Repetisjon: Om avsn og kap. 3 i Lay

Størrelse: px
Begynne med side:

Download "Repetisjon: Om avsn og kap. 3 i Lay"

Transkript

1 Repetisjon: Om avsn og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert ved ] AB = [Ab 1 Ab 2 Ab p (Siden alle b j -ene er i R n, så er denne def. meningsful.) Det kan da sjekkes at AB s koeff. ij er gitt ved (AB) ij = A s rad nr. i ganget med B s kolonne nr. j, dvs. (AB) ij = n a ik b kj k=1 Mange bøker bruker dette som definisjon av produktet. 1 / 21

2 Vi har da videre at (AB)x = A(Bx), x R p. Dette viser at matriseprodukt svarer til sammensetning av de lineære transformasjonene knyttet til matrisene: T AB = T A T B. Teorem. For produkter som har mening holder: 1. A(BC) = (AB)C. 2. A(B + C) = AB + AC. 3. (B + C)A = BA + CA. 4. r(ab) = (ra)b = A(rB). 5. (r + s)a = ra + sa. 6. IA = AI = A. (der I = passende identitetsmatrise). MERK: generelt holder ikke AB = BA; hvis dette holder sier vi at A og B kommuterer. 2 / 21

3 Potens av kvadratisk matrise: A 2 = A A, osv: A k er A multiplisert med seg selv k ganger (for k N). Transponering av matrise A: lar rader bli kolonner i ny matrise, som betegnes A T. Teorem. 1. (A T ) T = A. 2. (A + B) T = A T + B T. 3. (ra) T = ra T. 4. (AB) T = B T A T (Merk rekkefølgen her!). 3 / 21

4 Den inverse av en matrise En n n matrise A kalles invertibel (eller inverterbar) dersom det finnes en n n matrise C slik at CA = AC = I der I er n n identitetsmatrisen. Kaller da C den inverse til A; betegnes med C = A 1. Så AA 1 = A 1 A = I. Den inverse er entydig bestemt (hvis den fins). Betegnelser man bør kunne: invertibel = ikkesingulær ikke invertibel = singulær 4 / 21

5 Teorem. Hvis [ a b c d og ad bc 0 (determinanten til A er ulik 0), så er A 1 = [ 1 ad bc ] d c b a ]. Teorem. Hvis A er en invertibel n n matrise, så har likningssystemet Ax = b en entydig løsning x for enhver b R n, og denne er x = A 1 b. 5 / 21

6 Teorem. 1. Hvis A er invertibel, er også A 1 invertibel og (A 1 ) 1 = A. 2. Hvis A og B er invertible, så er også AB invertibel og (AB) 1 = B 1 A Hvis A er invertibel, er også A T invertibel og (A T ) 1 = (A 1 ) T. Her kan egenskap 2 generaliseres til produkt av flere matriser. Dette teoremet kan f.eks. vises ved hjelp av følgende nyttige resultat: Teorem: Anta A og B er n n matriser som oppfyller AB = I. Da er både A og B invertible, og de er hverandres invers (dvs. A 1 = B og B 1 = A). 6 / 21

7 Litt mer (les selv): Elementære matriser: en slik matrise E fåes fra I ved en elementær radoperasjon. Hva blir da EA? Jo, samme som å anvende denne radoperasjonen på A!! Hvordan beregne A 1 (noe vi unngår hvis vi kan!!): Bruk radreduksjonsalgoritmen på [ A I ]. Kommer da frem til [ I A 1 ] når A er radekvivalent med I (dvs. A er invertibel). 7 / 21

8 Invertibel matrise teoremet (forkortes IMT) La A være en n n matrise. Følgende er da ekvivalent: 1. A er invertibel. 2. A er radekvivalent med identitetsmatrisen I. 3. A har n pivot elementer (ledende enere). 4. Ax = 0 har bare løsningen x = Kolonnene i A er lineært uavhengige. 6. Lin.avbildningen T A : x Ax er Ax = b er konsistent for enhver b R n. 8. Kolonnene i A utspenner R n. 9. Lin.avbildningen T A : x Ax er på R n. 10. Det fins en n n matrise C slik at CA = I. 11. Det fins en n n matrise D slik at AD = I. 12. A T er invertibel. 8 / 21

