

Prinsipal-agent-modeller Prinsipal-agent-modeller gent: Person som utfører oppdrag for andre Prinsipal: Den som gir oppdraget Eksempler (oppgave, prinsipal, agent): o Helse, pasient, lege o nvestering, aksjeeier, bedriftsleder

Detaljer

ECON1810 Organisasjon, strategi og ledelse Forelesning ved Diderik Lund 15.03.04

ECON1810 Organisasjon, strategi og ledelse Forelesning ved Diderik Lund 15.03.04 Opsjoner En finansiell opsjon er en type kontrakt med to parter Utstederen (the issuer eller writer) (som kan være en person eller et selskap) påtar seg en forpliktelse Opsjonen gir motparten (som blir

Detaljer

Skjulte egenskaper (hidden characteristics)

Skjulte egenskaper (hidden characteristics) Skjulte egenskaper (hidden characteristics) Ny klasse av situasjoner, kap. 7 i Hendrikse (Se bort fra avsnitt 7.5; ikke kjernepensum) Forskjellig fra skjult handling (hidden action) (kap. 6) Men her: Skjulte

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

Forelesning 5, kapittel 3. : 3.5: Uavhengige hendelser.

Forelesning 5, kapittel 3. : 3.5: Uavhengige hendelser. Forelesning 5, kapittel 3. : 3.5: Uavhengige hendelser. Kast med to terninger, A er sekser på første terning og B er sekser på andre terning. Sekser på begge terningene er Fra definisjonen av betinget

Detaljer

Risikofordeling i kontrakter sett fra en økonoms ståsted

Risikofordeling i kontrakter sett fra en økonoms ståsted Risikofordeling i kontrakter sett fra en økonoms ståsted Eirik Gaard Kristiansen Professor Institutt for samfunnsøkonomi Historie 60 tallet - Risikodeling Karl Borch (risikodeling av eksogen risiko) Tore

Detaljer

Eksamensoppgaven. side 30

Eksamensoppgaven. side 30 side 30 Eksamensbesvarelsen gjengis av Marius Holm Rennesund side 31 side 32 Eksamensoppgaven side 33 side 34 Eksamensoppgaven side 35 side 36 Eksamensoppgaven side 37 side 38 Eksamensoppgaven Kommentar

Detaljer

Forelesning i konsumentteori

Forelesning i konsumentteori Forelesning i konsumentteori Drago Bergholt (Drago.Bergholt@bi.no) 1. Konsumentens problem 1.1 Nyttemaksimeringsproblemet Vi starter med en liten repetisjon. Betrakt to goder 1 og 2. Mer av et av godene

Detaljer

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger Kontinuerlig uniform fordeling f() = B A, A B. En kontinuerlig størrelse (vekt, lengde, tid), som aldri kan bli mindre enn

Detaljer

Agenten har noe viktig informasjon på det tidspunktet handelen skal gjøres / kontrakten skal utformes.

Agenten har noe viktig informasjon på det tidspunktet handelen skal gjøres / kontrakten skal utformes. Skjulte egenskaper Agenten har noe viktig informasjon på det tidspunktet handelen skal gjøres / kontrakten skal utformes. Nobel-prisen 2001: George Akerlof, Joseph Stiglitz, Michael Spence Noen eksempler

Detaljer

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk)

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk) 10. er ved flere i utvalget (kombinatorikk) Så langt i framstillingen har vi diskutert den språklige siden, den matematiske tolkningen av sannsynlighetsbegrepet og presentert ulike modeller som kan anvendes

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4 november 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

b) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs.

b) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs. Eksamen i: MET 040 Statistikk for økonomer Eksamensdag: 31 Mai 2007 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I 4 Kombinatorikk Vi må lære tellemetoder når valgtrær, som vi brukte tidligere, blir for store og vanskelig å håndtere.

Detaljer

Eksamen i. MAT110 Statistikk 1

Eksamen i. MAT110 Statistikk 1 Avdeling for logistikk Eksamen i MAT110 Statistikk 1 Eksamensdag : Torsdag 28. mai 2015 Tid : 09:00 13:00 (4 timer) Faglærer/telefonnummer : Molde: Per Kristian Rekdal / 924 97 051 Kristiansund: Terje

Detaljer

Sannsynlighetsregning og kombinatorikk

Sannsynlighetsregning og kombinatorikk Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1. La x være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling

