H ØGSKOLEN 1 B ERGEN Avdeling for ingeniørutdanning

Størrelse: px
Begynne med side:

Download "H ØGSKOLEN 1 B ERGEN Avdeling for ingeniørutdanning"

Transkript

1 H ØGSKOLEN 1 B ERGEN Avdeling for ingeniørutdanning EKSAMEN 1 KLASSAR DATO FOA 162 Vidaregåande analyse og lineær algebra 06HEAU, 06HEEL, 06H ELK, 06HKOM 3. desember 2007 TAL PA OPPGAVER: TAL pa SIDER: VEDLEGG: HJELPEMIDDEL: TID: MALFORM: FAGLÆRARAR: MERK NADER: 4 3 (inkludert denne sida) 9 sider (Formelsa miing) Enkel kalkulato r 4 TIMAR (kl ) NYNORSK Terje Kristensen LeifErik Otterå Lars Arne Jordanger Ingen (85 752) ( ) (87 113) Hogskolen i Bergen, Postboks 7030, 5020 BERGEN Tlf Fax

2 O ppgåve 1 a ) Gitt matrisene A = [~ i] og i) Rekn ut determinan tane ti l matrisene A og B. ii) Ha r A og B inverse mat riser? iii) Fin n de n inverse matrisa ti l A (dersom ho finst ). b) For h-a verdier av t har følgjande likn igssystem O, 1 eller uendeleg mange løysinga r. X l t X2-2 t X I 4 X t c) La C vere matrisa c =[ ~ ~ ] i) Rekn ut eigenverdiane og eigenvektorane til C. ii) F inn ei matrise P og ei diagona lmatrise D slik at p -Iep = D. Hi) Finn es. d) Ved rekkereduksjon kan vi vise at matrisa er rek keekvivalent til i) Kva er rangen til mat risa D? ii ) Kva er dimensjonen t il rekkerommet, scylercmmet og null rommet til D? iii) Finn basisar for dei t re romma i punkt ii) el Undersøk om vektorene b l = [1, 4, l ], b, = [5,0, l ) og b, = [9, 6, 2J er lineært uavhengige. O p pgåve 2 a) Undersøk om rekkje ne konvergerer eller divergerer 00 l 00 3 Cl '"' (ii) '"' -,-;--= I : Vii ;2, n(ln n)' b} Finn konvergensområdet til potensrekkja. f '1=1 {_ l t 2nx n c} Finn taylorrekkja til ln{l - 2x 3 } 0111 a = O (maclaur inre kkja). 2

3 3 Oppgåve 3 a) Ein isobar er ei kurve som går gje nnom a lle punkt med same lufttryk P (x, y). Vi lar z = P(x, y}, der z cr gitt implisitt "ed 2x' + (y - o)' ~ 2z'. Skisser isobarane for z = O, z = 2 og.:: = 4. b) Ei flate er representert ved funksjonen z = f (x, y) = ~. J + 2x 2 - (y - 1)2, Undersøk om funksjonen har nokon lokale maksimums-, minimum s- eller sadelpu nkt. Finn koordinatane til desse punkta. c) Vi har gitt differenslikninga In - 2 X n _ 1 = 5n, n ~ 1. Loys liknin ga for init ialverdien IO = 3. d) Vis ved induksjon at nil > n! for n ~ 2. O p p gåve 4 G itt den period iske funksjonen ') = {-2 - T. Sx < O ( ) f ( ) f (x. f x +2T. ~ x 2 O::;x <7I" a) Teikn grafen til funksjonen, og vis at f (x } er ein odde funksjon. b) Finn Iourierrekka til f (x }. c) Finn summen av rekka un der ved å bruke fourierrekka til f (x }. 00 (_ l)n+1 L (2n - l ) n=l

4 Vektoralgebra l. Binære operasjoner. a) Skalarprodukt mell om to vektorer: a b = lallblcoso dere er vinkelen me llom vektorene. (0 :$e :S: n ) Når a :::: a li +a 2 j+a}k og b=b 1i + b 2j+ b 3 k. får vi a - b :::: Gl bl + a 2 ~ + Q3!J.y, b) Vektorprodukt mellom a og h, a x b har lengde: lallblsin8 og ret ning slik at a, b. a x b danner er hoyresystcm. j k a x b e al a l 0 3 I; b 2 '" c) Vektorp rojeksjonen aven vektor a normalt inn på en linje som er para llell med enhetsvektoren u cr gitt ved pro.iu3 = (a -u) u. 2. Linj er og plan i rommet Et punkt P ligger på en rett linje gjennom Po med retning gitt ved u hvis og bare hvis ~ - OP =0!'o+ r u. Et punkt P(x.y. z) ligger i planet som går gje nno m ~ J ( X",y", : " j og som har ~ normalvektor N = Ai + Bj + Ck hvis og bare hvis P..JP N = O. Pla nets likning cr altså A(x -.r, + B(y - )'0) + C(z - =0) :::: O

