Noen regneregler som brukes i Keynes-modeller

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Noen regneregler som brukes i Keynes-modeller"

Transkript

1 Forelesningsnotat nr 5, august 2009, Steinar Holden Noen regneregler som brukes i Keynes-modeller Først litt repetisjon ) Vi kan sette en felles faktor utenfor en parentes: Y ty = Y(-t) der det siste uttrykket betyr Y multiplisert med parentesen (-t) 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at 4(x - y) = 4x - 4y og (-t) = + t 3) Tall i telleren i en brøk kan settes foran eller bak brøken: = = 4) Minustegn kan flyttes fra telleren til foran brøken 5 5 ( 5) = = 5) Dersom vi har en ligning, er det lov å gjøre samme operasjoner på begge sider at likhetstegnet, f.eks. trekke fra et tall, eller dele på et tall. Anta vi skal løse følgende ligning for Y: Y = 0 + Y Vi kan trekke fra Y på begge sider, slik at vi får Y Y = 0 +Y Y = 0, dvs Y Y = 0 Vi kan sette Y utenfor en parentes: Y Y = Y(-), slik at vi får Y(-) = 0 og dele på uttrykket i parentesen (antar at - er forskjellig fra null) 0 Y =

2 Her er brøken (-)/(-) =, slik at løsningen for Y blir Y 0 = 6) Dersom vi skal legge sammen en brøk og et helt tall, eller to brøker, må de settes på felles brøkstrek = + = = Tilsvarende regneregler gjelder selvfølgelig med symboler = + = = Av og til må vi utvide (* betyr multiplisert med vanligvis skriver vi ikke multiplikasjonstegnet, men dersom det kuttes ut her, så står det jo f.eks. 3, som er forskjellig fra multiplisert med 3) *3 * = + = + = 2 3 2*3 2* Tilsvarende med symboler b a b+ a + = + = + = a b a b ab ba ab

3 Tilvekstform Ofte er vi interessert i å se på virkningen på noen variable av at en eller flere andre variable endres. Da bruker vi gjerne den greske bokstaven Δ (delta) for endringen, slik at Δy betyr endringen i y. Eksempel Anta at vi har en funksjon y = 5x Dersom x = 2, finner vi y = 5*2 = 0. Hvis x øker til 4, dvs endringen i x blir Δx = 4 2 = 2, så øker y til y = 5*4=20. Økningen i y, Δy = 20 0 = 0. Her finnes det en generell regneregel, som i vårt tilfelle sier at Δy = 5Δx. Mer generelt har vi at Regel for tilvekstform: Hvis y er en lineær funksjon av x (a og b er konstante parametre) y = ax + b, så er Δy = aδx. Parameteren b forsvinner, fordi den økes jo ikke selv om x øker. Eksempel Anta at Y er en funksjon av variablene I og G, mens og 0 er parametre Y = ( 0 + I + G ) Vi antar at er et fast tall som er mindre enn en ( < ), slik at brøken /(-) er større enn null. Vi ser på en endring i I, som vi kaller ΔI, mens G og parametrene holdes uendret. Da blir endringen i Y, ΔY, gitt ved Δ Y = ΔI. I forhold til regelen over, tilsvarer brøken foran ΔI til parameteren a, mens de andre variablene og parametrene i parentesen svarer til parameteren b. Siden brøken er positiv,

4 har vi at hvis ΔI > 0, så blir ΔY > 0, dvs at Y øker hvis I øker. Hvis vi derimot hadde ΔI < 0, så blir ΔY < 0, dvs Y reduseres hvis I reduseres. Dersom vi endrer to variable, både I og G, med ΔI og ΔG, mens parametrene holdes konstante, da blir endringen i Y gitt ved Δ Y = ( Δ I +ΔG). Her vil Y øke, ΔY > 0, hvis summen av endringene i I og G er større enn null, ΔI + ΔG > 0. Motsatt vil Y reduseres dersom summen av endringene i I og G er mindre enn null, dvs ΔY < 0 hvis ΔI + ΔG < 0. Regel 2 for tilvekstform: Hvis y er en lineær funksjon av x og z (a, b og er konstante parametre) y = ax + bz +, så er Δy = aδx + bδz. Eksempel 2 I Keynes-modellen som presenteres i forelesningsnotat 4, er likevektsløsningen for Y gitt ved () Y = ( 0 t0 + I + G+ X) og konsumfunksjonen kan skrives som (2) C = 0 + ( t) Y t0 Anta at vi skal finne virkningen av en økning i konstantleddet i konsum, dvs Δ 0 > 0 på konsumet. Vi ser av () at dersom 0 øker, så vil det føre til at Y øker. Videre ser vi av (2) at en økning i 0 vil føre til økt C, samtidig som en økning i Y også vil føre til økt C. Virkningen av økt 0 på C vil være summen av den direkte virkningen av 0 og den indirekte virkningen via Y. Vi finner først virkningen av 0 på Y (3) Δ Y = Δ 0, der > 0 Økt 0 fører til at Y øker. Endringen i C når både 0 og Y øker, (4) Δ C =Δ 0 + ( t) Δ Y

