En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

Størrelse: px
Begynne med side:

Download "En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x)."

Transkript

1 Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom en funksjon bare er gitt ved en formel, antas definisjonsmengden å være den største mengden der formelen gir mening. Dette kalles den naturlige definisjonsmengden. Verdimengden (eng.: range) til en funksjon f med definisjonsmengde D er gitt ved V = {f (x) x D}.

2 Grafen til en funksjon Grafen til en funksjon f med definisjonsmengde D er punktene i det kartesiske planet gitt ved {(x, f (x)) x D}. Merknad Ikke alle kurver er grafer til funksjoner, f.eks. er ikke en sirkel grafen til noen funksjon (vertikal linje-test). La f være en funksjon og k et tall. Definer g og h ved at g(x) = f (x) + k og h(x) = f (x k). Da gir g en vertikal forskyvning av grafen til f, mens h gir en horisontal forskyvning av grafen til f, i begge tilfeller med k enheter.

3 Noen typer funksjoner Identitetsfunksjonen I gitt ved I (x) = x. Lineære funksjoner L gitt ved L(x) = ax + b. Polynomfunksjoner P gitt ved P(x) = a n x n + a n 1 x n a 1 x + a 0. Trigonometriske funksjoner (kap 1.3) Eksponensialfunksjoner (kap 1.4) Logaritmiske funksjoner (kap 1.5)

4 Noen egenskaper ved funksjoner En funksjon f kalles: voksende hvis f (x) < f (y) når x < y. avtagende hvis f (x) > f (y) når x < y. jevn hvis D f er symmetrisk og f ( x) = f (x). odde hvis D f er symmetrisk og f ( x) = f (x). periodisk hvis det finnes et tall p slik at f (x + p) = f (x).

5 Operasjoner med funksjoner La f og g være to funksjoner med definisjonsmengder D f og D g. Da er også f + g, f g, fg og f /g funksjoner. Disse er gitt ved punktvise operasjoner, f.eks. er (f + g)(x) = f (x) + g(x), D f +g = D f D g (f /g)(x) = f (x)/g(x), D f /g = D f {x D g g(x) 0} La f og g være to funksjoner med definisjonsmengder D f og D g. Da er sammensetningen f g definert ved (f g)(x) = f (g(x)) og har definisjonsmengde D f g = {x D g g(x) D f }.

6 Trigonometriske funksjoner La θ være en sentralvinkel i en sirkel med radius r og la s være buelengden som vinkelen utspenner. Da er vinkelen θ i radianer gitt ved forholdet θ = s/r. Vi bruker (i dette kurset) alltid radianer som vinkelmål! Tre viktige trigonometriske identiteter: Pytagoras: cos 2 θ + sin 2 θ = 1 Addisjon: cos (α + β) = cos α cos β sin α sin β sin (α + β) = sin α cos β + cos α sin β Cosinus-setningen: c 2 = a 2 + b 2 2ab cos θ, der θ er den motstående vinkelen til c. Minner dessuten om at: cos ( θ) = cos θ og sin ( θ) = sin θ. En rekke andre identiteter kan utledes fra disse.

7 Eksponensialfunksjoner Eksponensialfunksjoner er på formen f (x) = k a x, der a er positiv. Den naturlige eksponensialfunksjonen er gitt ved f (x) = e x. Grafen til en eksponensialfunksjon skjærer aldri x-aksen. Merknad Definerer a p/q = q a p = ( q a) p. Dermed er f, gitt ved f (x) = a x, definert for alle rasjonale verdier av x. Vi kan (ved hjelp av grenseverdier) definere f også for irrasjonale x slik at f blir kontinuerlig overalt. Noen regneregler: a x a y = a x+y (a x ) y = a xy a x b x = (ab) x a x = 1 a x

8 Invertible funksjoner En funksjon f kalles en-til-en (eller injektiv) dersom f (x) f (y) når x y. La f være en en-til-en funksjon. Den inverse funksjonen f 1 er da definert ved at f 1 (y) = x hvis f (x) = y. Merknad Dersom f ikke er en-til-en, eksisterer heller ikke noen invers funksjon for f. (horisontal linje-test blir til vertikal linje-test hos den inverse). Merknad Dersom en funksjon er voksende eller avtagende, så er den en-til-en.