5 2 Lineær algebra, matriser: I. Matrisemultiplikasjon A = (aij) fil x P - matrise og B=(bij ) p x n - matrise. p AD= C = (cij) der Cij= L ajj;b kj i = 1.2..,111, j = 1.2. o" 4"=1. n 2. Regneregler for matriser A og 8 er mat riser. k ogp er ree lle (ell er komplekse ) konsta nter al A(BC) = (AB)C b) Den kommutative lov AB = BA gjelder ikke generelt for matrisemultipl ikasjon. (selv om produktene er de finert). c) (A+ B )C~ AC + BC d) q A + Bl ~ CA + CB e) A A - I = A-I A = I (definisjon av A -I ) l) (AB)- ' = B-' A- 1 g) (AB{ = B T A T h ) (A T )- ' = ( A- 1 { i) (ka)b ~ k(abl ~ A(kB) j l k(a + B) ~ ka + kb kl (k+p )A ~ ka + pa 5. Adjungert matrise Dersom A er en n x n -matr ise og ( it. er ko faktoren ril {'ik C II C"... C = ~l ~ (~~ 2 ::: [ C III C:!" O " C.,] C~! fo r den adjungerte matr isen lil A. C~ A. så ka lles matrisen: 6. Invers matrise For en ikke- singu lær n x n -matrise A gjelder at: A-I = I ~ I ' C ' C er adjungert ti l A.

6 3 7. Egenverdier, egenvektore r Anta al A er en vilkårlig n x 11 - matrise. Dersom del fins et tall A slik at Ax = I.X for en scylematrlse x ;e. o, så kalles i. for en egen verd i til A. og x kalles en tilh ore nde egenvektor. Egenverdien e finnes av liknin gen la- All= O. 8. Diagonalisering Når A har n lineært uavhengige egenv ektorer finnes en ikke-singulær matrise X sl ik at X- IAX = D er en diagonalmatrise med egenverd iene på diag onalen. 9. Regn eregler for determinanter a) En determ inant skifter fortegn hvis 10 rekker ( ko lonner) bytter plass. b) En felles faktor i en rekke elle r kolonne kan sette s utenfor. c) En determ inant er additiv i hver av sine rekker og kolonner. Altså dersom en rekke eller kolonn e er en sum med to ledd. kan determinanten spaltes opp. f.eks: ~ h e = «] ed +. +Cl ~ hl I" (~ d ) En rekke (ko lonne) ganget med et tall kan adderes til en vilkårlig annen rekke (ko lonne), uten at determinan ten forandrer verd i. e) En determinant ka n utvikles etler en vilkårl ig rekke eller kolonne. Dersom A og B er n x Il - mat riser, så gjelder videre: l) IAI=IATI g) IABi=IAI'IBi h) IAI:,t; O <=) A er ikke-singu lær i) IA - ll =I ~1

7 Lineær algebra, vektor rom: I. Lineær avhengighet. Vektore ne VI i ;: l, o n kalles lineæ rt avhengige hvis og bare hvi s ligningen : XI V I X n Vn =: O med ukjen te x, E R med i = n ha r losning de r ikke alle.r, er O. 2. Lin eæ r tra nsformasjon. Når en basis er valgt, kan en lineær transform f representeres ved en matrise M hvor søy lene bes tår av komponentene til basisvektorenes bilder under r. Da kan w «f(v) regnes ut ved matrisem uhiplikasjon slik: ~ = My. hvo r w og y.er søy lema triser som representerer vektorene w og v. 3. Aflin transfor masjon. En affln transformasjon F er gitt ved al: F( Pl' F(Al+ J ( APl hvor f er en lineær transformasj on og A og P er punkter. Diskret matematikk I. Differenslikninger av 2. orden Likningen au" +2+ bu"... + CII" =0. der a, b, c er konstanter. ((#0), har den generelle losningen: a) U. =API +BP2 ~ hvis ap 2+ bp + c =O har to uli ke reelle roller P log P2 - b) v, = (A+ Bn) p" hvis ap2+bp+c=o har dobbelrotcn P c) un = r n( A cosns + 8 sinn9 ) hvis ap2 +hp+ c =O har komplek se rotter a ± ip Her cr r = 1a + i pl og 9=arg(a + ip) 2. Logik k a) Dobbel negasjon: -.-.p co p