5 Vi setter inn for ΔY ved å bruke (3) i (4) og får (5) Δ C =Δ + ( t) ΔY 0 ( t) =Δ + Δ 0 0 ( t) = Δ + Δ + ( t) = Δ a = Δ 0 >Δ 0 > 0 0 ( t) I andre linje settes inn for ΔY. I tredje linje bruker vi at Δ 0 = Δ0. I fjerde linje setter vi på felles brøkstrek. I femte linje faller (-t) mot +(-t), og siden telleren er større enn nevner i siste uttrykket, vet vi at uttrykket må være større enn Δ 0. Økningen i C er større enn den direkte økningen i 0 fordi Y også øker, noe som har positiv virkning på C. Telleregelen En økonomisk modell består gjerne av flere ligninger og flere variable. Variablene i modellen deler vi inn i endogene og eksogene variable. De endogene variable er de variable som vi bruker modellen til å regne ut verdien på. De eksogene variable er de variable som får sin verdi gitt utenfor modellen. Det betyr at dersom vi skal regne ut hva de endogene variablene blir, med tall, så må vi vite på forhånd hvilke verdier de eksogene variablene har. Telleregelen sier at en modell kan bestemme verdien på like mange variable som det er uavhengige ligninger, slik at vi kan ha like mange endogene variable som det er uavhengige ligninger. Merk at telleregelen er en røff regel der det kan konstrueres eksempler hvor den ikke gjelder.

6 Eks. Like mange variable som ligninger gir determinert modell: Modellen y = 2 x + y = 4 har to ligninger, og vi kan finne verdien til de to variablene x og y: x = 2 og y = 2. Eks 2 Flere variable enn ligninger gir ikke determinert modell: Modellen y + z = 2 x + y + z = 4 har to ligninger og tre variable, og dersom vi ikke har mer informasjon, kan vi ikke finne verdien på noen av variablene. Men dersom vi i tillegg får vite verdien på en av variablene, f.eks. z = 0, slik at z blir eksogen, da kan vi regne ut x og y (og får x = y = 2). Eks 3 Flere ligninger enn variable gir inkonsistent modell Modellen x + y = 2 x + 2y = 4 2x 2y = 0 er inkonsistent det finnes ikke verdier for x og y som gjør at alle ligningene er oppfylt. Eks 4 Telleregelen gjelder ikke ved lineært avhengige ligninger I telleregelen over har vi oppgitt at ligningene må være uavhengige, noe som litt løst innebærer at de må gi informasjon som ikke allerede er innebygget i de andre ligningene I modellen y + x = 2 2y + 2x = 4 er det ikke mulig å finne verdiene for x og y, til tross for at det er to ligninger og to variable (f.eks. er y = 2 og x = 0 en mulig løsning, mens y = -2 og x = 4 er en annen mulig løsning). De to ligningene er lineært avhengige, og inneholder den samme informasjon.

Enkel matematikk for økonomer. Del 1 nødvendig bakgrunn. Parenteser og brøker

Enkel matematikk for økonomer. Del 1 nødvendig bakgrunn. Parenteser og brøker Vedlegg Enkel matematikk for økonomer I dette vedlegget går vi gjennom noen grunnleggende regneregler som brukes i boka. Del går gjennom de helt nødvendige matematikk-kunnskapene. Dette må du jobbe med

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

Løsningsforslag oppgave 1: En måte å løse oppgave på, er å først sette inn tall for de eksogene variable og parametre, slik at vi får

Løsningsforslag oppgave 1: En måte å løse oppgave på, er å først sette inn tall for de eksogene variable og parametre, slik at vi får Steinar Holden, oktober 29 Løsningsforslag til oppgave-sett Keynes-modeller Oppgave Betrakt modellen: () Y C (2) C Y >, < < der Y er BNP, C er konsum, og er realinvesteringer. Y og C er de endogene variable,

Detaljer

Husk at minustegn foran et tall eller en variabel er å tenke på som tallet multiplisert med det som kommer etter:

Husk at minustegn foran et tall eller en variabel er å tenke på som tallet multiplisert med det som kommer etter: Økonomisk Institutt, november 2006 Robert G. Hansen, rom 1207 ECON 1210: Noen regneregler og løsningsprosedyrer som brukes i kurset (A) Faktorisering og brøkregning (1) Vi kan sette en felles faktor utenfor

Detaljer

Løsningsforslag til Oppgaver for Keynes-modeller

Løsningsforslag til Oppgaver for Keynes-modeller Løsningsforslag til Oppgaver for Keynes-modeller Oppgavene er ment som øvelsesoppgaver i tilknytning til forelesningene. Fasit vil bli lagt ut på nettet til noen av oppgavene Oppgave 1 Betrakt modellen:

Detaljer

Enkel Keynes-modell for en lukket økonomi uten offentlig sektor

Enkel Keynes-modell for en lukket økonomi uten offentlig sektor Forelesningsnotat nr 3, januar 2009, Steinar Holden Enkel Keynes-modell for en lukket økonomi uten offentlig sektor Notatet er ment som supplement til forelesninger med sikte på å gi en enkel innføring

Detaljer

Kapittel 5. Økonomisk aktivitet på kort sikt

Kapittel 5. Økonomisk aktivitet på kort sikt Kapittel 5 Økonomisk aktivitet på kort sikt skal studere økonomien på kort sikt, og dermed se på årsakene til slike konjunkturmessige svingninger. hvordan økonomien reagerer på de stadige sjokk og forstyrrelser