9 Mer om invertible funksjoner Merknad Dersom f er en-til-en så er D f 1 = V f og V f 1 = D f. Merknad Dersom f er en-til-en så er f 1 f = I på D f og f f 1 = I på D f 1. (Husk at identitetsfunksjonen I er definert ved at I (x) = x på et område D.)

10 Logaritmer Hvis a > 0, a 1 og f (x) = a x så er f 1 (x) = log a x. Det vil si at a log a x = log a a x = x for x > 0. (Logaritmer er definert som inverser til eksponensialfunksjoner.) Vi skriver log e = ln og log 10 = log. Noen regneregler: ln ab = ln a + ln b ln a x = x ln a log a x = ln x ln a Inverse trigonometriske funksjoner: Les selv!

11 Motivasjon for grensebegrepet Den gjennomsnittelige vekstraten til en funksjon f over et intervall [x 1, x 2 ] er lik der x 2 x 1 = h 0. y x = f (x 2) f (x 1 ) = f (x 1 + h) f (x 1 ), x 2 x 1 h Hvordan finner vi den momentane vekstraten? en over gir ingen mening når h = 0.

12 Grensebegrepet (Uformell) La f være definert på et åpent intervall som inneholder x 0, bortsett muligens fra x 0 selv. Dersom vi kan få f (x) vilkårlig nær L for alle x tilstrekkelig nær x 0, så skriver vi lim f (x) = L. x x 0 (Formell, epsilon-delta ) La f være definert på et åpent intervall som inneholder x 0, bortsett muligens fra x 0 selv. Dersom det for hver ε > 0 eksisterer en δ > 0 slik at f (x) L < ε når 0 < x x 0 < δ, så skriver vi lim x x 0 f (x) = L.

13 Mer om grenser Når eksisterer grensen ikke? Funksjonen vokser og oppnår vilkårlig store verdier nær x 0. Funksjonen gjør et hopp i x 0. Funksjonen oscillerer for mye nær x 0. Oppgave Bruk definisjonen til å vise at lim x c (ax + b) = ac + b for alle a, b, c. Setning Dersom P er et polynom, er lim x xo P(x) = P(x 0 ) for alle x 0. Hvilke andre funksjoner har denne egenskapen, dvs at lim x x0 f (x) = f (x 0 ) for alle x 0? (Svaret kommer i kap. 2.6)

14 Grenselover Anta at lim x x0 f (x) = L og lim x x0 g(x) = M. Da gjelder at lim x x0 (f (x) + g(x)) = L + M lim x x0 (f (x) g(x)) = L M lim x x0 (k f (x)) = k L ( ) lim f (x) x x0 g(x) = L M hvis M 0 lim x x0 (f (x) p ) = L p hvis L p eksisterer

15 To teoremer Teorem (Skviseteoremet, The Sandwich Theorem ) Anta g(x) f (x) h(x) for alle x i et åpent område som inneholder x 0, bortsett fra muligens i x 0 selv. Anta også at Da er lim x x0 f (x) = L. lim g(x) = lim h(x) = L x x 0 x x 0 Teorem Anta f (x) g(x) for alle x i et åpent område som inneholder x 0, bortsett fra muligens i x 0 selv. Anta også at grenseverdiene til f og g eksisterer når x x 0. Da er lim x x 0 f (x) lim x x 0 g(x).

16 Ensidige grenser La f være definert på et åpent intervall som inneholder x 0, bortsett muligens fra x 0 selv. Dersom det for hver ε > 0 eksisterer en δ > 0 slik at f (x) L < ε når 0 < x x 0 < δ, så skriver vi lim f (x) = L. x x 0 + Tilsvarende definisjon for venstregrenser. Merk: Grenselovene gjelder også for ensidige grenser. Teorem Grenseverdien lim x x0 f (x) eksisterer hvis og bare hvis både lim x x + f (x) og lim 0 x x f (x) eksisterer og disse er lik hverandre. 0

17 Endelige grenser når x ± La f være en funksjon med (oppover) ubegrenset definisjonsmengde. Dersom det for hver ε > 0 eksisterer en N > 0 slik at f (x) L < ε når x > N, så skriver vi lim f (x) = L. x Tilsvarende definisjon for x. Merk: Grenselovene gjelder også i dette tilfellet. En linje y = b er en horisontal asymptote for grafen til en funksjon y = f (x) hvis enten lim f (x) = b eller lim x f (x) = b. x