8 5 b) Kommutat ive tover: (p v q ) c> (q v p). (p 1\ q ) c> (q 1\ fl) c) Assosiative lover: [(p v q) v rl ee (p v (q v r )]. [(p 1\ q ) 1\ r I <::::> { p 1\ (q Ar» d) Distrfbutivc lover: [( p v (q /\ r» cc [(p v 'I ) 1\ (p V r». 1( 1' 1\ (ti v r)) e> (P 1\ li ) v ( p 1\ r)] e}de Morgans lover: -.(p v q ) cc- (-.p 1\ - q ). -i.. p 1\ q) <::::> ( - p v -{Il 3. Mengdelære aj Kommutative lover: AuB= BuA. A nb=bna bl Assosiative lovert (A u S) u e = A u(r v e ), (A n B) n C = A n CB n e ) c) Distrtbutivc lever: A n ( B vc) ~ (A n B) v (A rv C). A v ( Bn C) = ( A v B) n (A v e) d ) Id entitetslovene: A u ø= A, A n U = A. U er grunnmengden - - = e) Komplementærlovene: A v A = U. Ari A = ø. A = A. U er grunnmengden t) de Morgan's JOHr: A v B := An B. A fl B = Av il

9 6 Rekker I. elementære følger og rekker Aritmetisk rekke ll,, -u l + ( n - l) d d er rekkens differens Summen 3\' de n første leddene a.. Cl.. i en aritmetisk rekke.~.. =---n 2 Geometrisk rekke. ledd numme r n le..-. li" = 1I k er rekkens kvotient 1 Summen av de n første leddene i en "I( le " - I) geometrisk rekke.\'" = k - I Gje lder for k ;t l. Hvis k:= l er,\'" = flal Rcntesrenteforme len Verdien K il om n år av et belnl K = K (1+...Lr (sluuverd ien) " Il 100 Ku i dag Nåverd i 2. Konvergens av rekke a) Forhold skriteriet: K o - K Ve rdien K CJ i da g svarer til et belop K,. i dag 100 (I + L r La ')u" være en rekke slik at lim1"". '1 eksisterer og k = lim!1l'hi1" -- Il...,., li" "-+"- " n Da. er rekken konve rge nt hvis le < I og di vergen t hvis le > I. b) Sammenligningskriteriet: La LU" væ re en positiv rekk e. Da gjelder at I) hvis Un s a n og L Un er kon vergent. så er også L u" konvergent. 2) hvis " 'I ;=: an og L an er divergent. så er og så L u" divergent. 3. al bl Taylorrekker /," (a ) Taylorrekken til funk sjonenfi pu nktet a er: L (x _ alt ho k! Maciaurinrekken til en funk sjon er taylorrekken i punk tet O.

10 7 c) Spesielle potensrekker eller maclau rinrekker: ~ l t;x k ;:: 1+ x + x 2+ x = l - x - I -c x < J (geometrisk rekke). L k x- 2+3 ~ (_ l) hl.l* x2 x3 - = ln(l +x) for - i <x $ i '.1 i:(-i)' x", _, (2k)! X Z x" = cosx 21 4T ni ~ ( ml lt. ( I + x) = ~ kr' gjelder for -L c x c l, (med m postivt heltall bryter rekken av) ( *=0 1111_ 11I<11I - I) ( m - 2 )...(m - k + I) ( "'" _ k r k!. or l