Detaljer

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF 4.1: La X være

Detaljer

EKSAMENSOPPGAVE I SØK3005 INFORMASJON OG MARKEDSTEORI

EKSAMENSOPPGAVE I SØK3005 INFORMASJON OG MARKEDSTEORI NTNU Norges teknisk-naturvitenskapelige universitet Institutt for samfunnsøkonomi EKSAMENSOPPGAVE I SØK3005 INFORMASJON OG MARKEDSTEORI Faglig kontakt under eksamen: Anders Skonhoft Tlf.: 91939 Eksamensdato:

Detaljer

Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler: Kun standard enkel kalkulator, HP 30S

Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler: Kun standard enkel kalkulator, HP 30S DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

Kap. 5.2: Utvalgsfordelinger for antall og andeler

Kap. 5.2: Utvalgsfordelinger for antall og andeler Kap. 5.2: Utvalgsfordelinger for antall og andeler Binære data (1/0, Ja/Nei, Suksess/Feil) Utvalgsundersøkelser: Ja/Nei-spørsmål Tilstedeværelse av arter: Tilstede/Ikke-tilstede (1/0) Overlevelse etter

Detaljer

Beskrivende statistikk.

Beskrivende statistikk. Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke I løpet av uken blir løsningsforslag lagt ut

Detaljer

d) Stigningen til gjennomsnittskostnadene er negativ når marginalkostnadene er større

d) Stigningen til gjennomsnittskostnadene er negativ når marginalkostnadene er større Oppgave 11: Hva kan vi si om stigningen til gjennomsnittskostnadene? a) Stigningen til gjennomsnittskostnadene er positiv når marginalkostnadene er høyere enn gjennomsnittskostnadene og motsatt. b) Stigningen

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag

Detaljer

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma.

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer

Kontinuerlige stokastiske variable.

Kontinuerlige stokastiske variable. Kontinuerlige stokastiske variable. I forelesning har vi sett på en kontinuerlig stokastisk variabel med sannsynlighetstetthet f() =2 og sannsynlighetsfunksjon F () = 2 for. Der hadde jeg et reint regneteknisk

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Jo Eidsvik og Arild Brandrud Næss Tlf: 90 12 74 72 og 99 53 82 94 Eksamensdato: 9. desember 2013 Eksamenstid

Detaljer

Enkel Keynes-modell for en lukket økonomi uten offentlig sektor

Enkel Keynes-modell for en lukket økonomi uten offentlig sektor Forelesningsnotat nr 3, januar 2009, Steinar Holden Enkel Keynes-modell for en lukket økonomi uten offentlig sektor Notatet er ment som supplement til forelesninger med sikte på å gi en enkel innføring

Detaljer

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015 RAMMER FOR MUNIG EKSAMEN I MAEMAIKK EEVER 2015 Fagkoder: MA1012, MA1014, MA1016, MA1018, MA1101,MA1105, MA1106, MA1110, REA3021, REA3023, REA3025, REA3027, REA3029 Årstrinn: Vg1, Vg2 og Vg3 Gjelder for

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om 1 Eksponentielt vekst: En størrelse vokser eller avtar med en fast prosent per tidsenhet. Eulers tall e: En matematisk konstant, e=2,7 1828.. ln a gir det tallet du må opphøye Eulers tall e i for å få

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

Sannsynlighetsregning og Statistikk.

Sannsynlighetsregning og Statistikk. Sannsynlighetsregning og Statistikk. Leksjon Velkommen til dette kurset i sannsynlighetsregning og statistikk! Vi vil som lærebok benytte Gunnar G. Løvås:Statistikk for universiteter og høyskoler. I den

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4. juni 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1 La være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling

Detaljer

Statistikk 1. Nico Keilman. ECON 2130 Vår 2014

Statistikk 1. Nico Keilman. ECON 2130 Vår 2014 Statistikk 1 Nico Keilman ECON 2130 Vår 2014 Pensum Kap 1-7.3.6 fra Løvås «Statistikk for universiteter og høgskoler» 3. utgave 2013 (eventuelt 2. utgave) Se overspringelsesliste på emnesiden Supplerende

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!

Detaljer

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 1.05.2011 REA028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres

Detaljer

Første sett med obligatoriske oppgaver i STK1110 høsten 2015

Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Dette er det første obligatoriske oppgavesettet i STK1110 høsten 2015. Oppgavesettet består av fire oppgaver. Du må bruke Matematisk institutts

Detaljer

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9 TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører

Detaljer

Matematikk R1 Forslag til besvarelse

Matematikk R1 Forslag til besvarelse Matematikk R1 Forslag til besvarelse NITH 4. mars 014 Oppgave 1 a) Regn ut p x) når px) = x 3 3x + 6x 1. p x) = x 3 ) 3x ) + 6x) 0 = 3x ) 3x) + 6 1 = 6x 6x + 6 b) Regn ut p x) når px) = ax + bx + c. Her

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

KRITISK BLIKK PÅ NOEN SKOLEBØKER I MATEMATIKK.