9 Invertible lineæravbildninger: En lineæravbildning T : R n R n kalles invertibel hvis det fins en funksjon S : R n R n slik at S(T (x)) = x (x R n ), T (S(y)) = y (y R n ). En slik S kalles den inverse til T. Man kan vise at S også er lineær. Teorem 9: Betrakt en lineæravbildning T : R n R n og la A være standardmatrisen for T. Da er T invertibel hvis og bare hvis A er invertibel. Og i så fall er den inverse S til T en lineæravb. med standardmatrise A 1. 9 / 21

10 Partisjonerte matriser Ofte er det naturlig å dele opp matriser i blokker. Kalles partisjonerte matriser. F.eks. A = = [ A11 A 12 A 13 A 21 A 22 A 23 Sier da også at A er en 2 3 blokk matrise. Generelt kan vi ha en m n partisjonert matrise. Slike matriser dukker f.eks. opp i Ax = b problemer der det er naturlig å dele opp både variablene og likningene i visse grupper. ] 10 / 21

11 Regneregler Multiplikasjon av konforme partisjonerte matriser, f.eks. [ A11 A 12 A 21 A 22 ] [ B11 B 12 B 21 B 22 ] [ A11 B = 11 + A 12 B 21 A 11 B 12 + A 12 B 22 A 21 B 11 + A 22 B 21 A 21 B 12 + A 22 B 22 ] Gjelder hvis dimensjonene stemmer (produktene har mening). Legg merke til likhet med vanlig matrisemultiplikasjon. Et annet eksempel: [ ] A11 [ B11 B 12 A 21 ] = [ A11 B 11 A 11 B 12 A 21 B 11 A 21 B 12 ] 11 / 21

12 Et nyttig resultat for oss er følgende: Teorem. ( Kolonne-rad ekspansjon av AB) Hvis A er m n matrise og B er n p, så er AB = [ col 1 (A) col 2 (A) col n (A) ] row 1 (B) row 2 (B). row n (B) = col 1 (A) row 1 (B) + + col n (A) row n (B). Det finnes også formler for den inverse av 2 2 partisjonerte matriser (som man kan slå opp ved behov!). 12 / 21

13 Determinanter Determinanten til en 1 1 matrise er tallet selv. For n 2 defineres determinanten til en n n matrise A induktivt ved det A = n ( 1) 1+j a 1j det A 1j j=1 Her er A 1j submatrisen (delmatrisen) man får fra A ved å slette rad 1 og kolonne j. Generelt: submatrisen A ij fremkommer fra A ved å slette rad i og kolonne j. Formelen over kalles kofaktorekspansjon langs første rad i A. Tallet ( 1) 1+j det A 1j kalles en kofaktor. 13 / 21

14 Det viser seg at man får samme tall ved andre kofaktorekspansjoner også! Teorem. Alle kofaktorekspansjoner for A gir samme tall. Så for alle rader k og for alle kolonner l har vi at det A = n j=1 ( 1)k+j a kj det A kj = n i=1 ( 1)i+l a il det A il. For triangulære matriser er det enkelt å beregne determinanten: Teorem. Hvis A er en triangulær matrise (øvre eller nedre triang.), så er det A lik produktet av diagonalelementene. 14 / 21

15 Egenskaper ved determinanter Hva skjer med determinanten når vi utfører radoperasjoner? Teorem. La A være en kvadratisk matrise. 1. Hvis vi adderer et multippel av en rad i A til en annen, så endres ikke determinanten. 2. Hvis B fremkommer fra A ved å bytte to rader, er det B = det A. 3. Hvis en rad i A mulipliseres med r og B er den nye matrisen, så er det B = r det A. Tilsvarende resultat gjelder for kolonneoperasjoner fordi: Teorem. det A T = det A. 15 / 21