11 8 4. Fourierrekker a} Periodiske funksjone r La f (l) være en periodi sk funksjon med periode 7: Fourier-rekken til! er en rekke på form en 00 +:t(a"cosvkil / ) + b" s in(tk1l/», der w = 2'l og koeffi sientene er gin ved _I T I 11'2., rr: ''u = T f 1 (1)dl a, =i f I (t )cos(",,, ldl. n = TI:! - 1 il., 1 ' 2 h" =f J j (t)sin(ij(!}f ) dt, n = I,). bl Konve rgen s av Fourier-rekke Fou rier-rekken til f(/ } kon'vergerer moi "'(1) hvor J.((t) i punkter derf er kontinuer lig, (I)=[I 2"( ff (1+) + (1- )).. d' k.. I punkter der j har sprang IS.onunuuet. c) Funk sjon er de finert på [O. L] = Cosinusre. kk c: s l(t ) = " L.Un COS(-l} n" der I L Sinusrekke: n= 1 L 2 L ao = - ft(t) dl a, = - ft (l ) C O S (~ t )dl. L o L o L n = I. hil =- ff (l) s in ( ~ 1) d'.i1= t. Il L dl l 2 3 s 6 Spesie lle integ raler cos ar x sinw: X COSlJ.wx l = - -, - + f a- a f l sin ( L"( xcosax.rstn zrrc l" =- -,- - a a 2 ' d: 2 Sl nær. x cosax x Sln ux x cos ar r = - - -, - T a a a f,. l., cos al" 2 xsinal" x sm al'( l' =_--,- +, J x 2 cosal" a a- a , + f ' d 6 cosax 6 x sm al' 3 x cosax x sm a l" x ccsarør e > f a a u" Cl 2 3 r. d 6 sm al' x cosa r 3 x sm al' x cosal' x smal' r = a a Cl a

12 9 Funksjoner av flere variable l. 2.deriver!-!es! Klassifisering av stasjonære punkter for funk sj onen[ (x,y) For et stasj onært punkt (a,b) med 0 2 / 0 2 / A = -2(a,b), B = - - (a,b), Bx BxBy har vi følgend e: f har isolert minimum i (a.h) når 0.>0 og A > O f ha r iso lert maksimum i (a.b) når 0.>0 og A < O f har sadelpunkt i (a,h) når o. < O

EKSAME. FOA 162 Videregående analyse og lineær algebra 06HE U 06HEEL 06HELK 06HKO 3. desember 2007 KLASSER O TO

EKSAME. FOA 162 Videregående analyse og lineær algebra 06HE U 06HEEL 06HELK 06HKO 3. desember 2007 KLASSER O TO HØGSKOLE I B ERGE vdeling for ingeniørutdanning EKSAME KLASSER O TO I FOA 162 Videregående analyse og lineær algebra 06HE U 06HEEL 06HELK 06HKO 3. desember 2007 A ALL OPPGAVER: TALL SIDER: EOLEGG: HJELPE

Detaljer

2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M =

2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M = Oppgave a) Løs likningssystemet x + 3x + x 3 = x + x 3 = 0 3x + x + 3x 3 = 8 Svar: Rekkereduksjon av totalmatrisen gir 0 0 0 0 7 0 0 0 0 Det betyr at løsningen er gitt ved x +x 3 = 0, x = 7 og x 3 en fri

Detaljer

n=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c)

n=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c) Eksamen i BYPE2000 - Matematikk 2000 Dato: 204 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

FOA 191 EKSAMEN I KLASSE. Undervannsteknologistudiet DATO

FOA 191 EKSAMEN I KLASSE. Undervannsteknologistudiet DATO H ØGSKOLEN I B ERGEN Avdeling for ingeniørutdanning EKSAMEN I KLASSE DATO FOA 191 Undervannsteknologistudiet 18.12.07 ANTALL OPPGAVER ANTALL SIDER VEDLEGG HJELPEMIDLER TID MÅLFORM SENSOR FAGLÆRER MERKNADER

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN 5.- 6. JUNI 201 3 A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 09. 0 0 1 0. 0 0 R E G I S TR E R I NG N o e å b i t e i 10. 0 0 1 0. 15 Å p n i ng

Detaljer

Løsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye.

Løsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye. Eksamen i FO929A - Matematikk Dato: 2013 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver teller

Detaljer

Eksamen R2, Høst 2012, løsning

Eksamen R2, Høst 2012, løsning Eksamen R, Høst 0, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Deriver funksjonene a) cos f e Vi bruker produktregelen

Detaljer

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0 TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Lørdag 25. Mai 29. Tid for eksamen: :5 4:5. Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning

Detaljer

Elementær Matriseteori

Elementær Matriseteori Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start

Detaljer

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1 Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

Løsningsforslag Eksamen M100 Høsten 1998

Løsningsforslag Eksamen M100 Høsten 1998 Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim

Detaljer

Eksamen R2 Høsten 2013 Løsning

Eksamen R2 Høsten 2013 Løsning Eksamen R Høsten 03 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f 5cos Vi bruker produktregelen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte

Detaljer

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning HØGSKOLEN I BERGEN Aveling for ingeniørutnning FAG : FOA192 Vieregåene nlyse og iskret mtemtikk KLASSAR : Mnge DATO : 21. mi 212 TAL PÅ OPPGÅVER 5 TAL PÅ SIDER 2 VEDLEGG Hjelpesetningr HJELPEMIDDEL Csio

Detaljer

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta

Detaljer

Sammendrag kapittel 9 - Geometri

Sammendrag kapittel 9 - Geometri Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5) Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1 Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra

Detaljer

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer?