18 Uendelige grenser La f være definert på et åpent intervall som inneholder x 0, bortsett muligens fra x 0 selv. Dersom det for hver B > 0 eksisterer en δ > 0 slik at f (x) > B når 0 < x x 0 < δ, så skriver vi lim f (x) =. x x 0 Tilsvarende definisjon for. Merk: I dette tilfelle eksisterer ikke grensen. Grenselovene gjelder dermed ikke her! En linje x = c er en vertikal asymptote for grafen til en funksjon y = f (x) hvis enten lim f (x) = ± eller lim x c + f (x) = ±. x c

19 Oppsummering Grensedefinisjoner. Hva betyr det at: lim x x0 f (x) = L lim x x + 0 f (x) = L lim x f (x) = L lim x x0 f (x) = Asymptoter: Horisontale asymptoter (ifm tredje punkt ovenfor) Vertikale asymptoter (ifm siste punkt ovenfor) Har også skrå asymptoter (eng.: oblique asymptote). Trenger teknikken polynomdivisjon for å behandle disse.

20 Kontinuitet i et punkt En funksjon f er kontinuerlig i et indre punkt x 0 D dersom lim f (x) = f (x 0 ). x x 0 En funksjon f er kontinuerlig i et venstre endepunkt x 1 D dersom lim f (x) = f (x 1 ), x x 1 + og kontinuerlig i et høyre endepunkt x 2 D dersom lim x x 2 f (x) = f (x 2 ). Hvis f ikke er kontinuerlig i et punkt, sier vi at den er diskontinuerlig i punktet.

21 Mer om kontinuitet En funksjon er høyre- eller venstrekontinuerlig i et indre punkt dersom lim x x + f (x) = f (x 0 ) eller lim 0 x x f (x) = f (x 0 ), 0 henholdsvis. En funksjon er kontinuerlig på et intervall I dersom funksjonen er definert på hele I og er kontinuerlig i alle punkter i I. En funksjon er kontinuerlig dersom den er kontinuerlig i alle punktene i definisjonsmengden.

22 Egenskaper ved kontinuerlige funksjoner Anta at f og g er kontinuerlige i x = c. Da er følgende funksjoner også kontinuerlige i x = c: f + g f g k f f /g, hvis g(c) 0 f p, hvis den er definert på et åpent intervall rundt c

Fremdriftplan. I går. I dag. 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner

Fremdriftplan. I går. I dag. 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner 1 Fremdriftplan I går 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner I dag 1.3 Trigonometriske funksjoner 1.4 Eksponentialfunksjoner 1.5 Omvendte funksjoner, logaritmiske funksjoner, inverse

Detaljer

Fremdriftplan. Siste uke. I dag. Kap. 1 Funksjoner Grenseverdier

Fremdriftplan. Siste uke. I dag. Kap. 1 Funksjoner Grenseverdier 1 Fremdriftplan Siste uke Kap. 1 Funksjoner 2.1-2.2 Grenseverdier I dag 2.3 Den formelle definisjonen av grenseverdi 2.4 Ensidige grenser og grenser i uendelig 2.5 Uendelige grenser og vertikale asymptoter

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2010

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2010 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 200 2 Funksjon som en maskin x Funksjon f f(x) 3 Definisjon- og verdimengde x f(x) 4 Funksjon som en

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 4: Grenseverdi (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 20. august, 2012 Formell definisjon av grenseverdi Formell definisjon av grenseverdi Uformell definisjon

Detaljer

Velkommen til TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP og MTPROD høsten 2010

Velkommen til TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP og MTPROD høsten 2010 Velkommen til TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 19. august 2010 2 Hvorfor skal dere studere matematikk? Det står i studiehåndboken.