Detaljer

der Y er BNP, C er konsum, I er realinvesteringer og r er realrente. Y og C er de endogene variable, og I og r er eksogene.

der Y er BNP, C er konsum, I er realinvesteringer og r er realrente. Y og C er de endogene variable, og I og r er eksogene. Steinar Holden, februar 205 Løsningsforslag til oppgave-sett Keynes-modeller Oppgave Betrakt modellen: () Y = C + I (2) C = z C + Y - 2 r 0 < 0 der Y er BNP, C er konsum, I er realinvesteringer

Detaljer

Steinar Holden, september Fasit til oppgave i tilknytning til Keynes-modell i Excel. Bruk ark 3, konsekvensanalyse

Steinar Holden, september Fasit til oppgave i tilknytning til Keynes-modell i Excel. Bruk ark 3, konsekvensanalyse Fasit til oppgave i tilknytning til Keynes-modell i Excel Bruk ark 3, konsekvensanalyse Steinar Holden, september 2009 For enkelhets skyld skriver jeg ut hele resultattabellen, ikke bare de som det spørres

Detaljer

Fasit til øvelsesoppgave 1 ECON 1310 høsten 2005

Fasit til øvelsesoppgave 1 ECON 1310 høsten 2005 Fasit til øvelsesoppgave 1 ECON 131 høsten 25 NB oppgaven inneholder spørsmål som ikke ville blitt gitt til eksamen, men likevel er nyttige som øvelse. Keynes-modell i en åpen økonomi (i) Ta utgangspunkt

Detaljer

Fasit til øvelsesoppgave 1 ECON 1310 høsten 2014

Fasit til øvelsesoppgave 1 ECON 1310 høsten 2014 Fasit til øvelsesoppgave EON 30 høsten 204 Keynes-modell i en åpen økonomi (i) Ta utgangspunkt i følgende modell for en åpen økonomi () Y = + + G + X - Q (2) = z + c( Y T) cr 2, der 0 < c < og c 2 > 0,

Detaljer

Steinar Holden, september 2016

Steinar Holden, september 2016 Steinar Holden, september 2016 Fasit til oppgave i tilknytning til Keynes-modell i Excel For enkelhets skyld skriver jeg ut hele resultattabellen, ikke bare de som det spørres om, og det bare skissemessig

Detaljer

Del 2: Enkel Keynes-modell Lukket økonomi. 3. Forelesning ECON

Del 2: Enkel Keynes-modell Lukket økonomi. 3. Forelesning ECON Del 2: Enkel Keynes-modell Lukket økonomi 3. Forelesning ECON 1310 27.1.2009 Introduksjon: Litteraturreferanser Kjernepensum: Forelesningsnotat 3 (H) Kapittel 3 (B) Øvrig pensum: Avisartikkel DN s.4 og

Detaljer

2. Forelsesning siste time. Enkel Keynes-modell Lukket økonomi

2. Forelsesning siste time. Enkel Keynes-modell Lukket økonomi 2. Forelsesning siste time Enkel Keynes-modell Lukket økonomi Hva inneholder en enkel makroøkonomisk modell? Sentrale forutsetninger og forklaringer Ligninger Nødvendige restriksjoner på parametrene Symbolforklaring

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning obligatorisk øvelsesoppgave ECON 1310, h16

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning obligatorisk øvelsesoppgave ECON 1310, h16 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning obligatorisk øvelsesoppgave ECON 30, h6 Ved sensuren tillegges oppgave vekt 20%, oppgave 2 vekt 60%, og oppgave 3 vekt 20%. For å få godkjent besvarelsen,

Detaljer

Økonomisk aktivitet på kort sikt 1

Økonomisk aktivitet på kort sikt 1 Kapittel 5, september 205 Økonomisk aktivitet på kort sikt I dette og neste kapittel skal vi studere den økonomiske aktiviteten på kort sikt. Vi ser altså på.de konjunkturmessige svingningene i BNP, rundt

Detaljer

Konjunkturer og økonomisk aktivitet Forelesning ECON 1310

Konjunkturer og økonomisk aktivitet Forelesning ECON 1310 Konjunkturer og økonomisk aktivitet Forelesning EON 30 3. september 205 Keynes-modell endogen investering & nettoskatter Y = + I + G z c ( ) Y T, der 0 < c

Detaljer

4. Forelesning. Keynes-modell Åpen økonomi, offentlig og privat sektor

4. Forelesning. Keynes-modell Åpen økonomi, offentlig og privat sektor 4. Forelesning Keynes-modell Åpen økonomi, offentlig og privat sektor Repetisjon - makroøkonomiske modeller Sentrale forutsetninger og forklaringer Ligninger Nødvendige restriksjoner på parametrene Symbolforklaring

Detaljer

Kapittel 6. Konjunkturer og økonomisk aktivitet

Kapittel 6. Konjunkturer og økonomisk aktivitet Kapittel 6 Konjunkturer og økonomisk aktivitet Keynes-modell endogen investering & nettoskatter Y = + I + G z c ( ) Y T, der 0 < c

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning obligatorisk øvelsesoppgave, ECON 1310, v16

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning obligatorisk øvelsesoppgave, ECON 1310, v16 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning obligatorisk øvelsesoppgave, ECON 30, v6 Ved sensuren tillegges oppgave vekt /6, oppgave 2 vekt 2/3, og oppgave 3 vekt /6. For å få godkjent besvarelsen,