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer? Kapittel 7 Vektorrom Vårt mål i dette kapitlet og det neste er å generalisere og abstrahere ideene vi har jobbet med til nå Især skal vi stille spørsmålet Hva er en vektor? Svaret vi skal gi, vil virke

Detaljer

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer: 5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.

Detaljer

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning EKSAMEN I Matematisk analyse og vektoralgebra, FOA150 KLASSE : Alle DATO : 11. august 006 TID: : Kl. 0900-100 (4 timer) ANTALL OPPGAVER : 5 VARIGHET ANTALL

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer

Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til!

Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til! Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag Eksamen Emnekode: Emnenavn: MA-2 Lineær algebra Dato: Varighet:. desember 2 9. - 4. Antall sider: Tillatte hjelpemidler:

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

13 Oppsummering til Ch. 5.1, 5.2 og 8.5

13 Oppsummering til Ch. 5.1, 5.2 og 8.5 3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne

Detaljer

Repetisjon: Om avsn og kap. 3 i Lay

Repetisjon: Om avsn og kap. 3 i Lay Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

Løsningsforslag eksamen R2

Løsningsforslag eksamen R2 Løsningsforslag eksamen R Vår 010 Oppgave 1 a) f (x) = x cos(3x) f (x) = x cos(3x) + x ( sin(3x) 3) = x cos(3x) 3x sin(3x) b) 1. Bruker delvis integrasjon med u = 5x og v = 1 ex slik at u = 5 og v = e

Detaljer

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) ii) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) Sidan både teljar og nemnar

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

MAT1120 Repetisjon Kap. 1, 2 og 3

MAT1120 Repetisjon Kap. 1, 2 og 3 MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger

Detaljer

12 Projeksjon TMA4110 høsten 2018

12 Projeksjon TMA4110 høsten 2018 Projeksjon TMA0 høsten 08 En projeksjon er en lineærtransformasjon P som tilfredsstiller P x = P x for alle x Denne ligningen sier at intet nytt skjer om du benytter lineærtransformasjonen for andre gang,

Detaljer

R2 eksamen våren ( )

R2 eksamen våren ( ) R Eksamen V01 R eksamen våren 01. (1.05.01) Løsningsskisser (Versjon 1.05.1) Del 1 - Uten hjelpemidler Oppgave 1 a) f x sin x sin x b) Kjerneregel (u x): g x 6 cosx 6 cosx c) Produktregel: h x e x sinx

Detaljer

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009 Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2009 Addisjon av matriser Hvis A = [a ij ] og B = [b ij ] er matriser med samme størrelse, så er summen A + B matrisen

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

TMA4110 Matematikk 3 Haust 2011

TMA4110 Matematikk 3 Haust 2011 Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA40 Matematikk 3 Haust 0 Løysingsforslag Øving Oppgåver frå læreboka kap 5, s 7-73 5 Eigenrommet som svarar til λ = 5 er det

Detaljer

Diagonalisering. Kapittel 10

Diagonalisering. Kapittel 10 Kapittel Diagonalisering I te kapitlet skal vi anvende vår kunnskap om egenverdier og egenvektorer til å analysere matriser og deres tilsvarende lineærtransformasjoner Eksempel Vi begynner med et eksempel

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 1 0 O r d i n æ r g e n e r a l f o r s a m l i n g i, a v h o l d e s m a n d a g 3. m ai 2 0 1 0, k l. 1 8 0 0 p å T r e

Detaljer

Institutt for Samfunnsøkonomi

Institutt for Samfunnsøkonomi Institutt for Samfunnsøkonomi Løsninger i: ELE 379 Matematikk valgfag Dato: 6.6., 9: 4: Tillatte hjelpemidler: Alle hjelpemidler + Eksamenskalkulator: TEXAS INSTRUMENTS BA II Plus TM Innføringsark: Ruter

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

8 Vektorrom TMA4110 høsten 2018

8 Vektorrom TMA4110 høsten 2018 8 Vektorrom TMA4 høsten 8 I de foregående kapitlene har vi tatt en lang vandring gjennom den lineære algebraens jungel. Nå skal vi gå opp på en fjelltopp og skue ut over landskapet vi har vandret gjennom.