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden

Detaljer

Trasendentale funksjoner

Trasendentale funksjoner Trasendentale funksjoner Department of Mathematical Sciences, NTNU, Norway September 9, 2014 Kap. 3.1 og 3.2. Forelesning 8. September. Inverse funksjoner, definisjon og eksistens Deriverte av inverse

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 20 2 Stigende og avtagende funksjoner Definisjon En funksjon f kalles stigende på intervallet I hvis

Detaljer

TMA4100: Repetisjon før midtsemesterprøven

TMA4100: Repetisjon før midtsemesterprøven TMA4100: Repetisjon før midtsemesterprøven 10.10.09 Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag October 1, 2009 L.S. (NTNU) TMA4100: Oversikt October 1, 2009 1 / 20 Kapittel 1: Funksjoner.

Detaljer

Stigende og avtagende funksjoner Definisjon. Horisontal og vertikal forskyvning. Trigonometriske funksjoner

Stigende og avtagende funksjoner Definisjon. Horisontal og vertikal forskyvning. Trigonometriske funksjoner Funksjoner Forelesning i Matematikk TMA00 Hans Jako Rivertz Institutt for matematiske fag 9. august 0 Stigende og avtagende funksjoner En funksjon f kalles stigende på intervallet I vis f (x ) < f (x )

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 5

Løsningsforslag til utvalgte oppgaver i kapittel 5 Løsningsforslag til utvalgte oppgaver i kapittel 5 I kapittel 5 har mange av oppgavene et mer teoretisk preg enn du er vant til fra skolematematikken, og jeg har derfor lagt vekt på å lage løsningsforslag

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 2: Funksjoner (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 16. august, 2012 Eksponentialfunksjoner Eksponentialfunksjoner Definisjon: Eksponentialfunksjon En

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA400 Matematikk, høst 203 Forelesning 2 www.ntnu.no TMA400 Matematikk, høst 203, Forelesning 2 Transcendentale funksjoner I dagens forelesning skal vi se på følgende: Den naturlige logaritmen. 2 Eksponensialfunksjoner.

Detaljer

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29 MA0003 Ole Jacob Broch Norwegian University of Science and Technology MA0003 p.1/29 Oversikt, torsdag 13/1 Avsnitt 1.3: intervaller og intervallnotasjon definisjons- og verdimengden til en funksjon Avsnitt

Detaljer

Analyse og metodikk i Calculus 1

Analyse og metodikk i Calculus 1 Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

a) Blir produktet av to vilkårlige oddetall et partall eller et oddetall? Bevis det.

a) Blir produktet av to vilkårlige oddetall et partall eller et oddetall? Bevis det. Prøve i R1 04.1.15 Del 1 Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Husk å begrunne alle svar. Det skal gå klart frem av besvarelsen hvordan du har tenkt. Oppgave

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 25. august 2010 2 Dagens pensum I dag vil vi se på følgende: Kontinuerlige funksjoner Den deriverte

Detaljer

Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100

Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100 Grenser III - rasjonale funskjoner Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 24. august 2010 2 Grenselover for x ± L = lim f(x) M = lim g(x) 1. lim (f(x) ± g(x))

Detaljer

Den deriverte og derivasjonsregler

Den deriverte og derivasjonsregler Den deriverte og derivasjonsregler Department of Mathematical Sciences, NTNU, Norway September 3, 2014 Tangenten til en funksjon i et punkt (kap. 2.1) Sekant til en funksjon gjennom to punkter 25 20 f(c+h)

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011 Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 6: Derivasjon Eirik Hoel Høiseth Stipendiat IMF NTNU 22. august, 2012 Stigningstallet i et punkt Stigningstallet i et punkt Vi vender nå tilbake til problemet med å finne

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 7: Derivasjon (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 23. august, 2012 Den deriverte som momentan endringsrate Den deriverte som momentan endringsrate Repetisjon

Detaljer

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgave 1 Du ar fått deg en jobb i et firma og skal kjøre til en konferanse med overnatting. Du drar jemmefra på mandag kl 07:15 og ankommer 11:07. Du overnatter

Detaljer

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon.