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

Del 2: Keynes-modell Åpen økonomi, offentlig og privat sektor. 4. Forelesning ECON

Del 2: Keynes-modell Åpen økonomi, offentlig og privat sektor. 4. Forelesning ECON Del 2: Keynes-modell Åpen økonomi, offentlig og privat sektor 4. Forelesning ECON 1310 3.2.2009 Repetisjon - makroøkonomiske modeller Sentrale forutsetninger og forklaringer Ligninger Nødvendige restriksjoner

Detaljer

Stabiliseringspolitikk i en enkel Keynes-modell. del 1

Stabiliseringspolitikk i en enkel Keynes-modell. del 1 Forelesningsnotat nr 4, revidert desember 22, Steinar Holden Stabiliseringspolitikk i en enkel Keynes-modell. del. Innledning... 2 2. Modellen... 5 Handelsbalansen... 9 3. Konsekvensanalyse... Finanspolitikk...

Detaljer

ECON 1310 Våren 2006 Oppgavene tillegges lik vekt ved sensuren.

ECON 1310 Våren 2006 Oppgavene tillegges lik vekt ved sensuren. ECON 30 Våren 2006 Oppgavene tillegges lik vekt ved sensuren. Oppgave Veiledning I denne oppgaven er det ikke ment at du skal bruke tid på å forklare modellen utover det som blir spurt om i oppgaven. Oppgave:

Detaljer

Econ 1310 Oppgaveverksted nr 3, 23. oktober Oppgave 1 Ta utgangspunkt i en modell for en lukket økonomi,

Econ 1310 Oppgaveverksted nr 3, 23. oktober Oppgave 1 Ta utgangspunkt i en modell for en lukket økonomi, Econ 3 Oppgaveverksted nr 3, 23. oktober 22 Oppgave Ta utgangspunkt i en modell for en lukket økonomi, () YC I G, (2) C = c + c(y- T) c >, < c , < b 2

Detaljer

Økonomisk aktivitet på kort sikt 1. Innhold. Forelesningsnotat 5, januar 2015

Økonomisk aktivitet på kort sikt 1. Innhold. Forelesningsnotat 5, januar 2015 Forelesningsnotat 5, januar 205 Økonomisk aktivitet på kort sikt Innhold Økonomisk aktivitet på kort sikt... Keynes-modell med eksogene realinvesteringer...5 Finanspolitikk... 2 Keynes-modell med endogene

Detaljer

Sensorveiledning ECON 1310 Høsten 2005

Sensorveiledning ECON 1310 Høsten 2005 Sensorveiledning ECON 3 Høsten 25 Oppgavene tillegges lik vekt ved sensuren. Oppgave Veiledning I denne oppgaven er det ikke ment at du skal bruke tid på å forklare modellen utover det som blir spurt om

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Vår 2010

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Vår 2010 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Vår 2 Ved sensuren tillegges oppgave vekt,2, oppgave 2 vekt,5, og oppgave 3 vekt,3. For å bestå eksamen, må besvarelsen i hvert fall vise svare riktig på 2-3 spørsmål

Detaljer

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Våren 2009 Hvis ikke annet avtales med seminarleder, er det ikke seminar i uke 8, 10 og 13. 1) Måling av økonomiske variable. Blanchard

Detaljer

1310 høsten 2010 Sensorveiledning obligatorisk øvelsesoppgave

1310 høsten 2010 Sensorveiledning obligatorisk øvelsesoppgave 3 høsten 2 Sensorveiledning obligatorisk øvelsesoppgave For å bestå oppgaven, må besvarelsen i hvert fall vise svare riktig på 2-3 spørsmål på oppgave, kunne sette opp virkningen på BNP ved reduserte investeringer

Detaljer

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Våren 2011 1) Måling av økonomiske variable. Blanchard kap 1, Holden, Hva er hovedstørrelsene i nasjonalregnskapet, og hvordan er de

Detaljer

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Høsten 2011 1) Måling av økonomiske variable. Blanchard kap 1, Holden, Hva er hovedstørrelsene i nasjonalregnskapet, og hvordan er de

Detaljer

Ta utgangspunkt i følgende modell for en åpen økonomi. der 0 < a < 1

Ta utgangspunkt i følgende modell for en åpen økonomi. der 0 < a < 1 Fasit Oppgaveverksted 2, ECON 30, H5 Oppgave Veiledning: I denne oppgaven skal du forklare de økonomiske mekanismene i hver deloppgave, men det er ikke ment at du skal bruke tid på å forklare modellen

Detaljer

Fasit til oppgaver. Pris D 1 S D 2 P 1 P 2. Kvantum Q 2 Q 1. Oppgaver kapittel 1

Fasit til oppgaver. Pris D 1 S D 2 P 1 P 2. Kvantum Q 2 Q 1. Oppgaver kapittel 1 Fasit til oppgaver For repetisjonsoppgavene skal det være mulig å finne svaret direkte fra teksten i kapitlet. Oppgaver kapittel ) Hvordan vil en nedgang i verdensøkonomien påvirke pris og kvantum i oljemarkedet?