Detaljer

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x Løysingsforslag til eksamen i matematikk, mai 4 Oppgåve a) i) ii) f(x) x x + x(x + ) / ( f (x) x (x + ) / + x (x + ) /) g(x) ln x sin x x (x + ) / + x (x + ) / (x + ) x + + x x x + x + + x x + x + x +

Detaljer

Innlevering i FORK Matematikk forkurs OsloMet Obligatorisk innlevering 3 Innleveringsfrist Onsdag 14.november 2018 kl. 10:30 Antall oppgaver: 13

Innlevering i FORK Matematikk forkurs OsloMet Obligatorisk innlevering 3 Innleveringsfrist Onsdag 14.november 2018 kl. 10:30 Antall oppgaver: 13 Innlevering i FORK00 - Matematikk forkurs OsloMet Obligatorisk innlevering Innleveringsfrist Onsdag 4.november 08 kl. 0:0 Antall oppgaver: Bestem vinkelen mellom vektorene u = [, 7] og v = [4, 5]. Hva

Detaljer

I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E

I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E 2 0 0 9 O r d i næ r t s am e i e rm ø t e i S am b o b o l i g s a m ei e fi n n e r s t e d t o r s d ag 3 0. 0 4. 2 0 0 9 K l. 1 8. 3 0

Detaljer

Innhold. Ka pit tel 1 Inn led ning Barn og sam funn Bo kas opp byg ning... 13

Innhold. Ka pit tel 1 Inn led ning Barn og sam funn Bo kas opp byg ning... 13 Innhold Ka pit tel 1 Inn led ning... 11 Barn og sam funn... 11 Bo kas opp byg ning... 13 Ka pit tel 2 So sia li se rings pro ses sen... 15 For hol det mel lom sam funn, kul tur og so sia li se ring...

Detaljer

R2 eksamen våren 2018 løsningsforslag

R2 eksamen våren 2018 løsningsforslag R eksamen våren 08 løsningsforslag DEL Uten hjelpemidler Oppgave ( poeng) Deriver funksjonene a) f ( x) = cos ( x ) f ( x) = sin( x ) = sin( x ) b) g ( x) = x sin x g ( x) = sin x + x cos x = sin x + x

Detaljer

VEDLEGG 5. 1 Støy og skyggekast. 1.1 Resultater støy

VEDLEGG 5. 1 Støy og skyggekast. 1.1 Resultater støy VEDLEGG 5 Ifølge regelverket skal støynivået ved helårsboliger og fritidsboliger ikke overstige den anbefalte grenseverdien på Lden 45 db. Dersom det vurderes som nødvendig for vindkraftverkets realiserbarhet

Detaljer

Løsningsskisser eksamen R

Løsningsskisser eksamen R R 9.. Løsningsskisser eksamen R 9.. Del - Uten hjelpemidler Oppgave a) ) Produktregel: f x e x xe x e x x ) Kjerneregel: g x sin u, u x g x cosu cosx ) Kjerneregel: h x u, u sin x h x u cosx sin x cosx

Detaljer

Sk ie n ko mm une. R EG UL E R I N GS B ES T E MM E L SER T I L D eta ljr e gu l e ri n g

Sk ie n ko mm une. R EG UL E R I N GS B ES T E MM E L SER T I L D eta ljr e gu l e ri n g R EG UL E R I N GS B ES T E MM E L SER T I L D eta ljr e gu l e ri n g K j ø r b ekk d a l en 12 D 220 / 211 m. fl R e g u l e r i n g s be s te mm e ls e r sist date r t 27.09.17. P l an k a r t sist

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

R2 - Eksamen Løsningsskisser

R2 - Eksamen Løsningsskisser R - V0 R - Eksamen 04.06.0 - Løsningsskisser Del - Uten hjelpemidler Oppgave a) ) Kjerneregel: fx 3 sin u, u x f x 3 cosu 6 cosu 6 cosx ) 3) Produktregel: g x x sin x x cosx x sin x x cosx Kjerneregel:

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9 Innlevering BYPE000 Matematikk 000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 4. april 014 før forelesningen Antall oppgaver: 9 1 Regn ut determinanten til følgende matriser. (Det er også

