Sammendrag R januar 2011

Størrelse: px
Begynne med side:

Download "Sammendrag R1. 26. januar 2011"

Transkript

1 Sammendrag R1 26. januar

2 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander A og B er ekvivalente. Det vil si at påstand A er riktig hvis, og bare hvis, påstand B er riktig. To likninger er ekvivalente hvis de har nøyaktig de samme løsningene. Og Skrivemåten A B betyr påstand A og samtidig B. Eller Skrivemåten A B betyr påstand A eller B. Intervaller La a og b være reelle tall. x er større enn a og mindre enn b skrives: x a, b x er større enn a og mindre enn, eller lik b skrives: x a,b] x er større enn eller lik a og mindre enn b skrives: x [a,b x er større enn eller lik a og mindre enn eller lik b skrives: x [a,b] Union Skrivemåten A B betyr A union B, altså A eller B Snitt Skrivemåten A B betyr A snitt B, altså A og samtidig B Ikke Skrivemåten A betyr ikke A. Hvis A er en hendelse kalles A den komplementære hendelse til A. Grenseverdi Symbolet lim f (x) betegner grenseverdien til funksjonen f når variabelen x nærmer seg a. I de tilfellene det er mulig å finne grenseverdien, er denne et x a reelt tall. 2

3 2 Algebra Andregradslikningen Likningen ax 2 + bx + c = 0 har løsningene x = b ± b 2 4ac 2a Antall løsninger Likningen ax 2 + bx + c = 0 har to løsninger dersom b 2 4ac > 0 en løsning dersom b 2 4ac = 0 ingen reelle løsninger dersom b 2 4ac < 0 Nullpunkt Dersom andregradslikningen ax 2 +bx +c = 0 har har løsningene x = x 1 og x = x 2, er x 1 x 2 = c a og x 1 + x 2 = b a x 1 og x 2 kalles nullpunktene til andregradsuttrykket ax 2 + bx + c. Faktorisering av andregradsuttrykk Dersom andregradsuttrykket ax 2 +bx +c har de to nullpunktene x = x 1 og x = x 2, er ax 2 + bx + c = a (x x 1 ) (x x 2 ) Dersom andregradsuttrykket har ett nullpunkt x = x 1, er ax 2 + bx + c = a (x x 1 ) 2 Dersom andregradsuttrykket ikke har nullpunkter, er det ikke mulig å faktorisere uttrykket i førstegradsfaktorer. Polynom Andregradsuttrykket ax 2 + bx + c er et polynom av andre grad. Et polynom av grad n er på formen P(x) = a n x n + a n 1 x n a 1 x + a 0 der n er et positivt helt tall og a 0, a 1...a n alle er reelle tall. Polynomdivisjon Når vi dividerer et polynom P(x) med et polynom Q(x), får vi en rest med lavere grad enn Q(x). Hvis Q(x) er et førstegradsuttrykk, blir resten et tall. Resten ved en polynomdivisjon Når vi dividerer P(x) med (x x 0 ) blir resten P(x 0 ). Divisjonen P(x) : (x x 0 ) går opp hvis og bare hvis P(x 0 ) = 0. Faktor i et polynom (x x 0 ) er en faktor i polynomet P(x) hvis og bare hvis P(x 0 ) = 0. Et rasjonalt uttrykk er på formen P(x) Q(x), der P(x) og Q(x) er poly- Rasjonale uttrykk nomer. Forkorting av rasjonale uttrykk Vi kan forkorte P(x) x x 0 hvis og bare hvis P(x 0 ) = 0. 3

4 3 Logaritmer Den briggske logaritmen opphøye 10 i for å få a. Den briggske logaritmen til a, lg a, er det tallet vi må 10 lg a = a Den briggske logaritmen er voksende. For to positive tall a og b er a > b lg a > lgb Regneregler for briggske logaritmer lg a x = x lg a lg(a b) = lg a + lgb ( a ) lg = lg a lgb b Eulertallet e e = lim t 0 (1 + t) 1 t Den naturlige logaritmen opphøye e i for å få a. Den naturlige logaritmen til a, ln a, er det tallet vi må e ln a = a Den naturlige logaritmen er voksende. For to positive tall a og b er a > b ln a > lnb Regneregler for den naturlige logaritmen ln a x = x ln a ln(a b) = ln a + lnb ( a ) ln = ln a lnb b 4

5 4 Sannsynlighetsregning Sum av sannsynligheter P(A B) = P(A) + P(B) P(A B) Komplementære hendelser P(A) = 1 P(A) Betinget sannsynlighet P(A B) P(B A) = P(A) Produktsetningen P(A B) = P(A) P(B A) = P(B) P(A B) Total sannsynlighet P(B) = P(A) P(B A) + P(A) P(B A) P(B) = P(A B) + P(A B) Bayes setning P(B) P(A B) P(B A) = P(A) Uavhengige hendinger To hendinger A og B er uavhengige hvis, og bare hvis, P(A B) = P(A) eller P(B A) = P(B) Produktsetningen for uavhengige hendinger hendinger. Da er La A 1, A 2,..., A n være n uavhengige P(A 1 A 2... A n ) = P(A 1 ) P(A 2 )... P(A n ) Fakultet n! = n (n 1) ! = 1 Binomialkoeffisient ( ) n n (n 1)... (n k + 1) = k k! ( ) n = 1 0 Multiplikasjonsprinsippet Vi skal gjøre k valg med n 1 alternativer i det første valget, n 2 valg i det andre, osv. Det er da i alt n 1 n 2... n k mulige kombinasjoner. Hvis det er n kombinasjoner i hvert valg, er tallet på kombinasjoner n k. Ordnet utvalg trukket ut i. I et ordnet utvalg tar vi hensyn til den rekkefølgen gjenstandene blir 5