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning 1310, H14

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning 1310, H14 UNVERSTETET OSLO ØKONOMSK NSTTUTT Sensorveiledning 30, H4 Ved sensuren tillegges oppgave vekt 20%, oppgave 2 vekt 60%, og oppgave 3 vekt 20%. For å bestå eksamen, må besvarelsen i hvert fall: Ha nesten

Detaljer

Ta utgangspunkt i følgende modell for en åpen økonomi. der 0 < t < 1 = der 0 < a < 1

Ta utgangspunkt i følgende modell for en åpen økonomi. der 0 < t < 1 = der 0 < a < 1 Fasit Oppgaveverksted 2, ECON 30, V5 Oppgave Veiledning: I denne oppgaven skal du forklare de økonomiske mekanismene i hver deloppgave, men det er ikke ment at du skal bruke tid på å forklare modellen

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning obligatorisk øvelsesoppgave ECON 1310, h15

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning obligatorisk øvelsesoppgave ECON 1310, h15 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning obligatorisk øvelsesoppgave ECON 30, h5 Ved sensuren tillegges oppgave vekt 20%, oppgave 2 vekt 60%, og oppgave 3 vekt 20%. For å få godkjent besvarelsen,

Detaljer

Konjunktursvingninger og økonomisk aktivitet 1

Konjunktursvingninger og økonomisk aktivitet 1 Kapittel 6, august 205 Konjunktursvingninger og økonomisk aktivitet I dette kapitlet utvider vi den enkle Keynes- modellen vi så på i kapittel 5, slik at vi får tatt hensyn til noen av de mest sentrale

Detaljer

Forberedelseskurs i matematikk

Forberedelseskurs i matematikk Forberedelseskurs i matematikk Formålet med kurset er å friske opp matematikkunnskapene før et år med realfag. Temaene for kurset er grunnleggende algebra med regneregler, regnerekkefølgen, brøk, ligninger

Detaljer

Obligatorisk øvelsesoppgave

Obligatorisk øvelsesoppgave Obligatorisk øvelsesoppgave 1i) Inngår offentlige tjenester som ikke omsettes i et marked i BNP? Hvordan måles i så fall verdien på disse tjenestene? Ja, offentlige tjenester som ikke omsettes i et marked

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Under noen av oppgavene har jeg lagt inn et hint til hvordan dere kan gå frem for å løse dem! Send meg en mail om dere finner noen feil!

Under noen av oppgavene har jeg lagt inn et hint til hvordan dere kan gå frem for å løse dem! Send meg en mail om dere finner noen feil! Under noen av oppgavene har jeg lagt inn et hint til hvordan dere kan gå frem for å løse dem! Send meg en mail om dere finner noen feil! 1. Husk at vi kan definere BNP på 3 ulike måter: Inntektsmetoden:

Detaljer

IS-RR - modellen: IS-LM med rente som virkemiddel i pengepolitikken 1

IS-RR - modellen: IS-LM med rente som virkemiddel i pengepolitikken 1 IS-RR - modellen: IS-LM med rente som virkemiddel i pengepolitikken Steinar Holden, 9. september 004 Kommentarer er velkomne steinar.holden@econ.uio.no IS-RR - modellen: IS-LM med rente som virkemiddel

Detaljer

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Høsten 2012 1) Måling av økonomiske variable. Blanchard kap 1, Holden, (i) Hva er hovedstørrelsene i nasjonalregnskapet, og hvordan er

Detaljer

(8) BNP, Y. Fra ligning (8) ser vi at renten er en lineær funksjon av BNP, med stigningstall d 1β+d 2

(8) BNP, Y. Fra ligning (8) ser vi at renten er en lineær funksjon av BNP, med stigningstall d 1β+d 2 Oppgave 1 i) Finn utrykket for RR-kurven. (Sett inn for inflasjon i ligning (6), slik at vi får rentesettingen som en funksjon av kun parametere, eksogene variabler og BNP-gapet). Kall denne nye sammenhengen

Detaljer

BNP, Y. Fra ligning (8) ser vi at renten er en lineær funksjon av BNP, med stigningstall d 1β+d 2

BNP, Y. Fra ligning (8) ser vi at renten er en lineær funksjon av BNP, med stigningstall d 1β+d 2 Oppgave 1 a og c) b) Høy ledighet -> Vanskelig å finne en ny jobb om du mister din nåværende jobb. Det er dessuten relativt lett for bedriftene å finne erstattere. Arbeiderne er derfor villige til å godta

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Faktorisering og multiplisering med konjugatsetningen

Faktorisering og multiplisering med konjugatsetningen Faktorisering og multiplisering med konjugatsetningen De følgende oppgavene er øvinger i faktorisering og multiplisering ved hjelp av konjugatsetningen /3. kvadratsetning. Gjennom oppgavene gir vi elevene

Detaljer

Konjunkturer og økonomisk aktivitet 1

Konjunkturer og økonomisk aktivitet 1 Kapittel 6, september 205 Konjunkturer og økonomisk aktivitet I dette kapitlet utvider vi den enkle Keynes- modellen vi så på i kapittel 5, slik at vi får tatt hensyn til noen av de mest sentrale sammenhengene.