16 Et viktig egenskap er: Teorem. En kvadratisk matrise A er invertibel hvis og bare hvis det A 0. Idéen bak dette resultatet kan skisseres slik: Ved å bruke kun radoperasjoner av typen bytte av to rader og legge til et mult. av en rad til en annen rad kan en kvadratisk matrise A alltid omformes til en øvre triangulær matrise U. Determinanten til A er da lik ( 1) r ganget med produktet av diagonalelementene i U, der r er antall ganger vi byttet to rader. Hvis A er invertibel, må alle diagonalelementene i U være forskjellige fra 0, og det gir da at det A 0. Hvis A er ikke invertibel, er minst en av diagonalelementene i U lik 0, og da er det A = / 21

17 Ved en lignende argumentasjon kan man vise følgende: Teorem. Hvis A og B er n n matriser, så er det(ab) = (det A)(det B). Generelt vil det(a + B) det A + det B. Men determinanten er lineær hvis vi holder fast alle kolonnene (eller alle radene) unntatt én. Mer presist kan dette formuleres slik for kolonner: La A være en n n matrise og x R n. La A j (x) betegne matrisen vi får fra A ved å erstatte j-te kolonne i A med vektoren x. F.eks. A 2 (x) = [ a 1 x a 3 a n ] La da T j : R n R være definert ved T j (x) = det ( A j (x) ). Da er T j lineær. 17 / 21

18 Teorem (Cramer s regel). Anta at A er en invertibel n n matrise og la b R n. Da har systemet Ax = b en entydig løsning x = (x 1,, x j,, x n ) gitt ved x j = det ( A j (b) ) (1 j n). det A Dette er en pen formel fordi den viser eksplisitt hvordan løsningen kan uttrykkes via determinanter. MEN: i praktiske beregninger brukes denne formelen nesten aldri! Det er raskere og numerisk mer stabilt å bruke f.eks. Gauss eliminasjon (eller andre iterative metoder). 18 / 21

19 Ved å bruke Cramer s regel flere ganger kan man også få en formel for den inverse til en (invertibel) matrise A : A 1 = 1 det A adj(a). Her er adj(a) en n n matrise som kalles den (klassisk) adjungerte til A. Elementet i posisjon (i, j) i adj(a) er kofaktoren gitt ved ( 1) i+j det A ji. NB! Legg merke til indeksen her: A ji er submatrisen som fremkommer fra A ved å slette rad j og kolonne i. Igjen: Hvis man virkelig vil beregne A 1 i praksis, bruker man ikke denne formelen, men benytter da andre metoder, f.eks. radreduksjon av [ A I ] eller SVD (singulær verdi dekomposisjonen) (kommer senere i kap. 7). 19 / 21

20 For 2 2 og 3 3 matriser er determinanten knyttet til areal/volum begrepene: Teorem. Hvis A er en 2 2 matrise er arealet til parallellogrammet utspent av kolonnene til A lik det A. Hvis A er en 3 3 matrise er volumet til parallellepipedet utspent av kolonnene til A lik det A. Teorem. Hvis T : R 2 R 2 er en lineæravb. med stand.matrise A og S er et parallellogram i R 2, så er Area T (S) = det A Area S. Hvis T : R 3 R 3 er en lineæravb. med stand.matrise A og S er et paralellepiped i R 3, så er Volume T (S) = det A Volume S. Disse resultatene er viktige bl.a. for variabelskifte-formelen for dobbelt/trippel...) integraler i kalkulus/analyse. 20 / 21

21 Neste uke: Begynner i kap. 4. Skal studere vektorrom mer abstrakt og se på underrom, eksempler osv. Godt tips: se på stoffet før forelesningene! 21 / 21

Forelesning 10 Cramers regel med anvendelser

Forelesning 10 Cramers regel med anvendelser Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2 Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort

Detaljer

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK)

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) EIVIND ERIKSEN, TROND STØLEN GUSTAVSEN, AND HELGE HÜLSEN Introduksjon Dette kompendiet inneholder oppgaver med

Detaljer

Matriser og Kvadratiske Former

Matriser og Kvadratiske Former Eivind Eriksen Matriser og Kvadratiske Former 15 mars 2012 Handelshøyskolen BI Innhold 1 Matriser og vektorer 1 11 Matriser 1 12 Matriseaddisjon 2 13 Matrisesubtraksjon 3 14 Skalarmultiplikasjon 3 15

Detaljer

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer.