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon. Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter

Detaljer

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 9. september 2011 Kapittel 4.1. Funksjoners ekseremverdier fra og med lokale ekstrema

Detaljer

NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN

NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT2 VED UNIVERSITETET I BERGEN ANDREAS LEOPOLD KNUTSEN OG ARNE STRAY. Innledning og definisjoner Vi vil i dette notatet betrakte reelle funksjoner

Detaljer

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100

Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 13. september 2011 Kapittel 4.3. Monotone funksjoner og førstederivasjons-testen

Detaljer

OPPGAVESETT MAT111-H16 UKE 36. Oppgaver til seminaret 9/9. Husk at seminaret finnes i to varianter, begge fredag :

OPPGAVESETT MAT111-H16 UKE 36. Oppgaver til seminaret 9/9. Husk at seminaret finnes i to varianter, begge fredag : OPPGAVESETT MAT111-H16 UKE 36 Avsnitt 1.4: 17, 29, 32 Avsnitt 2.2: 12 Avsnitt 2.3: 41, 52 På settet: S.1 Oppgaver til seminaret 9/9 Husk at seminaret finnes i to varianter, begge fredag 12.15-14.00: Seminar

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

ANDREAS LEOPOLD KNUTSEN

ANDREAS LEOPOLD KNUTSEN NOTAT OM FUNKSJONER AV FLERE VARIABLE VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN ANDREAS LEOPOLD KNUTSEN Dette notatet inneholder ikke noe nytt pensum i kurset MAT112 i forhold til læreboken

Detaljer

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 30. september 2010 2 Fremdriftplan I går 5.5 Ubestemte integraler og substitusjon

Detaljer

Eksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik:

Eksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik: Funksjoner La A og B være to mengder. En funksjon f fra A til B betegnes med f: A -> B og er en tilordning (regel) som til ethvert element a A tilordner ett og bare ett element b B. Elementet b kalles

Detaljer

Hans Petter Hornæs,

Hans Petter Hornæs, Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter

Detaljer

Kontinuitet og grenseverdier

Kontinuitet og grenseverdier Kontinuitet og grenseverdier Avdeling for lærerutdanning, Høgskolen i Vestfold 5. januar 2009 1 Innledning Kontinuitetsbegrepet For å motivere og innlede til kontinuitetsbegrep skal vi først undersøke

Detaljer

1 Mandag 1. februar 2010

1 Mandag 1. februar 2010 Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette

Detaljer

Løsningsforslag til øving 1

Løsningsforslag til øving 1 Høgskolen i Gjøvik Avd. for tekn., øk. og ledelse Matematikk 5 Løsningsforslag til øving Exercise (a), (c) - j yim() j - - - 0 xre() Merk! I oppgaven skal vi merke av punktene (angitt med ), men de komplekse

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn

Detaljer

Andre del av forelesningen om funksjoner bygger på dette notatet. Notatet bygger på læreboken og er noe mer utfyllende enn forelesningen.

Andre del av forelesningen om funksjoner bygger på dette notatet. Notatet bygger på læreboken og er noe mer utfyllende enn forelesningen. NOTAT TIL FORELESNING OM FUNKSJONER, DEL Andre del av orelesningen om unksjoner bygger på dette notatet. Notatet bygger på læreboken og er noe mer utyllende enn orelesningen. GRENSEVERDI Man kan or eksempel

Detaljer

Eksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik:

Eksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik: Funksjoner La A og B være to mengder. En funksjon f fra A til B betegnes med f: A -> B og er en tilordning (regel) som til ethvert element a A tilordner ett og bare ett element b B. Elementet b kalles

Detaljer

Funksjonsdrøfting MAT111, høsten 2016

Funksjonsdrøfting MAT111, høsten 2016 Funksjonsdrøfting MAT111, høsten 2016 Andreas Leopold Knutsen 11. oktober 2016 Den deriverte f Newton-kvotienten f (x+h) f (x) h er stigningen til sekantlinjen gjennom punktene (x, f (x)) og (x + h, f

Detaljer

Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 21. januar 2010 kl Antall oppgaver: 4.

Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 21. januar 2010 kl Antall oppgaver: 4. Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 1. januar 1 kl. 14. Antall oppgaver: 4 Løsningsforslag Oppgave 1 a = [3, 1, ], b = [, 4, 7] og c = [ 4, 1, ]. a) a = 3 + ( 1)

Detaljer

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet 1 Fremdriftplan I går 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet I dag 2.7 Tangenter og derivasjon 3.1 Den deriverte til en funksjon 3.2 Derivasjonsregler 3.3 Den deriverte som endringsrate

Detaljer

Løsningsforslag til midtsemesterprøve i fag MA1101 Grunnkurs i analyse 1 Bokmål Fredag 10. oktober 2008 Kl

Løsningsforslag til midtsemesterprøve i fag MA1101 Grunnkurs i analyse 1 Bokmål Fredag 10. oktober 2008 Kl Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Faglig kontakt: Heidi Dahl Telefon: 735 98141 Løsningsforslag til midtsemesterprøve i fag MA1101 Grunnkurs i analyse

Detaljer

Forelesning 13. Funksjoner. Dag Normann februar Opphenting. Opphenting. Opphenting. Opphenting

Forelesning 13. Funksjoner. Dag Normann februar Opphenting. Opphenting. Opphenting. Opphenting Forelesning 13 Dag Normann - 25. februar 2008 Forrige forelesning fortsatte vi innføringen av ekvivalensrelasjoner. Vi definerte hva vi mener med partielle ordninger og med totale ordninger. Deretter snakket

Detaljer

Kapittel 1. Funksjoner. 1.1 Definisjoner

Kapittel 1. Funksjoner. 1.1 Definisjoner Kapittel 1 Funksjoner Kurset MAT1001 dreier seg kort sagt om å lage matematiske problemer av virkeligheten og deretter løse problemene. Hittil i kurset har vi allerede møtt mange problemer, og de har så

Detaljer

Problem 1. Problem 2. Problem 3. Problem 4

Problem 1. Problem 2. Problem 3. Problem 4 Oppsummeringsproblemer som utgangspunkt til ekstraforelesninger i uke 48 i emnet MAT111, høsten 2008 Problem 1 Bruk den formelle definisjonen av grenseverdi til å vise at x 4 1 x 1 x + 1 = 4. Problem 2

Detaljer

Oppfriskningskurs dag 2

Oppfriskningskurs dag 2 Grafer og Oppfriskningskurs dag 2 Grafer og Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Grafer og Outline 1 Grafer og Outline Grafer og 1 Grafer og Grafer og Vi ser på ligninger av to

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Oppfriskningskurs i matematikk 2007

Oppfriskningskurs i matematikk 2007 Oppfriskningskurs i mtemtikk 2007 Mrte Pernille Htlo Institutt for mtemtiske fg, NTNU 6.-11. ugust 2007 Velkommen! 2 Temer Algebr Trigonometri Funksjoner og derivsjon Integrsjon Eksponensil- og logritmefunksjoner

Detaljer

Komplekse tall og trigonometri

Komplekse tall og trigonometri Kapittel Komplekse tall og trigonometri Grunnen til at vi har dette kapittelet midt i temaet Differenslikninger er for å kunne løse andre ordens differenslikninger. Da vil vi trenge å løse andregradslikninger.

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41/TMA415 Matematikk 4M/4N Vår 1 Løsningsforslag Øving 1 Skriv om følgende trigonometriske funksjoner til fourierrekker ved

Detaljer

UNIVERSITETET I OSLO. Løsningsforslag

UNIVERSITETET I OSLO. Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag SIF5003 Matematikk, 5. desember 200 Oppgave For den første grensen får vi et /-uttrykk, og bruker L Hôpitals regel markert ved =) : lim 0 + ln ln sin 0 + cos sin 0 + cos sin ) =. For den andre får vi et

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

Deleksamen i MAT111 - Grunnkurs i Matematikk I

Deleksamen i MAT111 - Grunnkurs i Matematikk I Bergen, oktober. 2004. Løsningsforslag til Deleksamen i MAT - Grunnkurs i Matematikk I Mandag. oktober 2004, kl. 09-2. Oppgave Beregn grensen f.eks. ved hjelp av l Hôpitals regel. lim x ln x x Vi ser at

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 1 i emnet MAT111, høsten 2016

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 1 i emnet MAT111, høsten 2016 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 1 i emnet MAT111, høsten 2016 Innleveringsfrist: Mandag 26. september 2016, kl. 14, i Infosenterskranken i inngangsetasjen

Detaljer

Matematikk 1. Oversiktsforelesning. Lars Sydnes November 25, Institutt for matematiske fag