Detaljer

REGEL 1: Addisjon av identitetselementer

REGEL 1: Addisjon av identitetselementer REGEL 1: Addisjon av identitetselementer Addisjon av identitetselementer a + 0 = a x + 0 = x Et identitetselement (nøytralt element) er et element som ikke medfører noen endring når det kombineres med

Detaljer

Fasit - Oppgaveseminar 1

Fasit - Oppgaveseminar 1 Fasit - Oppgaveseminar Oppgave Betrakt konsumfunksjonen = z + (Y-T) - 2 r 0 < 0 Her er Y bruttonasjonalproduktet, privat konsum, T nettoskattebeløpet (dvs skatter og avgifter fra private til det

Detaljer

Stabiliseringspolitikk i en enkel Keynes-modell. Del 2 Investeringer og pengepolitikk

Stabiliseringspolitikk i en enkel Keynes-modell. Del 2 Investeringer og pengepolitikk Forelesningsnotat nr 6, august 2004, Steinar Holden Stabiliseringspolitikk i en enkel Keynes-modell. Del 2 Investeringer og pengepolitikk av Steinar Holden Kommentarer og spørsmål er velkomne: steinar.holden@econ.uio.no

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT oppgave 1310, V10

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT oppgave 1310, V10 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT oppgave 3, V Ved sensuren tillegges oppgave og 3 vekt /4, og oppgave vekt ½. For å bestå, må besvarelsen i hvert fall: gi riktig svar på oppgave a, kunne sette

Detaljer

Forelesningsnotater ECON 2910 VEKST OG UTVIKLING, HØST Repetisjon av hovedpunkter i neoklassisk vekstteori

Forelesningsnotater ECON 2910 VEKST OG UTVIKLING, HØST Repetisjon av hovedpunkter i neoklassisk vekstteori 4. november 2004 Forelesningsnotater ECON 2910 VEKS OG UVIKING, HØS 2004 9. Repetisjon av hovedpunkter i neoklassisk vekstteori Vi starter med Solow-modellen med teknisk fremgang. Fra tidligere forelesninger

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

e) I vår modell fanger vi opp reduserte skatter ved Δz T < 0. Fra (6) får vi at virkningen på BNP blir

e) I vår modell fanger vi opp reduserte skatter ved Δz T < 0. Fra (6) får vi at virkningen på BNP blir Fasit Oppgaveverksted 2, ECON 30, H6 Oppgave Veiledning: a) Det virker fornuftig å anta at eksportetterspørselen bestemmes av utenlandske faktorer, og ikke av innenlandske forhold (spesielt hvis vi bruker

Detaljer

Oppsummeringsforelesning. ECON november 2017

Oppsummeringsforelesning. ECON november 2017 Oppsummeringsforelesning ECON 30 23. november 207 Disposisjon Nasjonalregnskapet Keynes-modellen Lønnsdannelse og Phillipskurven IS-RR modellen Nasjonalregnskapet Ragnar Frish var tidlig ute når han utviklet

Detaljer

En konstant er et symbol med en fast verdi. 2 og er eksempler pô konstanter.

En konstant er et symbol med en fast verdi. 2 og er eksempler pô konstanter. Algebra Variabel Konstant trekke sammen Algebra er bokstavregning. Det er et verktöy som forenkler regneoperasjonene i forskjellige omrôder av matematikken. Bokstavene er symboler for tall og skal behandles

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Oppsummeringsforelesning. ECON november 2016

Oppsummeringsforelesning. ECON november 2016 Oppsummeringsforelesning ECON 30 22. november 206 Disposisjon Nasjonalregnskapet Keynes-modellen Lønnsdannelse og Phillipskurven IS-RR modellen Nasjonalregnskapet Ragnar Frish var tidlig ute når han utviklet

Detaljer

Sensorveiledning /løsningsforslag ECON 1310, våren 2014

Sensorveiledning /løsningsforslag ECON 1310, våren 2014 Sensorveiledning /løsningsforslag ECON 1310, våren 2014 Ved sensuren vil oppgave 1 telle 30 prosent, oppgave 2 telle 40 prosent, og oppgave 3 telle 30 prosent. Alle oppgaver skal besvares. Oppgave 1 I

Detaljer

Prosent- og renteregning

Prosent- og renteregning FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 10A og 10B

SAMMENDRAG OG FORMLER. Nye Mega 10A og 10B SAMMENDRAG OG FORMLER Nye Mega 10A og 10B 1 Sammendrag og formler Nye Mega 10A Kapittel A GEOMETRI Oversikt over vinkelkonstruksjoner 90 45 60 30 120 135 67 1 2 75 Den pytagoreiske læresetningen I en rettvinklet

Detaljer

Oppsummeringsforelesning Keynes og IS-RR. ECON november 2015

Oppsummeringsforelesning Keynes og IS-RR. ECON november 2015 Oppsummeringsforelesning Keynes og IS-RR ECON 30 6. november 205 Disposisjon Kort om nasjonalregnskapet Kort om Keynes-modellen Kort om lønnsdannelse og Phillipskurven Kort om IS-RR modellen Nasjonalregnskapet

Detaljer

ii) I vår modell fanger vi opp reduserte skatter ved Δz T < 0. Fra (6) får vi at virkningen på BNP blir

ii) I vår modell fanger vi opp reduserte skatter ved Δz T < 0. Fra (6) får vi at virkningen på BNP blir Fasit Oppgaveverksted 2, ECON 30, V6 Oppgave i) Fra (6) får vi at virkningen på BNP blir (7) Δ Y = Δ X < 0 c ( t) b + a BNP reduseres. Redusert eksport fører til redusert samlet etterspørsel, slik at BNP