6 Ordnet utvalg med tilbakelegging Vi har n gjenstander og trekker en gjenstand med tilbakelegging. Hvis vi trekker k ganger, fins det i alt n k forskjellige kombinasjoner når vi tar hensyn til rekkefølgen vi trekker i. Ordnet utvalg uten tilbakelegging Vi har n gjenstander og trekker en gjenstand uten tilbakelegging. Hvis vi trekker k ganger, fins det i alt n (n 1)... (n k + 1) forskjellige kombinasjoner når vi tar hensyn til rekkefølgen vi trekker i. Uordnet utvalg I et uordnet utvalg tar vi ikke hensyn til den rekkefølgen gjenstandene blir trukket ut i. Uordnet utvalg uten tilbakelegging Vi har n gjenstander og skal velge ut k av dem. Det kan vi gjøre på ( n k) forskjellige måter når rekkefølgen vi velger i, ikke har betydning. Hypergeometrisk forsøk I et hypergeometrisk forsøk har vi n gjenstander av to eller flere typer. Anta at det er n 1 gjenstander av type 1 og n 2 gjenstander av type 2. Vi trekker tilfeldig k gjenstander uten tilbakelegging. Sannsynligheten for å få k 1 gjenstander av type 1 og k 2 gjenstander av type 2 er da ( n1 ) ( k n2 1 ( n k) k 2 ) For flere enn to typer gjenstander gjelder formlen ( n1 ) ( k n2 ) ( 1 k... ni ( 2 n k) k i ) der i er antall ulike typer gjenstander det trekkes blant. Binomisk forsøk I et binomisk forsøk gjør vi n uavhengige delforsøk og teller hvor mange ganger vi får en hending A. I hvert delforsøk er sannsynligheten for hendingen A lik p. La X være antallet ganger A inntreffer. Sannsynligheten for at A skal inntreffe nøyaktig k ganger, er ( ) n P(X = k) = p k (1 p) n k k 6

7 5 Geometri Pythagoras setning siden. La a, b og c være sidekanter i en trekant der c er den lengste Trekanten er rettvinklet a 2 + b 2 = c 2 Sentralvinkel og periferivinkel En vinkel som har toppunkt på en sirkelperiferi kalles periferivinkel. En vinkel som har toppunkt i sentrum av en sirkel, kalles sentralvinkel. La u være en sentralvinkel og v en periferivinkel som spenner over den samme sirkelbuen. Da er u = 2v To periferivinkler som spenner over den samme buen, er like store. En periferivinkel som spenner over diameteren, er 90. v u Cosinussetningen La a, b og c være sidekantene i en trekant der vinkel v er vinkelen mellom sidene b og c. Da er a 2 = b 2 + c 2 2bc cos v Sinussetningen La a, b og c være sidekantene i en trekant der A er motstående vinkel til a, B er motstående vinkel til b og C er motstående vinkel til c. Da er sin A a = sinb b = sinc c a sin A = b sinb = c sinc Arealsetningen La v være vinkelen mellom to sider a og b i en trekant. Arealet av trekanten er da gitt ved A = 1 ab sin v 2 To trekanter er kongruente hvis ett av disse kravene er opp- Kongruenssetningene fylt: 1. To vinkler er parvis like store, og en side i den ene trekanten er like lang som den samsvarende siden i den andre. 2. To av sidene er parvis like lange, og vinkelen mellom de to sidene er like store. 3. Alle tre sidene i trekanten er parvis like lange. 4. To av sidene er parvis like lange, og motstående vinkel til den lengste av disse to sidene er like store. 7

8 6 Vektorer Vektor En skalar er en størrelse som ikke har retning. I praksis er en skalar et van- Skalar lig tall. En vektor er en størrelse som har både lengde og retning. Nullvektor Nullvektoren 0 har lengden 0. Enhetsvektor En enhetsvektor e har lengden 1. e x har lengde 1 og er har lik retning med den positive x-aksen. e y har lengde 1 og har lik retning med den positive y- aksen. Sum av vektorer Når vi skal finne summen av to vektorer u og v tegner vi først u. Deretter tegner vi v med utgangspunkt i endepunktet for u. Summen u + v går nå fra utgangspunktet for u til endepunktet for v. For tre punkter A, B og C er AB + BC = AC u v u + v Produkt av tall og vektor Vektoren t v er parallell med v og er t ganger så lang som v. Hvis t er et positivt tall, har v og t v samme retning. Hvis t er et negativt tall, har v og t v motsatt retning. Differanse av vektorer Vi finner differansen u v ved å summere u og v. u v = u + ( v) Vi kan også tegne vektorene u og v med felles utgangspunkt. Vektoren u v går da fra endepunktet for v til endepunktet for u. Noen regneregler for vektorer a + b = b + a ( a + b) + c = a + ( b + c) t ( a + b) = t a + t b s a + t a = (s + t) a s (t a) = (s t) a Vektor på koordinatform En vektor u = [x, y] går x enheter i positiv x-retning og y enheter i positiv y-retning. 8