Matematikk 1. Oversiktsforelesning. Lars Sydnes November 25, Institutt for matematiske fag Matematikk 1 Oversiktsforelesning Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag November 25, 2009 LS (IMF) tma4100rep November 25, 2009 1 / 21 Matematikk 1 Hovedperson Relle funksjoner

Detaljer

Forelesning Matematikk 4N

Forelesning Matematikk 4N Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 11. september 2006 2 Den høyrederiverte og venstrederiverte Definisjon Den høyrederiverte til en funksjon f(x) i punktet x er

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Løsningsforslag. f(x) = 2/x + 12x

Løsningsforslag. f(x) = 2/x + 12x Prøve i FO929A - Matematikk Dato: august 212 Målform: Bokmål Antall oppgaver: 5 (2 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Matematikk R1 Oversikt

Matematikk R1 Oversikt Matematikk R1 Oversikt Lars Sydnes, NITH 20. mai 2014 I. ALGEBRA ANNENGRADSLIGNINGER Annengradsformelen: ax 2 + bx + c = 0 x = b ± b 2 4ac 2a (i) 0 løsninger hvis b 2 4ac < 0 (ii) 1 løsning hvis b 2 4ac

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011 Derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011 Kapittel 3.3. Enringsrate 3 Enrings rate hastighet og akselersjon Definisjon Hvis s(t) er

Detaljer

Kalkulus 1. Et sentralt begrep i kalkulus (matematisk analyse) er grensebegrepet. Ofte ser vi på grenser for funksjoner eller grenser for tallfølger.

Kalkulus 1. Et sentralt begrep i kalkulus (matematisk analyse) er grensebegrepet. Ofte ser vi på grenser for funksjoner eller grenser for tallfølger. Kalkulus 1 Grenser Et sentralt begrep i kalkulus (matematisk analyse) er grensebegrepet. Ofte ser vi på grenser for funksjoner eller grenser for tallfølger. Vi sier at funksjonen f(x) har en grense f(a)

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 13: Funksjoner Dag Normann Matematisk Institutt, Universitetet i Oslo 25. februar 2008 Opphenting Forrige forelesning fortsatte vi innføringen av ekvivalensrelasjoner.

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100

Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100 Derivasjon ekstremverdier Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 6. september 20 Kapittel 3.. Hyperbolske funksjoner 3 Hyperbolske funksjoner Definisjon (Grunndefinisjoner)

Detaljer

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010

TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 TMA4100 Matematikk 1 for MTDESIG, MTIØT-PP, MTMART og MTPROD høsten 2010 Toke Meier Carlsen Institutt for matematiske fag 2. september 2010 2 Fremdriftplan I går 3.6 Implisitt derivasjon 3.7 Derivasjon

Detaljer

Logaritmer og eksponentialfunksjoner

Logaritmer og eksponentialfunksjoner Logaritmer og eksponentialfunksjoner Harald Hanche-Olsen og Marius Irgens 20-02-02 Dette notatet ble først laget for MA02 våren 2008. Denne versjonen er omskrevet for MA02 våren 20. Du vil oppdage at mange

Detaljer

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der: Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn

Detaljer

Krasjkurs MAT101 og MAT111

Krasjkurs MAT101 og MAT111 Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten

Detaljer

TMA4105 Matematikk 2 vår 2013

TMA4105 Matematikk 2 vår 2013 TMA4105 Matematikk vår 013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavene er fra læreboka Merk: I løsningene til alle oppgavene fra seksjon

Detaljer

MAT1030 Forelesning 14

MAT1030 Forelesning 14 MAT1030 Forelesning 14 Mer om funksjoner Roger Antonsen - 10. mars 2009 (Sist oppdatert: 2009-03-10 11:34) Kapittel 6: Funksjoner Surjektive funksjoner Den neste gruppen av funksjoner vi skal se på er

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Kalkulus Kapittel 1 Oppgave 1. a) en funksjon b) en funksjon c) ikke en funksjon d) ikke en funksjon Oppgave 2. a) 12,1 b) 4 c)

Detaljer

R1 -Fagdag

R1 -Fagdag R1 -Fagdag 3-05.11.2015 Kommentarer Hovedfokus: Trene på å bruke GeoGebra. Fordype oss i fagstoff om logaritmer, funksjoner og grenseverdier I Logaritmer 1) Bevis at lgx ln x ln 10 og at lgx lge ln x.