Detaljer

UNIVERSITETET I OSLO, ØKONOMISK INSTITUTT. Oppgaveverksted 3, v16

UNIVERSITETET I OSLO, ØKONOMISK INSTITUTT. Oppgaveverksted 3, v16 UNIVERSITETET I OSLO, ØKONOMISK INSTITUTT Oppgaveverksted 3, v16 Oppgave 1 Ta utgangspunkt i følgende modell for en lukket økonomi (1) Y = C + I + G (2) C = z c + c 1 (Y-T) c 2 (i-π e ) der 0 < c 1 < 1,

Detaljer

Seminaroppgaver ECON Økonomisk aktivitet og økonomisk politikk Høsten 2017

Seminaroppgaver ECON Økonomisk aktivitet og økonomisk politikk Høsten 2017 Seminaroppgaver ECON 30 Økonomisk aktivitet og økonomisk politikk Høsten 207 Hensikten med seminarene er å lære anvendelse av pensum gjennom å løse oppgaver. Det forventes at alle studenter forsøker seg

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Obligatorisk øvelsesoppgave 1310, v17

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Obligatorisk øvelsesoppgave 1310, v17 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Obligatorisk øvelsesoppgave 1310, v17 Ved sensuren tillegges oppgave 1 vekt 20%, oppgave 2 vekt 60% og oppgave 3 vekt 20%. Oppgave 1 i) Hva vil det si at en økonomi

Detaljer

7. Forelesning. Keynes-modeller, repetisjon og utvidelse

7. Forelesning. Keynes-modeller, repetisjon og utvidelse 7. Forelesning Keynes-modeller, repetisjon og utvidelse Dagens forelesning 1) Repetisjon av Keynes-modellene 2) Pengepolitikk 3) Keynes-modell for en lukket økonomi, med endogene investeringer og pengepolitikk

Detaljer

NAVN: INNHOLD. IVAR RICHARD LARSEN/algebra - oppsummering, Side 1 av 18

NAVN: INNHOLD. IVAR RICHARD LARSEN/algebra - oppsummering, Side 1 av 18 NAVN: INNHOLD FORORD... 2 LÆREPLAN... 3 ALGEBRA.... 3 REGNING MED VARIABLER... 3 MONOM... 3 POLYNOM... 3 TREKKE SAMMEN UTTRYKK (addisjon/subtraksjon)... 4 MULTIPLIKASJON... 4 DIVISJON... 4 ADDISJON AV

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Sensorveiledning ECON 1310 Høsten 2004

Sensorveiledning ECON 1310 Høsten 2004 Sensorveiledning ECON 3 Høsten 24 Oppgave Veiledning I denne oppgaven er det ikke ment at du skal bruke tid på å forklare modellen utover det som det spørres om i oppgaven. Oppgave: Ta utgangspunkt i modellen

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning ECON1310, h16

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning ECON1310, h16 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning ECON1310, h16 Ved sensuren tillegges oppgave 1 vekt 20%, oppgave 2 vekt 60% og oppgave 3 vekt 20%. For å få godkjent besvarelsen, må den i hvert

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

Algebra. Mål. for opplæringen er at eleven skal kunne

Algebra. Mål. for opplæringen er at eleven skal kunne 8 1 Algebra Mål for opplæringen er at eleven skal kunne regne med potenser, formler, parentesuttrykk og rasjonale og kvadratiske uttrykk med tall og bokstaver omforme en praktisk problemstilling til en

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER INNHOLD ALGEBRA OG FUNKSJONER... PARENTESER... USYNLIGE PARENTESER... USYNLIGE MULTIPLIKASJONSTEGN... DE TI GRUNNLEGGENDE ALGEBRAISKE LOVENE... REGNEUTTRYKK INNSATT FOR VARIABLER... 3 SETTE OPP FORMLER...

Detaljer

Oppfriskningskurs dag 1

Oppfriskningskurs dag 1 Oppfriskningskurs dag 1 og ligninger Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Outline 1 Outline 1 Typiske problem Ranger følgende brøker etter størrelse: 1 2, 7 12, 2 3, 5 8, 17 24

Detaljer

Fasit Oppgaveverksted 3, ECON 1310, H16

Fasit Oppgaveverksted 3, ECON 1310, H16 Fasit Oppgaveverksted 3, ECON 1310, H16 Oppgave 1 Arbeidsmarkedet a) På kort sikt vil økte offentlige utgifter ved økt ledighetstrygd føre til økt privat disponibel inntekt, og dermed økt konsumetterspørsel.

Detaljer

Kapittel 4. Etterspørsel, investering og konsum. Forelesning ECON januar 2017

Kapittel 4. Etterspørsel, investering og konsum. Forelesning ECON januar 2017 Kapittel 4 Etterspørsel, investering og konsum Forelesning ECON 1310 31. januar 2017 1 BNP fra etterspørselssiden Realligningen for en lukket økonomi er gitt ved BNP = privat konsum + private investeringer

Detaljer

1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1

1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1 1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1 Hvor Y er BNP, C er privat konsum, I er private realinvesteringer, G er offentlig kjøp av varer og

Detaljer

Løsninger til forkursstartoppgaver

Løsninger til forkursstartoppgaver Løsninger til forkursstartoppgaver Prosent: Oppgave 1. Prisforskjell er 20. 20 100 Kylling er da =66 2 prosent dyrere. 30 3 Vi beregner hvor mange prosent 20 er av 30. Kylling er også 20 100 =40 prosent

Detaljer

Under noen av oppgavene har jeg lagt inn et hint til hvordan dere kan går frem for å løse dem! Send meg en mail om dere finner noen feil!