Detaljer

Eksamen R2, Høsten 2015, løsning

Eksamen R2, Høsten 2015, løsning Eksamen R, Høsten 05, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f( ) 5cos( ) f 5 sin 0sin

Detaljer

EKSAMEN. 1 Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen. Klasser: (div) Dato: 24. mai 2004 Eksamenstid:

EKSAMEN. 1 Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen. Klasser: (div) Dato: 24. mai 2004 Eksamenstid: EKSAMEN EMNE: MA6 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen Klasser: (div) Dato: mai Eksamenstid: Eksamensoppgaven består av følgende: Antall sider (ink forside): 5 Antall oppgaver: Antall vedlegg:

Detaljer

Eksamen R2, Våren 2009

Eksamen R2, Våren 2009 Eksamen R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f xlnx 3 uln x u x 3 u 6u g u g u f x g

Detaljer

Løsningsforslag øving 6

Løsningsforslag øving 6 Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en

Detaljer

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer.

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. Kapittel 2 Matriser I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. 2.1 Definisjoner og regneoperasjoner

Detaljer

Matriser. Kapittel 4. Definisjoner og notasjon

Matriser. Kapittel 4. Definisjoner og notasjon Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Oppgave 1. e rt = 120e. = 240 e

Oppgave 1. e rt = 120e. = 240 e Løsning MET 803 Matematikk Dato 5. desember 05 kl 0900-00 Oppgave. (a) Dersom vi selger eiendommen etter t år, med t > 0, så er nåverdien av salgssummen med r = 0,0. Da får vi N(t) = V (t)e rt = 0 e e

Detaljer

Eksamen R2 vår 2012, løsning

Eksamen R2 vår 2012, løsning Eksamen R vår 0, løsning Oppgave ( poeng) a) Deriver funksjonene ) f sin Bruker kjerneregelen på uttrykket sin der Vi har da guu sinu u cosu cos f cos 6cos ) g sin Vi bruker produktregelen for derivasjon.

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s b e r e t n i

Detaljer

Løsningsforslag. a) Løs den lineære likningen (eksakt!) 11,1x 1,3 = 2 7. LF: Vi gjør om desimaltallene til brøker: x =

Løsningsforslag. a) Løs den lineære likningen (eksakt!) 11,1x 1,3 = 2 7. LF: Vi gjør om desimaltallene til brøker: x = Prøve i FO99A - Matematikk Dato: 1. desember 014 Målform: Bokmål Antall oppgaver: 8 (0 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................

Detaljer

Potensrekker Forelesning i Matematikk 1 TMA4100

Potensrekker Forelesning i Matematikk 1 TMA4100 Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. november 2011 Kapittel 8.8. Taylorrekker og Maclaurinrekker 3 Taylor-polynomer Definisjon (Taylorpolynomet

Detaljer

Eksamen R2, Våren 2011 Løsning

Eksamen R2, Våren 2011 Løsning R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene

Detaljer

Eksamen R2 høsten 2014 løsning

Eksamen R2 høsten 2014 løsning Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen

Detaljer

ELE Matematikk valgfag

ELE Matematikk valgfag SENSORVEILEDNING - Skriftlig eksamen ELE 3711 Matematikk valgfag Institutt for Samfunnsøkonomi Utlevering: 11.06.018 Kl. 0:00 Innlevering: 11.06.018 Kl. 14:00 For mer informasjon om formalia, se eksamensoppgaven.

Detaljer

Pensum i lineæralgebra inneholder disse punktene.

Pensum i lineæralgebra inneholder disse punktene. Pensum i lineæralgebra inneholder disse punktene. 1) Løsning av lineære ligningssystem. Finne løsning hvis den fins og også avgjøre om løsning ikke fins. Entydig, flertydig løsning. 2) Overføre en matrise

Detaljer

Eksamen R2 høst 2011, løsning

Eksamen R2 høst 2011, løsning Eksamen R høst 0, løsning Oppgave (4 poeng) a) Deriver funksjonene f e ) Bruker produktregelen for derivasjon, uv uv uv f e e e e ) g sin Bruker kjerneregelen på uttrykket cos der u og g u sinu Vi har

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 3.05.0 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : 5 timar: Del skal leverast inn etter timar. Del skal leverast inn

Detaljer

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2: Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D e t t e e r i n n k a l l i n g e n t i l å r e t s g e n er a l f o r s a m l i n g. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s m e l d i n g o g r e g n s k a