Detaljer

MAUMAT644 ALGEBRA vår 2016 Fjerde samling Runar Ile

MAUMAT644 ALGEBRA vår 2016 Fjerde samling Runar Ile MAUMAT644 ALGEBRA vår 2016 Fjerde samling Runar Ile 1 Kroppsutvidelser og geometriske konstruksjoner 1.1 Hva har kroppsutvidelser med geometriproblemer å gjøre? Avsnitt 29: Kroppsutvidelser Stoff: Utvidelseskropper

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Løsningsforslag Øving 1 Kapittel 7.1: Substitusjon Teorem 1. Hvis u = g() så er f(g())g

Detaljer

Kapittel 6: Funksjoner

Kapittel 6: Funksjoner MAT1030 Diskret Matematikk Forelesning 14: Mer om funksjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 6: Funksjoner 10. mars 2009 (Sist oppdatert: 2009-03-10 11:34) MAT1030

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart Forelesning 3 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart Forelesning 3 Tema Logikk Definisjoner og Teoremer Mengder og Egenskaper ved de Reelle Tall

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator Oppgave 1 Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt 09.00-14.00 Antall oppgaver 6 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag a) Likningen

Detaljer

Skoleprosjekt i MAT4010: Derivasjon

Skoleprosjekt i MAT4010: Derivasjon Skoleprosjekt i MAT4010: Derivasjon Marie Vaksvik Draagen, Anne Line Kjærgård og Cecilie Anine Thorsen 20. mars 2014 1 Innhold 1 Introduksjon 3 1.1 Oppgavebeskrivelse................................. 3

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Eksamen R1 - H

Eksamen R1 - H Eksamen R1 - H 013-8.11.013 Løsningsskisser Del 1 - Uten hjelpemidler Oppgave 1 a) Kjerneregel: f x e u, u 3x f x e u 3 6e 3x b) Kjerneregel på ln 3x ln u, u 3x gir ln 3x 1 u 3 3 3x 1 x Produktregel gir

Detaljer

Formelsamling Kalkulus

Formelsamling Kalkulus Formelsamling Kalkulus Martin Alexander Wilhelmsen December 8, 009 En liten formelsamling for MAT00 ved UiO. Vennligst meld fra om feil til martinaw@student.matnat.uio.no. Dette dokumentet er publisert

Detaljer

Løsningsforslag til eksamen i MAT 1100 H07

Løsningsforslag til eksamen i MAT 1100 H07 Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver

Detaljer

Løsningsforslag Eksamen M100 Høsten 1998

Løsningsforslag Eksamen M100 Høsten 1998 Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer.

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer. Eksamen i FO99A Matematikk Underveiseksamen Dato 30. mars 007 Tidspunkt 09.00-14.00 Antall oppgaver 4 Vedlegg Tillatte hjelpemidler Sirkelskive i radianer Godkjent kalkulator Godkjent formelsamling Oppgave

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

Løsningsforslag til Eksamen i MAT111

Løsningsforslag til Eksamen i MAT111 Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

MA1101 Grunnkurs i analyse I

MA1101 Grunnkurs i analyse I MA1101 Grunnkurs i analyse I Høstsemesteret 2005 http://www.math.ntnu.no/emner/ma1101/2005h/ MA1101 Grunnkurs i analyse I p.1/112 Forelesninger og øvinger Lærebok: R. A. Adams, Calculus - A complete course,

Detaljer

1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x

1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x NTNU Institutt for matematiske fag TMA400 Matematikk Høsten 20 Løsningsforslag - Øving Avsnitt.5 59 a) Vi skal invertere y f(x) 00 +2 x, dvs. løse ligningen mhp. x. y 00 +2 x y(+2 x ) 00 2 x 00 00 y y

Detaljer

Her er C en funksjon av F

Her er C en funksjon av F Kapittel 9 FUNKSJONER C F 50 58 40 40 0 0 4 0 4 0 0 50 0 68 0 86 40 04 50 9 F C + 5 Her er F en funksjon av C Dette er like ra C 5 9 F 60 9 Her er C en funksjon av F Kapittel 9 FUNKSJONER Det norske oljeeventyret

Detaljer