9 Regneregler for vektorkoordinater [x 1, y 1 ] + [x 2, y 2 ] = [x 1 + x 2, y 1 + y 2 ] [x 1, y 1 ] [x 2, y 2 ] = [x 1 x 2, y 1 y 2 ] t[x, y] = [t x, t y] Vektoren mellom to punkter Vektoren mellom origo, O(0, 0), og punktet P(x, y) har koordinatene OP = [x, y] OP kalles gjerne posisjonsvektoren til P. Vektoren mellom A(x 1, y 1 ) og B(x 2, y 2 ) har koordinatene AB = [x2 x 1, y 2 y 1 ] Lengden av en vektor Lengden av vektoren v = [x, y] er v = x 2 + y 2 Avstanden mellom to punkter Avstanden mellom punktene (x 1, y 1 ) og (x 2, y 2 ) er d = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 Parallelle vektorer To vektorer u og v som ikke er nullvektorer, er parallelle hvis og bare hvis det fins et tall t slik at t u = v. Altså u v t u = v Punkt på linje parallelle. Tre punkter A, B og C ligger på linje hvis og bare hvis AB og AC er Dekomponering La a og b være to vektorer som ikke er parallelle. La v være en tredje vektor. Da fins det entydige tall x og y slik at v = x a + y b Like vektorer La a og b være to vektorer som ikke er parallelle, og la u = x 1 a + y 1 b og v = x 2 a + y 2 b. Da er u = v hvis og bare hvis x1 = x 2 og y 1 = y 2. To vektorer er like hvis og bare hvis vektorkoordinatene er parvis like. Skalarprodukt La u være vinkelen mellom a og b. Da er skalarproduktet av a og b a b = a b cosu Skalarproduktet er alltid et tall (en skalar). 9

10 Koordinatformelen for skalarprodukt [x 1, y 1 ] [x 2, y 2 ] = x 1 x 2 + y 1 y 2 Vinkelen mellom to vektorer Vinkelen u mellom a og b kan beregnes ved u = cos 1 a b a b Ortogonale vektorer a b a b = 0 Regneregler for skalarproduktet a b = b a a ( b + c) = a b + a c (x a) (y b) = (x y) a b (x 1 a + y 1 b) (x2 a + y 2 b) = x1 x 2 a 2 + x 1 y 2 a b + y 1 x 2 a b + y 1 y 2 b 2 a 2 = a 2 10

11 7 Derivasjonsregler Definisjonen av den deriverte f (x) = lim h 0 f (x + h) f (x) h Hvis denne grenseverdien eksisterer i punktet x er f deriverbar i x. Lineær funksjon Potensfunksjon Sum av funksjoner (ax + b) = a (x n ) = n x n 1 (u(x) + v(x)) = u (x) + v (x) Multiplikasjon med konstant (k f (x)) = k f (x) Funksjonen 1 x ( ) 1 = 1 Kvadratrot Logaritmefunksjon x x 2 ( x) = 1 2 x (ln x) = 1 x Eksponentialfunksjon Produktsetningen Kvotientsetningen (e x ) = e x (e kx ) = ke kx (a x ) = ln a a x ( a kx) = k ln a a kx (u v) = u v + u v ( u v ) = u v u v v 2 Kjerneregelen Den deriverte av en sammensatt funksjon er lik den deriverte av den ytre funksjonen multiplisert med den deriverte av kjernen. Altså hvis f (x) = g (u(x)), så er f (x) = g (u(x)) u (x) 11

12 8 Funksjonsdrøfting En funksjon f er kontinuerlig for x = a dersom f (a) ek- Kontinuerlige funksjoner sisterer og lim x a + f (x) = lim f (x) = f (a). x a En funksjon er kontinuerlig i et intervallet [a,b] hvis den er kontinuerlig i alle punkt i intervallet. En polynomfunksjon er kontinuerlig overalt. Rasjonale funksjoner er kontinuerlig i alle punkt, men er ikke definert der nevneren er null. Vertikal asymptote ± når x a. En funksjon f har en vertikal asymptote x = a dersom f (x) Horisontal asymptote Linja y = a er en horisontal asymptote for en funksjon f dersom lim f (x) = a eller lim f (x) = a. x x Toppunkt og bunnpunkt Hvis f er kontinuerlig og f (x) skifter fortegn i et punkt er dette et topp- eller bunnpunkt for f. Andregradsfunksjonen ax 2 + bx + c har et toppunkt hvis a < 0 og et bunnpunkt hvis a > 0. Dette topp/bunnpunktet finner vi i x = b 2a. Krumming f (x) > 0 i et intervall grafen vender den hule siden opp i intervallet. f (x) < 0 i et intervall grafen til f vender den hule siden ned i intervallet. Vendepunkt Punktet der f (x) skifter fortegn kalles et vendepunkt til f. L Hôpitals lov g gitt at lim (x) x a h (x) Hvis lim x a g (x) = lim x a h(x) = 0 så er g (x) lim x a h(x) = lim g (x) x a h (x) eksisterer. Setningen gjelder også hvis lim x a I praksis vil dette si at hvis en grenseverdi gir 0 0 eller g (x) = limh(x) = ±. x a så kan vi derivere telleren og nevneren (hver for seg) og se om vi får en grenseverdi som er lettere å beregne. Denne setningen er ikke en del av pensum i R1, men kan i noen tilfeller være praktisk for å beregne grenseverdier 12