KRITISK BLIKK PÅ NOEN SKOLEBØKER I MATEMATIKK. KRITISK BLIKK PÅ NOEN SKOLEBØKER I MATEMATIKK. Som foreleser/øvingslærer for diverse grunnkurs i matematikk ved realfagstudiet på NTNU har jeg prøvd å skaffe meg en viss oversikt over de nye studentenes

Detaljer

168291/S20: Transport av farlig gods på veg, sjø og bane. Jørn Vatn Prosjektleder SINTEF

168291/S20: Transport av farlig gods på veg, sjø og bane. Jørn Vatn Prosjektleder SINTEF 168291/S20: Transport av farlig gods på veg, sjø og bane Jørn Vatn Prosjektleder SINTEF 1 Tema for presentasjon Kan risikoanalysen benyttes som bevisføring for at en løsning er bedre enn en alternativ

Detaljer

Faktor. Eksamen høst 2004 SØK 1002: Innføring i mikroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen høst 2004 SØK 1002: Innføring i mikroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto Faktor -en eksamensavis utgitt av Pareto Eksamen høst 2004 SØK 1002: Innføring i mikroøkonomisk analyse Besvarelse nr 1: OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer

Detaljer

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup Brukerveiledning for webapplikasjonen Mathemateria 01.02.2015 Terje Kolderup Innhold Brukerveiledning for webapplikasjonen...1 Mathemateria...1 Introduksjon...3 Typisk eksempel og bryterstyring...3 Innlogging...4

Detaljer

En studentassistents perspektiv på ε δ

En studentassistents perspektiv på ε δ En studentassistents perspektiv på ε δ Øistein Søvik 16. november 2015 5 y ε 4 3 ε 2 1 1 δ 1 δ 2 x Figur 1: Illustrerer grenseverdien lim x 1 2x + 1. Innledning I løpet av disse korte sidene skal vi prøve

Detaljer

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) P(B oga)+p(b ogā) P(B A)P(A)+P(B Ā)P(Ā) ST0202 Statistikk for samfunnsvitere Bo Lindqvist

Detaljer

6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6

6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6 3 6.2 Normalfordeling Kapittel 6 Noen kontinuerlige sannsynlighetsfordelinger TMA4245 V2007: Eirik Mo Normalfordeling: Sannsynlighetstettheten til en normalfordelt stokastisk variabel, X, med forventning

Detaljer

Eksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 9.11.011 REA308 Matematikk S Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : 5 timer: Del 1 skal leveres inn etter timer. Del skal leveres inn

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Sannsynlighetsbegrepet

Sannsynlighetsbegrepet Sannsynlighetsbegrepet Notat til STK1100 Ørnulf Borgan Matematisk institutt Universitetet i Oslo Januar 2004 Formål Dette notatet er et supplement til kapittel 1 i Mathematical Statistics and Data Analysis

Detaljer

SPESIALISERING I ØKONOMISTYRING DST 9535 VERDI AV TILLEGGSINFORMASJON A) HVA KJENNETEGNER GODE BESLUTNINGSMODELLER?

SPESIALISERING I ØKONOMISTYRING DST 9535 VERDI AV TILLEGGSINFORMASJON A) HVA KJENNETEGNER GODE BESLUTNINGSMODELLER? SPESIALISERING I ØKONOMISTYRING HVA KJENNETEGNER GODE BESLUTNINGSMODELLER? DST 9535 VERDI AV TILLEGGSINFORMASJON.. Forelesningsnotet 3. Hva kjennetegner gode beslutningsmodeller? B) Når har informasjon

Detaljer

x n+1 rx n = 0. (2.2)

x n+1 rx n = 0. (2.2) Kapittel 2 Første ordens lineære differenslikninger 2.1 Homogene likninger Et av de enkleste eksemplene på en følge fås ved å starte med et tall og for hvert nytt ledd multiplisere det forrige leddet med

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene

Detaljer

Statistisk behandling av kalibreringsresultatene Del 3. v/ Rune Øverland, Trainor Elsikkerhet AS