Detaljer

Eksamen R2 Høsten 2013

Eksamen R2 Høsten 2013 Eksamen R2 Høsten 203 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f 5cos b) g sin 2 Oppgave 2 (3

Detaljer

Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at

Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

H ØGSKOLEN I B ERGEN Avdeling for inge niørutdanning

H ØGSKOLEN I B ERGEN Avdeling for inge niørutdanning H ØGSKOLEN I B ERGEN Avdeling for inge niørutdanning BOKMAL EKSAMEN I KLASSE DATO FOA 154 - DISK RET MATEMATIKK I DATA 18. DESEMBER 2007 ANTALL OPPGAVER ANTALL SIDER VEDLEGG 4 7 med vedlegg Fonnelsamling

Detaljer

Test, 1 Geometri. 1.2 Regning med vektorer. X Riktig. X Galt. R2, Geometri Quiz løsning. Grete Larsen. 1) En vektor har lengde.

Test, 1 Geometri. 1.2 Regning med vektorer. X Riktig. X Galt. R2, Geometri Quiz løsning. Grete Larsen. 1) En vektor har lengde. Test, 1 Geometri Innhold 1.2 Regning med vektorer... 1 1.3 Vektorer på koordinatform... 6 1.4 Vektorproduktet... 11 1.5 Linjer i rommet... 16 1.6 Plan i rommet... 18 1.7 Kuleflater... 22 Grete Larsen 1.2

Detaljer

EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon:

EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon: EKSAMENSOPPGAVE Eksamen i: Mat 4 Lineær algebra Dato: Torsdag 4 juni 25 Tid: Kl 9: 3: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator, to A4 ark egne notater og Rottmanns tabeller Oppgavesettet

Detaljer

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2 Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe

Detaljer

H ØGSKOLEN I B ERGEN Avdeling for inge niørutda nning

H ØGSKOLEN I B ERGEN Avdeling for inge niørutda nning H ØGSKOLEN B ERGEN Avdeing for inge niørutda nning EKSAM EN VDEREGÅE NDE ANALYSE OG LNEÆR ALGEBRA FAGKO DE KLASSE DATO FOA63 (10studiepoeng) ALLE 30. november 2007 ANTALL OPPGA VER ANTALL SDER VEDL EGG

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 21. Tid for eksamen: 14.3 17.3. Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT111 Kalkulus

Detaljer

Høgskolen i Oslo og Akershus. ln x sin x 2 (ln x) (ln x) 2 = cos ( x2. (ln x) 2 = cos x 2 2x ln x x sin x 2 (ln x) 2 x + 2 = 1, P = (2, 2 4 y4 = 0

Høgskolen i Oslo og Akershus. ln x sin x 2 (ln x) (ln x) 2 = cos ( x2. (ln x) 2 = cos x 2 2x ln x x sin x 2 (ln x) 2 x + 2 = 1, P = (2, 2 4 y4 = 0 Løysingsforslag. Oppgåve a f cos f cos + cos cos + sin cos sin g g sin ln sin ln sin ln ln cos ln sin ln cos ln sin ln cos ln sin ln b 4 4 + y 4, P, 4 5 Implisitt derivasjon: d 4 y 4 + d d 4 d d d 4 4

Detaljer

Kap. 7 Symmetriske matriser og kvadratiske former

Kap. 7 Symmetriske matriser og kvadratiske former Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.

Detaljer

x(x 1)(x 2) p(x) = 3,0 1( 1 1)( 1 2) Newtons interpolasjonsformel: Tabellen over dividerte differenser er gitt ved

x(x 1)(x 2) p(x) = 3,0 1( 1 1)( 1 2) Newtons interpolasjonsformel: Tabellen over dividerte differenser er gitt ved NTNU Institutt for matematiske fag TMA35 Matematikk D eksamen 20. desember 200 Løsningsforslag Oppgaven kan, for eksempel, løses ved hjelp av Lagrange-interpolasjon eller Newtons interpolasjonsformel.

Detaljer

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T. Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen

Detaljer

Matematikk R1 Oversikt

Matematikk R1 Oversikt Matematikk R1 Oversikt Lars Sydnes, NITH 20. mai 2014 I. ALGEBRA ANNENGRADSLIGNINGER Annengradsformelen: ax 2 + bx + c = 0 x = b ± b 2 4ac 2a (i) 0 løsninger hvis b 2 4ac < 0 (ii) 1 løsning hvis b 2 4ac

Detaljer

1 Mandag 1. februar 2010

1 Mandag 1. februar 2010 Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette

Detaljer