13 9 Vektorfunksjoner Parameterframstilling for rett linje En linje l gjennom punktet P(x 0, y 0 ) parallell med vektoren v = [a,b] kan skrives ved parameterframstilling { x = x0 + at l : y = y 0 + bt eller som vektorfunksjonen [x(t), y(t)] = [x 0 + at, y 0 + at] Derivasjon av vektorfunksjoner vil si at hvis r (t) = [x(t), y(t)] så er Vektorfunksjoner kan deriveres koordinatvis, det r (t) = [x (t), y (t)] Definisjon av den deriverte til en vektorfunksjon Den deriverte til en vektorfunksjon r (t) er gitt ved r r (t + h) r (t) (t) = lim h 0 h Fartsvektor og akselerasjonsvektor Ofte tolker vi r (t) som posisjonsvektoren til et punkt etter tiden t. Fartsvektoren er da Farten er lengden av fartsvektoren, altså v(t) = r (t) v(t) = v(t) Akselerasjonsvektoren er den deriverte av fartsvektoren, altså a(t) = v (t) = r (t) Akselerasjonen er lengden av akselerasjonsvektoren, altså a(t) = a(t) 13

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Manual for wxmaxima tilpasset R1

Manual for wxmaxima tilpasset R1 Manual for wxmaxima tilpasset R1 Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ]

Velg mellom disse kommandoene: Dersom[<Vilkår>, <Så>, <Ellers>] Funksjon[<Funksjon>, <Start>, <Slutt>] 442 Grafer Å tegne grafen til en funksjon Nullpunkter Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ] GeoGebra finner nullpunktene til en innlagt

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Sammendrag kapittel 9 - Geometri

Sammendrag kapittel 9 - Geometri Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning

Detaljer

Fremdriftsplan for sommerkurset 2014 Planen er ment som et utgangspunkt, kan justeres underveis

Fremdriftsplan for sommerkurset 2014 Planen er ment som et utgangspunkt, kan justeres underveis Oldervoll m.fl. Sinus matematikk, Forkurs grunnbok, Cappelen Jerstad m.fl. Rom-Stoff-Tid, Forkurs grunnbok, Cappelen. Øving: EN/MMT (D3-11), PD (D3-15), EA/DA (D3-17) Fremdriftsplan for sommerkurset 2014

Detaljer

R1 Eksamen høsten 2009 Løsning

R1 Eksamen høsten 2009 Løsning R1 Eksamen, høsten 009 Løsning R1 Eksamen høsten 009 Løsning Del 1 Oppgave 1 3 a) Deriver funksjonen f( x) 5e x f( x) 5e 3 15e 3 x 3x b) Deriver funksjonen gx x 3 ln x x x g( x) 3x ln x x 3 x 3ln 1 3 c)

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag Eksamen i FO99A Matematikk Underveiseksamen Dato. desember 6 Tidspunkt 9. -. Antall oppgaver Vedlegg Tillatte hjelpemidler Ingen Godkjent kalkulator Godkjent formelsamling Oppgave Vi løser likningene ved

Detaljer

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker.

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker. Heldagsprøve i matematikk, 1. desember 006 Forkurs for Ingeniørutdanningen ved HiO, 006/07 Antall oppgaver: Antall timer: 5 timer fra klokken 0900 til klokken 100. Hjelpemidler: Kalkulator og Formelsamling

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

Eksamen REA3022 R1, Våren 2010

Eksamen REA3022 R1, Våren 2010 Eksamen REA0 R1, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 a) Deriver funksjonene 1) ln f 1 f ) g ln ln ln 1 4e

Detaljer

Matematikk R1 Oversikt

Matematikk R1 Oversikt Matematikk R1 Oversikt Lars Sydnes, NITH 20. mai 2014 I. ALGEBRA ANNENGRADSLIGNINGER Annengradsformelen: ax 2 + bx + c = 0 x = b ± b 2 4ac 2a (i) 0 løsninger hvis b 2 4ac < 0 (ii) 1 løsning hvis b 2 4ac

Detaljer

Eksamen REA3022 R1, Våren 2013

Eksamen REA3022 R1, Våren 2013 Eksamen REA30 R1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Formlene for arealet A av en sirkel og volumet

Detaljer

Funksjoner løsninger. Innhold. Funksjoner R1

Funksjoner løsninger. Innhold. Funksjoner R1 Funksjoner løsninger Innhold. Funksjoner.... Kontinuitet, grenseverdier og asymptoter til funksjoner... 6 Grenseverdier... 6 Rasjonale funksjoner og asymptoter... 5 Kontinuitet... 4 Funksjoner med delt

Detaljer

Regelbok i matematikk 1MX og 1MY

Regelbok i matematikk 1MX og 1MY Regelbok i matematikk 1MX og 1MY Utgave 1.4 Skrevet av Bjørnar Tollaksen. Hele regelboka er et sammendrag av læreboka. Dette er ment som et supplement til formelheftet, ikke en erstatning. Skrivefeil kan

Detaljer

INNHOLD. Eksamen R1 vår 2008 - Hele oppgavesettet Eksamen R1 vår 2009 - Hele oppgavesettet. Side. Oppgave 1 vår 2008 1