Statistisk behandling av kalibreringsresultatene Del 3. v/ Rune Øverland, Trainor Elsikkerhet AS Statistisk behandling av kalibreringsresultatene Del 3. v/ Rune Øverland, Trainor Elsikkerhet AS Denne artikkelserien handler om statistisk behandling av kalibreringsresultatene. Denne artikkelen har kalibreringskurve

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 05.12.2008 AA6524/AA6526 Matematikk 3MX Elevar og privatistar / Elever og privatister Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler: Vedlegg: Andre opplysninger: Framgangsmåte

Detaljer

Derivasjonen som grenseverdi

Derivasjonen som grenseverdi Gitt graf. Start/stopp. Fra sekant til tangent. Veien til formelen for den deriverte til funksjon f i et punkt Animasjonens jem: ttp://ome.ia.no/~cornelib/animasjon/ matematikk/mate-online-at/ablgrenz/

Detaljer

ALLE FIGURER ER PÅ SISTE SIDE!

ALLE FIGURER ER PÅ SISTE SIDE! OPPGAVER 28.10.15 ALLE FIGURER ER PÅ SISTE SIDE! Oppgave 1 Du har valget mellom å motta 50 kr nå eller 55 kr om ett år. 1) Beregn nåverdien av 55 kr om ett år for en gitt rente PV = 55/(1+r) 2) Til hvilken

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET00 Statistikk for økonomer Eksamensdag: 8. november 2007 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

ECON 1210 Våren 2007 Forelesning 3 mai 2007

ECON 1210 Våren 2007 Forelesning 3 mai 2007 ECON 1210 Våren 2007 Forelesning 3 mai 2007 Hilde Bojer 3. mai 2007 Innhold Kapittel 15: Asymmetrisk informasjon i produktmarkedet The market for lemons Noen løsninger Sykeforsikring Kapittel 15: Asymmetrisk

Detaljer

Emne 11 Differensiallikninger

Emne 11 Differensiallikninger Emne 11 Differensiallikninger Differensiallikninger er en dynamisk beskrivelse av et system eller en prosess, basert på de balanselikningene vi har satt opp for prosessen. (Matematisk modellering). Vi

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

201303 ECON2200 Obligatorisk Oppgave

201303 ECON2200 Obligatorisk Oppgave 201303 ECON2200 Obligatorisk Oppgave Oppgave 1 Vi deriverer i denne oppgaven de gitte funksjonene med hensyn på alle argumenter. a) b) c),, der d) deriveres med hensyn på både og. Vi kan benytte dee generelle

Detaljer

Eksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 30.11.2010 REA3028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Fastsatt som forskrift av Utdanningsdirektoratet 27. mars 2006 etter delegasjon i brev 26. september 2005 fra Utdannings-

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2006. eksamensoppgaver.org Løsningsforslag AA656 Matematikk 3MX Privatister 3. mai 006 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er lastet ned

Detaljer

Faktor - En eksamensavis utgitt av Pareto

Faktor - En eksamensavis utgitt av Pareto aktor - En eksamensavis utgitt av Pareto SØK 2001 Offentlig økonomi og økonomisk politikk Eksamensbesvarelse Høst 2003 Dette dokumentet er en eksamensbesvarelse, og kan inneholde feil og mangler. Det er

Detaljer

Tall Vi på vindusrekka

Tall Vi på vindusrekka Tall Vi på vindusrekka Tall og siffer... 2 Dekadiske enheter... 3 Store tall... 4 Avrunding... 5 Tverrsum... 8 Partall og oddetall... 9 Primtall... 10 Sammensatte tall... 11 Faktorisering... 13 Negative

Detaljer

a) Siden man baserer sine beslutninger på forventet verdi, er man risikonøytral. Vi kan sette opp følgende tabell:

a) Siden man baserer sine beslutninger på forventet verdi, er man risikonøytral. Vi kan sette opp følgende tabell: Oppgave (30 %) a) Siden man baserer sine beslutninger på forventet verdi, er man risikonøytral. Vi kan sette opp følgende tabell: Nåverdi Høy Lav Sannsynlighet 0,65 0,35 Investere 350-00 Leie 50-50 Ikke

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Per G. Østerlie Thora Storm vgs per.osterlie@stfk.no 5. april 203 Hva og hvorfor? Hva? Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å

Detaljer

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver.

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. Tempoplan: Kapittel 4: 8/11 14/1. Kapittel 5: /1 1/. Kapittel 6: 1/ 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 3: Vektorer Dette kapitlet er meget spesielt og annerledes enn den matematikken

Detaljer

Krasjkurs MAT101 og MAT111

Krasjkurs MAT101 og MAT111 Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten

Detaljer

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.

OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET

Detaljer

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet INF 4130 8. oktober 2009 Stein Krogdahl Dagens tema: Uavgjørbarhet Dette har blitt framstilt litt annerledes tidligere år Se Dinos forelesninger fra i fjor. I år: Vi tenker mer i programmer enn i Turing-maskiner

Detaljer

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Anne-Mari Jensen Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Innledning I ungdomsskolen kommer funksjoner inn som et av hovedområdene i læreplanen i matematikk. Arbeidet

Detaljer

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og

Detaljer

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005

Statistisk beskrivelse av enkeltvariabler. SOS1120 Kvantitativ metode. Disposisjon. Datamatrisen. Forelesningsnotater 6. forelesning høsten 2005 SOS110 Kvantitativ metode Forelesningsnotater 6 forelesning høsten 005 Statistisk beskrivelse av enkeltvariabler (Univariat analyse) Per Arne Tufte Disposisjon Datamatrisen Variabler Datamatrisen Frekvensfordelinger

Detaljer

> 6 7 ) = 1 Φ( 1) = 1 0.1587 = 0.8413 P (X < 7 X < 8) P (X < 8) < 7 6 1 ) < 8 6 1 ) = Φ(2) = 0.8413

> 6 7 ) = 1 Φ( 1) = 1 0.1587 = 0.8413 P (X < 7 X < 8) P (X < 8) < 7 6 1 ) < 8 6 1 ) = Φ(2) = 0.8413 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Oppgave Sykkelruter a) P (Y > 6) P (Y > 6) P ( Y 7 > 6 7 ) Φ( ) 0.587 0.843 b) Hypoteser: H 0 : µ µ 2 H : µ < µ 2

Detaljer

Differensiallikninger definisjoner, eksempler og litt om løsning

Differensiallikninger definisjoner, eksempler og litt om løsning Differensiallikninger definisjoner, eksempler og litt om løsning MAT-INF1100 Differensiallikninger i MAT-INF1100 Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (24 poeng) a) Deriver funksjonene f x = x 3x+ 4 1) ( ) 3 g x = 6x e 2 2) ( ) x P x = 2x 6x 8x+ 24 b) Vi har gitt funksjonen ( ) 3 2 1) Vis at P ( 3) = 0 2) Bruk polynomdivisjon

Detaljer

Eksamensoppgaven -i mikro grunnfag Grunnfag mikro høst 2000, karakter 2,2

Eksamensoppgaven -i mikro grunnfag Grunnfag mikro høst 2000, karakter 2,2 Eksamensoppgaven -i mikro grunnfag Grunnfag mikro høst 2000, karakter 2,2 Gjengitt av Marius Holm Rennesund mariushr@student.sv.uio.no Oppgave 1 En bedrift produserer en vare ved hjelp av en innsatsfaktor.

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (24 poeng) a) Deriver funksjonene 1) 2. 3e x. e x. b) Vi har gitt rekken. Bestem a. c) Løs likningen.

DEL 1. Uten hjelpemidler. Oppgave 1 (24 poeng) a) Deriver funksjonene 1) 2. 3e x. e x. b) Vi har gitt rekken. Bestem a. c) Løs likningen. DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) a) Deriver funksjonene 1) f( x) x x 4 1 ) g x 3e x 3) h x x e x 4) i x ln x 4 b) Vi har gitt rekken 4 7 10 13 Bestem a n og S n c) Løs likningen x x x x 3 4

Detaljer

Manual for wxmaxima tilpasset R1

Manual for wxmaxima tilpasset R1 Manual for wxmaxima tilpasset R1 Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.

2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger. H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.

Detaljer

Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse.

Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Den klassiske definisjonen (uniform modell) av sannsynlighet for en hendelse A i et utfallsrom S er at sannsynligheten

Detaljer

2 Likninger. 2.1 Førstegradslikninger med én ukjent

2 Likninger. 2.1 Førstegradslikninger med én ukjent MATEMATIKK: 2 Likninger 2 Likninger 2.1 Førstegradslikninger med én ukjent Ulike problemer kan løses på ulike måter. I den gamle folkeskolen brukte man delingsregning ved løsning av enkelte oppgaver. Eksempel

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

En kort innføring i sannsynlighetsregning

En kort innføring i sannsynlighetsregning En kort innføring i sannsynlighetsregning Harald Goldstein Sosialøkonomisk institutt Januar 2000 Innhold 1 Innledning 1 2 Begivenheter og sannsynlighet 4 2.1 Matematiskbeskrivelseavbegivenheter... 4 2.2

Detaljer