Under noen av oppgavene har jeg lagt inn et hint til hvordan dere kan går frem for å løse dem! Send meg en mail om dere finner noen feil! Under noen av oppgavene har jeg lagt inn et hint til hvordan dere kan går frem for å løse dem! Send meg en mail om dere finner noen feil! 1. Husk at vi kan definere BNP på 3 ulike måter: Inntektsmetoden:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Fasit - Obligatorisk øvelsesoppgave ECON 30, H09 Ved sensuren tillegges oppgave vekt 0,, oppgave vekt 0,45, og oppgave 3 vekt 0,45. Oppgave (i) Forklar kort begrepene

Detaljer

Oppgavesett med fasit

Oppgavesett med fasit TIL ENT3R ELEVENE Oppgavesett med fasit Tommy Odland Sist oppdatert: 1. november 2013 http://is.gd/ent3rknarvik http://tommyodland.com/ent3r 1 INNHOLD 1 Om dette dokumentet 3 1.1 Formål og oppbygging..................................

Detaljer

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup Brukerveiledning for webapplikasjonen Mathemateria 01.02.2015 Terje Kolderup Innhold Brukerveiledning for webapplikasjonen...1 Mathemateria...1 Introduksjon...3 Typisk eksempel og bryterstyring...3 Innlogging...4

Detaljer

Lineære likningssett.

Lineære likningssett. Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

Ronny Kjelsberg. Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk

Ronny Kjelsberg. Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk Ronny Kjelsberg Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk Contents Hvordan bli en BRØKREGNER på en, to, tre:. EN: Basics................................ Hva er

Detaljer

AS-AD -modellen 1. Steinar Holden, 16. september 04 Kommentarer er velkomne steinar.holden@econ.uio.no!

AS-AD -modellen 1. Steinar Holden, 16. september 04 Kommentarer er velkomne steinar.holden@econ.uio.no! AS-AD -modellen 1 Steinar Holden, 16. september 04 Kommentarer er velkomne steinar.holden@econ.uio.no! AS-AD -modellen... 1 AD-kurven... 1 AS-kurven... 2 Tidsperspektiver for bruk av modellen... 2 Analyse

Detaljer

Oppsummeringsforelesning. ECON april 2017

Oppsummeringsforelesning. ECON april 2017 Oppsummeringsforelesning ECON 30 25. april 207 - Bak de høye igangsettingstallene så ligger det også arbeidsplasser. Hvis boligprisene faller, da vil også den fysiske byggeaktiviteten falle og dermed antall

Detaljer

Matematikk for økonomer Del 2

Matematikk for økonomer Del 2 Matematikk for økonomer Del 2 Formelark Dokument type: Formelark Antall kapitler: 10 kapitler Antall sider: 17 Sider Forfatter: Studiekvartalets kursholdere rett til bruk av materialet. Det innebærer at

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

Seminaroppgaver ECON 2310 Høsten 2012 Denne versjonen: (Oppdateringer finnes på

Seminaroppgaver ECON 2310 Høsten 2012 Denne versjonen: (Oppdateringer finnes på Seminaroppgaver ECON 2310 Høsten 2012 Denne versjonen:23.10.2012 (Oppdateringer finnes på http://www.uio.no/studier/emner/sv/oekonomi/econ2310/h12/) Seminar 1 (uke 36) Innledning: Enkle Keynes-modeller

Detaljer

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den?

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? side 1 Detaljert eksempel om Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? Dette er et forslag til undervisningsopplegg der utgangspunktet er sentrale problemstillinger

Detaljer

Seminaroppgaver ECON 2310 Høsten 2013 Denne versjonen: (Oppdateringer finnes på

Seminaroppgaver ECON 2310 Høsten 2013 Denne versjonen: (Oppdateringer finnes på Seminaroppgaver ECON 2310 Høsten 2013 Denne versjonen:29.10.2013 (Oppdateringer finnes på http://www.uio.no/studier/emner/sv/oekonomi/econ2310/h13/) Seminar 1 (uke 36) Innledning: Enkle Keynes-modeller

Detaljer

Ved sensuren tillegges oppgave 1 vekt 0,1, oppgave 2 vekt 0,5, og oppgave 3 vekt 0,4.

Ved sensuren tillegges oppgave 1 vekt 0,1, oppgave 2 vekt 0,5, og oppgave 3 vekt 0,4. ECON3 Sensorveiledning eksamen H6 Ved sensuren tillegges oppgave vekt,, oppgave vekt,5, og oppgave 3 vekt,4. Oppgave Hvilke av følgende aktiviteter inngår i BNP i Norge, og med hvilket beløp? a) du måker

Detaljer

Eksamensbesvarelsene

Eksamensbesvarelsene side 29 side 30 Eksamensbesvarelsene ECON1310 Vår 2003 Gjengitt av: Geir Soland geiras@studen.sv.uio.no Besvarelse 1 Karakter: A Oppgave 1 Y = C + I + G + NX C = a + b(y T) a > 0, b [0, 1] T = t 0 + ty

Detaljer