INNHOLD. Eksamen R1 vår 2008 - Hele oppgavesettet Eksamen R1 vår 2009 - Hele oppgavesettet. Side. Oppgave 1 vår 2008 1 INNHOLD Eksamen R1 vår 2008 - Hele oppgavesettet Eksamen R1 vår 2009 - Hele oppgavesettet Side Oppgave 1 vår 2008 1 Oppgave 1a vår 2008 2 Teori oppgave 1a Vår 2008 2 Derivasjonsreglene 2 Derivasjon av

Detaljer

MATEMATIKK FOR REALFAG PROGRAMFAG I STUDIESPESIALISERENDE UTDANNINGSPROGRAM

MATEMATIKK FOR REALFAG PROGRAMFAG I STUDIESPESIALISERENDE UTDANNINGSPROGRAM MATEMATIKK FOR REALFAG PROGRAMFAG I STUDIESPESIALISERENDE UTDANNINGSPROGRAM Fastsatt som forskrift av Utdanningsdirektoratet 27. mars 2006 etter delegasjon i brev 26. september 2005 fra Utdannings- og

Detaljer

Eksamen REA3022 R1, Høsten 2010

Eksamen REA3022 R1, Høsten 2010 Eksamen REA30 R1, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Deriver funksjonene 1) f x x e x e x

Detaljer

eksamensoppgaver.org x = x = x lg(10) = lg(350) x = lg(350) 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor

eksamensoppgaver.org x = x = x lg(10) = lg(350) x = lg(350) 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor eksamensoppgaver.org 5 oppgave1 a.i.1) 2 10 x = 700 10 x = 700 2 x lg(10) = lg(350) x = lg(350) a.i.2) Vibrukerfortegnsskjema 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor x 1, 5 a.ii.1)

Detaljer

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t

Detaljer

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007 Løsningsforslag Eksamen eksempeloppgave R1 - REA022 - Desember 200 eksamensoppgaver.org October 2, 2008 eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksempeloppgave i R1

Detaljer

R1 - Heldagsprøve våren

R1 - Heldagsprøve våren R - Heldagsprøve våren 04 -.05.04 Løsningsskisser Generelle problem: Ikke gi bort gratispoeng, kontroller svar og ikke slurv med enkle oppgaver! (Oppgave,, 5 og 6.) Tegn grafer ordentlig! (Piler på akser,

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

Løsningsforslag heldagsprøve våren 2010 1T

Løsningsforslag heldagsprøve våren 2010 1T Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y

Detaljer

Heldagsprøve i R1-8.mai 2009 DEL 1

Heldagsprøve i R1-8.mai 2009 DEL 1 Oppgave 1 Heldagsprøve i R1-8.mai 2009 Løsningsskisser DEL 1 I et koordinatsystem med origo O 0,0 har vi gitt punktene A 1,3, B 3,2 og C t,5. 1. Bestem t slik at AB AC. 2. Bestem t slik at AB AC. 3. Bestem

Detaljer

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål

Detaljer

GeoGebra-opplæring i Matematikk R1

GeoGebra-opplæring i Matematikk R1 GeoGebra-opplæring i Matematikk R1 Emne Underkapittel Vektorer 1.4 Lengden av vektorer 1.5 Skalarprodukt og vinkel mellom to vektorer 1.6 Forenkle uttrykk 2.1 Faktorisering 2.1 Grafisk løsning av eksponentiallikninger

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2012

Eksamen MAT1013 Matematikk 1T Våren 2012 Eksamen MAT1013 Matematikk 1T Våren 01 DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Regn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Regn ut og skriv svaret på standardform

Detaljer

Løsning eksamen R1 våren 2008

Løsning eksamen R1 våren 2008 Løsning eksamen R våren 008 Oppgave a) f ( ) ln f ( ) ( ) ln (ln ) ln ln b) c) d) e) ( 4 6) : ( ) 4 6 6 0 64 ( 8) ( 8) 8 8 8 6 lim lim lim 8 8 6 8 ( 8) 8 lg( y ) lg y lg lg lg y lg y lg lg y lg lg y y

Detaljer

Løsningsforslag Eksamen R1 - REA3022-28.05.2008

Løsningsforslag Eksamen R1 - REA3022-28.05.2008 Løsningsforslag Eksamen R1 - REA3022-28.05.2008 eksamensoppgaver.org September 14, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i R1 er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Løsning eksamen R1 våren 2009

Løsning eksamen R1 våren 2009 Løsning eksamen R1 våren 009 Oppgave 1 a) 1) f( ) ( 1) 4 f ( ) 4( 1) ( 1) 4( 1) 8 ( 1) ) g ( ) e 3 3 3 g( ) e ( e ) 1 e e ( ) 1e e (1) e b) ( ) lim lim lim ( ) 4 4 4 ( ) ( ) ( ) ( ) c) ( ) ( ) ( ) ( )

Detaljer

Hva man må kunne i kapittel 2 - Algebra

Hva man må kunne i kapittel 2 - Algebra Hva man må kunne i kapittel 2 - Algebra Teknikker og type-eksempler Faktorisering Se også eget notat om faktorisering på nettsidene mine. Faktorisering brukes til å: Finne fellesnevner i rasjonale uttrykk.