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. Kapittel 2 Matriser I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. 2.1 Definisjoner og regneoperasjoner

Detaljer

Gauss-eliminasjon og matrisemultiplikasjon

Gauss-eliminasjon og matrisemultiplikasjon DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente,

Detaljer

Lineær algebra. 0.1 Vektorrom

Lineær algebra. 0.1 Vektorrom Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene

Detaljer

4.2 Nullrom, kolonnerom og lineære transformasjoner

4.2 Nullrom, kolonnerom og lineære transformasjoner 4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles elementer. En matrise har rader (vannrett, horisontalt)

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

MAT 1110: Bruk av redusert trappeform

MAT 1110: Bruk av redusert trappeform Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,

Detaljer

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3 Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2 Antall oppgaver: + 3 For hver av matrisene nedenfor nn den ekvivalente matrisen som er på redusert

Detaljer

Digital Arbeidsbok i ELE 3719 Matematikk

Digital Arbeidsbok i ELE 3719 Matematikk Eivind Eriksen Digital Arbeidsbok i ELE 3719 Matematikk 3. april 215 Handelshøyskolen BI Innhold Del I Forelesninger i ELE3719 Matematikk 1 Vektorer og vektorregning......................................

Detaljer

Lineære likningssett.

Lineære likningssett. Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

Emne 7. Vektorrom (Del 1)

Emne 7. Vektorrom (Del 1) Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske

Detaljer

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b)

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b) Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Fredag 05. februar 2016 kl 14:00 Antall oppgaver: 5 Løsningsforslag 1 Vi denerer noen matriser A [ 1 5 2 0 B [ 1

Detaljer

Obligatorisk innlevering 3 - MA 109, Fasit

Obligatorisk innlevering 3 - MA 109, Fasit Obligatorisk innlevering - MA 9, Fasit Vektorer Oppgave: Avgjør om, og er lineært uavhengige Dette er spørsmålet om det finnes vekter x, x, x - ikke alle lik - slik at x + x + x = Vi skriver det på augmentert

Detaljer

Minste kvadraters løsning, Symmetriske matriser

Minste kvadraters løsning, Symmetriske matriser Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).

Detaljer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer Kapittel 3 Mer om egenverdier og egenvektorer I neste kapittel skal vi lære å løse systemer av difflikninger. Da vil vi trenge egenverdier og egenvektorer, og selv om vi skal løse reelle problemer, vil

Detaljer

Øving 4 Egenverdier og egenvektorer

Øving 4 Egenverdier og egenvektorer Øving Egenverdier og egenvektorer En egenvektor til en matrise A er løsning av likningen A.x = Λ x hvor Λ er en konstant. Det betyr at virkningan av å multiplisere en matirse med en vektor gir en ny vektor

Detaljer

Øving 5 Diagonalisering

Øving 5 Diagonalisering Øving 5 Diagonalisering En matrise A er diagonaliserbar dersom den er similær med en diagonalmatrise, dvs. det eksisterer en invertibel matrise P og diagonal matrise D slik at P.D.P -1. I øving 4 lærte

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9 Innlevering BYPE000 Matematikk 000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 4. april 014 før forelesningen Antall oppgaver: 9 1 Regn ut determinanten til følgende matriser. (Det er også

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

4.9 Anvendelser: Markovkjeder

4.9 Anvendelser: Markovkjeder 4.9 Anvendelser: Markovkjeder Markov kjeder er en spesiell type diskret dynamisk system. Stokastisk modell: grunnleggende i sannsynlighetsregning. Vinner av Abelprisen 2007, S. Varadhan, jobber i dette

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium i MAT00 Matematikk Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT00! Selv om

Detaljer

Obligatorisk oppgave 1 MAT1120 H15

Obligatorisk oppgave 1 MAT1120 H15 Obligatorisk oppgave MAT20 H5 Innleveringsfrist: torsdag 24/09-205, innen kl 4.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner via hjemmesiden.