Detaljer

Løsningsforslag AA6516 Matematikk 2MX - 5. mai eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX - 5. mai eksamensoppgaver.org Løsningsforslag AA6516 Matematikk 2MX - 5. mai 2004 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011. 1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset

Detaljer

eksamensoppgaver.org 4 2e x = 7 e x = 7 2 ln e x = ln 2 x = ln 7 ln 2 ln x 2 ln x = 2 2 ln x ln x = 2 ln x = 2 x = e 2

eksamensoppgaver.org 4 2e x = 7 e x = 7 2 ln e x = ln 2 x = ln 7 ln 2 ln x 2 ln x = 2 2 ln x ln x = 2 ln x = 2 x = e 2 eksamensoppgaver.org 4 oppgave a..i) e x = 7 e x = 7 ( ) 7 ln e x = ln x = ln 7 ln a..ii) ln x ln x = ln x ln x = ln x = x = e a..i) cos x =.8 x [, 6 ] x = arccos(.8) x 6.9 x 6 6.9 x 6.9 x. a..ii) Løserdennemedabc-formelen

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 4 110 Funksjoner og andregradsuttrykk Studentene skal kunne benytte begrepet funksjoner og angi definisjonsmengde og verdimengde til funksjoner regne med lineære funksjoner og andregradsfunksjoner og bestemme

Detaljer

Løsningsforslag heldagsprøve våren 2012 1T

Løsningsforslag heldagsprøve våren 2012 1T Løsningsforslag heldagsprøve våren 01 1T DEL 1 OPPGAVE 1 a1) Skriv så enkelt som mulig x 9 x 6 Vi må faktorisere både teller og nevner. Så kan vi forkorte felles faktorer. Da får vi: x 9 x x 6 a) 4a4 b

Detaljer

R1 - Eksamen V Løsningsskisser. Del 1

R1 - Eksamen V Løsningsskisser. Del 1 Oppgave 1 R1 - Eksamen V10-7.05.010 Løsningsskisser Del 1 1) Produktregel: f x 3x lnx x 3 1 x 3x lnx x x 3lnx 1 ) Kjerneregel: f x 4e u, u x 3x f x 4e u x 3 4 x 3 e x 3x 1) P 3 4 4 16 0 P 0 P x x Q x x

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer.

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer. Eksamen i FO99A Matematikk Underveiseksamen Dato 30. mars 007 Tidspunkt 09.00-14.00 Antall oppgaver 4 Vedlegg Tillatte hjelpemidler Sirkelskive i radianer Godkjent kalkulator Godkjent formelsamling Oppgave

Detaljer

Løsningsforslag matematikk S1 V14

Løsningsforslag matematikk S1 V14 Løsningsforslag matematikk S1 V14 Oppgave 1 Bruker ABC-formelen: ABC-formelen gir x = 2 x = 3 x 2 + 3x 3 = 3 2x x 2 + 5x 6 = 0 x = b ± b 2 4ac 2a lg(x + 2) = 2 lg x lg(x + 2) = lg x 2 10 lg(x+2) lg x2

Detaljer

Delprøve 1. 1) Finn eventuelle topp-, bunn- og terrassepunkter på grafen til g. 2) Finn eventuelle vendepunkter på grafen til g. Tegn grafen.

Delprøve 1. 1) Finn eventuelle topp-, bunn- og terrassepunkter på grafen til g. 2) Finn eventuelle vendepunkter på grafen til g. Tegn grafen. Delprøve OPPGAVE a) Deriver funksjonen ( ) = x f x e x b) Gitt funksjonen 4 3 ( ) = 4 g x x x ) Finn eventuelle topp-, bunn- og terrassepunkter på grafen til g. ) Finn eventuelle vendepunkter på grafen

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk MX Privatister 10. desember 003 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet

Detaljer

R1 kapittel 4 Funksjonsdrøfting. Løsninger til oppgavene i boka ( 1) 5 ( 2) = = = = = = = ( ) 1 1. f ( a)

R1 kapittel 4 Funksjonsdrøfting. Løsninger til oppgavene i boka ( 1) 5 ( 2) = = = = = = = ( ) 1 1. f ( a) R kapittel 4 Funksjonsdrøfting Løsninger til oppgavene i boka 4. a 4 f( ) f ( ) 4 4 b g ( ) 6 c d e f 4. a b c d e f 4. a g ( ) 0 h ( ),8 4 h ( ),8,8 i ( ),8,8 i 0 ( ) j ( ) π j ( ) 0 k ( ) k ( ) f( )

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

Eksamen våren 2008 Løsninger

Eksamen våren 2008 Løsninger Eksamen våren 008 Løsninger Eksamen våren 008 Løsninger Del Hjelpemidler: Vanlige skrivesaker, passer, linjal med cm-mål og vinkelmåler Oppgave a f x ( ) x ln = x f ( x) = x lnx+ x = xlnx+x x b c ( ) (

Detaljer

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Fastsatt som forskrift av Utdanningsdirektoratet 27. mars 2006 etter delegasjon i brev 26. september 2005 fra Utdannings-

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

R1 - Eksamen H Løsningsskisser. Del 1

R1 - Eksamen H Løsningsskisser. Del 1 Oppgave R - Eksamen H0-30..00 Løsningsskisser Del ) Produktregel: f x e x xe x e x x ) Kjerneregel: g x 3 u, u x g x 3 u x 3x x P 3 6 6 6 6 0 Trenger ikke polynomdivisjon, kan faktorisere direkte: x x

Detaljer

Løsning S1-Eksamen vår 2012

Løsning S1-Eksamen vår 2012 Løsning S1-Eksamen vår 2012 14. juni 2012 Innhold Del 1 3 Oppgave 1 3.................................................... 3 1)................................................. 3 2).................................................

Detaljer

Løsning eksamen R1 høsten 2009

Løsning eksamen R1 høsten 2009 Løsning eksamen R høsten 009 Oppgave a) b) f( ) 5e 3 f ( ) 5 e (3 ) 5e 35e 3 3 3 3 ( ) ln( ) g 3 3 3 g( ) ln( ) ln( ) 3 ln( ) ( ) 3 3 ln( ) 3 ln( ) (3ln( ) ) c) La 3 f( ) 0 0. Da er 3 f () 0 0 0 0 0 Dermed

Detaljer

Mer om likninger og ulikheter

Mer om likninger og ulikheter Mer om likninger og ulikheter Studentene skal kunne utføre polynomdivisjon anvende nullpunktsetningen og polynomdivisjon til faktorisering av polynomer benytte polynomdivisjon til å løse likninger av høyere

Detaljer

Matematikk R1 Forslag til besvarelse

Matematikk R1 Forslag til besvarelse Matematikk R1 Forslag til besvarelse NITH 4. mars 014 Oppgave 1 a) Regn ut p x) når px) = x 3 3x + 6x 1. p x) = x 3 ) 3x ) + 6x) 0 = 3x ) 3x) + 6 1 = 6x 6x + 6 b) Regn ut p x) når px) = ax + bx + c. Her

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator Oppgave 1 Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt 09.00-14.00 Antall oppgaver 6 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag a) Likningen

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Matematikk - Forkurs for ingeniørutdanning

Matematikk - Forkurs for ingeniørutdanning Emne FIN100_2, BOKMÅL, 2014 HØST, versjon 31.mai.2015 23:43:28 Matematikk - Forkurs for ingeniørutdanning Emnekode: FIN100_2, Vekting: 0 studiepoeng Tilbys av: Det teknisk-naturvitenskapelige fakultet,

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 27052010 REA022 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del

Detaljer

Eksamen R1 Høsten 2013

Eksamen R1 Høsten 2013 Eksamen R1 Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene f x e a) 3 x b) gx x ln3x c) hx x

Detaljer

Del 1 - Uten hjelpemidler

Del 1 - Uten hjelpemidler Del 1 - Uten hjelpemidler Oppgaveteksten til del 1 ligger i: http://www.ulven.biz/r1/heldag/r1_hd_100516.docx (Oppgaveteksten til del er inkludert i dette dokumentet.) Oppgave 1 f x 3x 1 x 1 x (Husk: x

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning

Detaljer

Fagdag CAS-trening

Fagdag CAS-trening Fagdag 03.12.2015 - CAS-trening Innhold: Viktige kommandoer på side 1. Eksempler på bruk av CAS side 1-4. Arbeidsoppgaver på side 5 og utover. Viktige kommandoer: Se oversiktene side 444 og side 446 i

Detaljer

R1 - Eksamen V

R1 - Eksamen V Delprøve 1 R1 - Eksamen V09.05.10 Løsningsskisser Oppgave 1 1) Kjerneregel: fx u 4, u x 1 f x 4u 3 x 8xx 1 3 ) Produktregel (og kjerneregel på e x ): g x 1e x xe x 1 xe x lim x xx x lim x x xxx 4xx xxx

Detaljer

Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen REA3022 Matematikk R1.  Nynorsk/Bokmål Eksamen 9.05.013 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Matematikk R1. det digitale verktøyet. Kristen Nastad

Matematikk R1. det digitale verktøyet. Kristen Nastad Matematikk R1 og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.4.11643 2008 07 09 av operativsystemet til programmet TI-nspire TM CAS Operating System Software

Detaljer

Det digitale verktøyet. Matematikk R1. Kristen Nastad

Det digitale verktøyet. Matematikk R1. Kristen Nastad Det digitale verktøyet og Matematikk R1 Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.4.11643 2008 07 09 av operativsystemet til programmet TI-nspire TM CAS Computer Software for Windows

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

Krasjkurs MAT101 og MAT111

Krasjkurs MAT101 og MAT111 Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten

Detaljer

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5.

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5. Prøve i FO99A - Matematikk Dato: 3. desember 01 Målform: Bokmål Antall oppgaver: 5 (0 deloppgaver) Antall sider: Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Eksamen S1, Høsten 2013

Eksamen S1, Høsten 2013 Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df f

Detaljer

Matematikk for økonomer Del 2

Matematikk for økonomer Del 2 Matematikk for økonomer Del 2 Formelark Dokument type: Formelark Antall kapitler: 10 kapitler Antall sider: 17 Sider Forfatter: Studiekvartalets kursholdere rett til bruk av materialet. Det innebærer at

Detaljer

Heldagsprøve R Thora Storms vgs.

Heldagsprøve R Thora Storms vgs. R1 HD V01 Heldagsprøve R1-6.04.1 - Thora Storms vgs. Løsningsskisser Del 1 - Uten hjelpemidler Oppgave 1 a) Deriver funksjonene: 1) fp 0. 01p 4 0. 7p 3. 1 f p 0. 01 4p 3 0. 7 0. 084p 3 0. 7 ) gx x 1 x

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire CAS Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Noen forhåndsdefinerte variabler......................

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene

Detaljer

Komplekse tall og trigonometri

Komplekse tall og trigonometri Kapittel Komplekse tall og trigonometri Grunnen til at vi har dette kapittelet midt i temaet Differenslikninger er for å kunne løse andre ordens differenslikninger. Da vil vi trenge å løse andregradslikninger.