Detaljer

tilfeller tatt for gitt ved universiteter og høyskoler. Her er framstillingen kortfattet, meningen er at dette kan brukes som referanse.

tilfeller tatt for gitt ved universiteter og høyskoler. Her er framstillingen kortfattet, meningen er at dette kan brukes som referanse. Forord Denne læreboken gir en innføring i lineær algebra, rettet mot begynnerkurs på Universitets- og Høyskolenivå. Arbeidet med dette stoffet tok til som en del av et større prosjekt, som omfattet datastøttet

Detaljer

Høgskolen i Oslo og Akershus. x 1 +3x 2 +11x 3 = 6 2x 2 +8x 3 = 4 18x 1 +5x 2 +62x 3 = 40

Høgskolen i Oslo og Akershus. x 1 +3x 2 +11x 3 = 6 2x 2 +8x 3 = 4 18x 1 +5x 2 +62x 3 = 40 Innlevering i BYFE/EMFE 1000 Oppgavesett 4 Innleveringsfrist: 8. mars klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) Om vi tenker oss at vi spiser x 1 hg banan, drikker x hg lettmelk og spiser

Detaljer

PENSUM MAT1100 H11 Flervariabel analyse med lineær algebra, Tom Lindstrøm og Klara Hovberg Kalkulus, Tom Lindstrøm, 3. Utgave Joakim Myrvoll Johansen

PENSUM MAT1100 H11 Flervariabel analyse med lineær algebra, Tom Lindstrøm og Klara Hovberg Kalkulus, Tom Lindstrøm, 3. Utgave Joakim Myrvoll Johansen PENSUM MAT1100 H11 Flervariabel analyse med lineær algebra, Tom Lindstrøm og Klara Hovberg Kalkulus, Tom Lindstrøm, 3. Utgave Joakim Myrvoll Johansen MAT1100 Pensum fra Kalkulus KAP3 KOMPLEKSE TALL 3.1

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29 MA0003 Ole Jacob Broch Norwegian University of Science and Technology MA0003 p.1/29 Oversikt, torsdag 13/1 Avsnitt 1.3: intervaller og intervallnotasjon definisjons- og verdimengden til en funksjon Avsnitt

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Løsningsforslag til eksamen i MAT 1100 H07

Løsningsforslag til eksamen i MAT 1100 H07 Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver

Detaljer

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden Avsnitt. Oppgave Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen a) 7 går opp i 68 siden 68 7 b)

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

Prosent- og renteregning

Prosent- og renteregning FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 29/11-3/12

Fasit til utvalgte oppgaver MAT1100, uka 29/11-3/12 Fasit til utvalgte oppgaver MAT1100, uka 9/11-3/1 Øyvind Ryan (oyvindry@ifiuiono December, 010 Oppgave 15 Oppgave 155 a 4A 3B 4 1 3 1 3 1 4 1 8 4 1 4 3 3 1 3 0 9 6 + 6 3 9 0 5 18 14 1 3 4 4 9 1 6 8 + 6

Detaljer

KOMPLEKSE TALL. hvor x og y er reelle tall. x = Re z og y = Im z

KOMPLEKSE TALL. hvor x og y er reelle tall. x = Re z og y = Im z KOMPLEKSE TALL. Innledning og definisjoner Mengden av komplekse tall danner en utvidelse av den reelle tallmengden. Denne utvidelsen skjer ved at vi innfører en ny størrelse (et tall) i som er slik at

Detaljer

Oppgave 1. Del A. (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. som desimaltall. 3x 6

Oppgave 1. Del A. (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. som desimaltall. 3x 6 Oppgave 1 (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. (ii) Skriv 314 100 og 4 5 (iii) Forkort brøkene som desimaltall. 12 15 og 3x 6 9x. (iv) Sorter disse seks tallene