Detaljer

R2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

R2 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka R kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka E Bruker formelen cos 36 cos( 8 ) E sin 8 v og sin8 5 cos v sin sin8 5 5 6 5 5 8 5 5 8 6 5 8 6 5 8 8 3 5 5 5 a f ( ) sin 5 cos f ( ) 5cos

Detaljer

Løsningsforslag R1 Eksamen 31.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R1 Eksamen 31.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag R1 Eksamen 6 Vår 31.05.01 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 6: Derivasjon Eirik Hoel Høiseth Stipendiat IMF NTNU 22. august, 2012 Stigningstallet i et punkt Stigningstallet i et punkt Vi vender nå tilbake til problemet med å finne

Detaljer

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra Tempoplan: Kapittel 5: /1 1/. Kapittel 6: 1/ 1/. Kapittel 7: 1/ 1/4. Resten av tida repetisjon og prøver. 4: Algebra Algebra omfatter tall- og bokstavregninga i matematikken. Et viktig grunnlag for dette

Detaljer

Løsningsforslag eksamen R2

Løsningsforslag eksamen R2 Løsningsforslag eksamen R Vår 010 Oppgave 1 a) f (x) = x cos(3x) f (x) = x cos(3x) + x ( sin(3x) 3) = x cos(3x) 3x sin(3x) b) 1. Bruker delvis integrasjon med u = 5x og v = 1 ex slik at u = 5 og v = e

Detaljer

Løsningsforslag Matematikk 2MX - AA mai 2006

Løsningsforslag Matematikk 2MX - AA mai 2006 Løsningsforslag Matematikk 2MX - AA6516-3. mai 2006 eksamensoppgaver.org September 21, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Løsningsforslag 1T Eksamen. Høst 24.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 24.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 4.11.011 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. wxmaxima

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. wxmaxima Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for wxmaxima Innhold 1 Om wxmaxima 4 1.1 Tilleggspakker................................. 4 2 Regning 5 2.1 Noen

Detaljer

Sensurveiledning for eksamen i lgu52003 våren 2015

Sensurveiledning for eksamen i lgu52003 våren 2015 Sensurveiledning for eksamen i lgu5200 våren 205 Oppgave a) Gjennomsnittsfart fra 0-0 minutt: tilbakelagt strekning etter 0 min tilbakelagt strekning ved start tid = Gjennomsnittsfart fra 5-0 minutt: (5

Detaljer

Løsningsforslag. Høst Øistein Søvik

Løsningsforslag. Høst Øistein Søvik Eksamen R Løsningsforslag Høst 0..0 Øistein Søvik Del Oppgave a ) ) f x x ex Her bruker vi regelen som sier at uv ' u ' v uv ' u x, u ' og v e x, v ' e x f ' x ex x ex f ' x x ex f ' x x e x Oppgave )

Detaljer

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver.

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. Tempoplan: Kapittel 4: 8/11 14/1. Kapittel 5: /1 1/. Kapittel 6: 1/ 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 3: Vektorer Dette kapitlet er meget spesielt og annerledes enn den matematikken

Detaljer

Kapittel 2. Antiderivering. 2.1 Derivasjon

Kapittel 2. Antiderivering. 2.1 Derivasjon Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel

Detaljer

Fremdriftplan. I går. I dag. 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner

Fremdriftplan. I går. I dag. 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner 1 Fremdriftplan I går 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner I dag 1.3 Trigonometriske funksjoner 1.4 Eksponentialfunksjoner 1.5 Omvendte funksjoner, logaritmiske funksjoner, inverse

Detaljer

Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 31.05.011 REA30 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : 5 timer: Del 1 skal leveres inn etter timer. Del skal leveres inn

Detaljer

Løsningsforslag eksamen høsten 2010. DEL 1: Uten hjelpemidler. Oppgave 1

Løsningsforslag eksamen høsten 2010. DEL 1: Uten hjelpemidler. Oppgave 1 Løsningsforslag eksamen høsten 2010 DEL 1: Uten hjelpemidler Oppgave 1 a) Løs likningssystemet y 4 3 y 8 y 4 y 4. Setter inn i den andre likninga: 3 4 8, får 3 y 4 3 1 3 y 1 b) Løs likningen 1 4 2 2 5

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (2 poeng) Oppgave 2 (4 poeng) Oppgave 3 (4 poeng) I er en konstant. Deriver funksjonene

DEL 1. Uten hjelpemidler. Oppgave 1 (2 poeng) Oppgave 2 (4 poeng) Oppgave 3 (4 poeng) I er en konstant. Deriver funksjonene DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Deriver funksjonene 3 a) f( x) 5x x 5 b) g( x) x e x Oppgave (4 poeng) Polynomfunksjonen P er gitt ved 3 P( x) x x 10x 8, DP a) Faktoriser P( x ) i førstegradsfaktorer.

Detaljer

KURSHEFTE TIL FORKURS I MATEMATIKK

KURSHEFTE TIL FORKURS I MATEMATIKK KURSHEFTE TIL FORKURS I MATEMATIKK Variant av Magnus Dehli Vigeland UNIVERSITETET I OSLO MATEMATISK INSTITUTT Innhold Oppvarming 3. Noen viktige tallmengder. Notasjon.................... 3. Mer om mengder.............................

Detaljer