Detaljer

5.6 Diskrete dynamiske systemer

5.6 Diskrete dynamiske systemer 5.6 Diskrete dynamiske systemer Egenverdier/egenvektorer er viktige for å analysere systemer av typen x k+1 = A x k, k 0, der A er en kvadratisk diagonaliserbar matrise. Tenker her at x k angir systemets

Detaljer

Matriser og vektorrom

Matriser og vektorrom Matriser og vektorrom Dan Laksov Notater for gymnaset Del av et prosjekt år 2000 støttet av: Carl Tryggers Stifelse og Marianne och Marcus Wallenbergs Stiftelse Versjon 2 Januar 2001 Matematiska Institutionen

Detaljer

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være:

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være: Likninger og algebra Det er større sprang fra å regne med tall til å regne med bokstaver enn det vi skulle tro. Vi tror at både likninger og bokstavregning (som er den algebraen elevene møter i grunnskolen)

Detaljer

REGEL 1: Addisjon av identitetselementer

REGEL 1: Addisjon av identitetselementer REGEL 1: Addisjon av identitetselementer Addisjon av identitetselementer a + 0 = a x + 0 = x Et identitetselement (nøytralt element) er et element som ikke medfører noen endring når det kombineres med

Detaljer

Matriser og vektorrom

Matriser og vektorrom Matriser og vektorrom Dan Laksov & Roy Skjelnes Notater for et gymnaskurs Skrevet som en del av et prosjekt år 2000-2006 støttet av: Marianne och Marcus Wallenbergs Stiftelse Versjon VII-II Juli 2009 Matematiska

Detaljer

b) Lag to likninger med ulik vanskegrad (en ganske lett og en vanskelig), der svaret i begge skal bli x = -3. Løs også likningene.

b) Lag to likninger med ulik vanskegrad (en ganske lett og en vanskelig), der svaret i begge skal bli x = -3. Løs også likningene. Oppgave I Likninger og ulikheter a) Løs likningen: x + 2 a. + (3x + 4) 3 6 2 ( x + 2)6 6 6 + (3x + 4) 3 6 2 2x + 4 + 9x + 2 2x 9x 2 5 x b) Lag to likninger med ulik vanskegrad (en ganske lett og en vanskelig),

Detaljer

TDT4225 Lagring og behandling av store datamengder

TDT4225 Lagring og behandling av store datamengder Eksamensoppgave i TDT4225 Lagring og behandling av store datamengder Fredag 2. desember 2011, kl. 0900-1300 Oppgaven er utarbeidet av faglærer Kjell Bratbergsengen og kvalitetssikrer Svein-Olaf Hvasshovd

Detaljer

Geometri. Kapittel 3. 3.1 Vektorproduktet

Geometri. Kapittel 3. 3.1 Vektorproduktet Kapittel 3 Geometri I dette kapitlet skal vi benytte den teorien vi utviklet i kapittel 1 og 2 til å studere geometriske problemstillinger. Vi skal se på kurver og flater, og vi skal også studere hvordan

Detaljer

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver. Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14.

Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14. Utkast til løsningsforslag til eksamen i emnet MAT 2 - Lineær algebra Utan ansvar for feil og mangler Mandag 3. mai 2, kl. 9-4. Oppgave En bisverm flyr mellom to kuber, A og B, på dagtid, og hver bi blir

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

Polynomisk interpolasjon

Polynomisk interpolasjon Polynomisk interpolasjon Hans Munthe-Kaas 1. jaunar 2002 Abstract Dette notatet tar for seg interpolasjon med polynomer. Notatet er ment som et tillegg til læreboken i I162, og forsøker å framstille dette

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

Lineære likningssystemer

Lineære likningssystemer Kapittel 1 Lineære likningssystemer Jeg tenker på et tall slik at π ganger tallet er 12. 1.1 Lineære likninger Matematikk dreier seg om å løse problemer. Problemene gjøres ofte om til likninger som så

Detaljer

RF5100 Lineær algebra Leksjon 2

RF5100 Lineær algebra Leksjon 2 RF5100 Lineær algebra Leksjon 2 Lars Sydnes, NITH 27.august 2013 I. LINEÆRE SYSTEM SKJÆRINGSPUNKTET FOR TO LINJER l 1 : x + y = 1 P l 2 : x + y = 3 Geometri: (i) P ligger på linjen l 1 (ii) P ligger på

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

Matematikk for økonomer Del 2

Matematikk for økonomer Del 2 Matematikk for økonomer Del 2 Formelark Dokument type: Formelark Antall kapitler: 10 kapitler Antall sider: 17 Sider Forfatter: Studiekvartalets kursholdere rett til bruk av materialet. Det innebærer at

Detaljer

Sammendrag kapittel 9 - Geometri

Sammendrag kapittel 9 - Geometri Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning

Detaljer

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 Matematikk R2 Oversikt over hovedområdene: Programfag Hovedområder Matematikk R1 Geometri Algebra Funksjoner Matematikk R2 Geometri Algebra Funksjoner

Detaljer

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle.

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle. Kapittel 1 Tallfølger 1, 2, 3, 4, 5, 6, 7, 8,... Det andre temaet i kurset MAT1001 er differenslikninger. I en differenslikning er den ukjente en tallfølge. I dette kapittelet skal vi legge grunnlaget

Detaljer

Eneboerspillet del 2. Håvard Johnsbråten, januar 2014

Eneboerspillet del 2. Håvard Johnsbråten, januar 2014 Eneboerspillet del 2 Håvard Johnsbråten, januar 2014 I Johnsbråten (2013) løste jeg noen problemer omkring eneboerspillet vha partall/oddetall. I denne parallellversjonen av artikkelen i vil jeg i stedet

Detaljer

Manual for wxmaxima tilpasset R2

Manual for wxmaxima tilpasset R2 Manual for wxmaxima tilpasset R Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

V2012 MAT1110. Joakim Myrvoll Johansen PENSUM. Pensum fra boka

V2012 MAT1110. Joakim Myrvoll Johansen PENSUM. Pensum fra boka PENSUM MAT1110 V2012 Pensum fra boka Joakim Myrvoll Johansen Flervariabel analyse med lineær algebra, Tom Lindstrøm og Klara Hovberg Kalkulus, Tom Lindstrøm, 3. Utgave Innhold Pensum fra Flervariabel analyse

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

Tidligere eksamensoppgaver

Tidligere eksamensoppgaver Tillegg B Tidligere eksamensoppgaver Her følger et kronologisk utvalg av tidligere ekamensoppgaver innenfor temaet lineær algebra gitt i tilsvarende kurs som MAT1001 ved UiO. Utvalget er gjort med hensyn

Detaljer

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t

Detaljer

TALL. 1 De naturlige tallene. H. Fausk

TALL. 1 De naturlige tallene. H. Fausk TALL H. Fausk 1 De naturlige tallene De naturlige tallene er 1, 2, 3, 4, 5,... (og så videre). Disse tallene brukes til å telle med, og de kalles også telletallene. Listen med naturlige tall stopper ikke

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 1

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 1 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel A. c) tan + sin0 + d) sin60 tan0 A. B. A y sin0 0 sin0 cos0 y 0 y cos0 C 60 D cos AD 0 6 B AD 0 cos 0 CD AD B.6 A tan60 CD BD BD BD tan60 6 AB AD

Detaljer

Bevis i Geometri. 23. April, Kristian Ranestad Matematisk Institutt, Universitetet i Oslo

Bevis i Geometri. 23. April, Kristian Ranestad Matematisk Institutt, Universitetet i Oslo Kristian Ranestad Matematisk Institutt, Universitetet i Oslo 23. April, 2012 Matematikk - å regne - å resonnere/argumentere Geometri -hvorfor? Argumentasjon og bevis, mer enn regning etter oppskrifter.

Detaljer

Systemidentifikasjon

Systemidentifikasjon University College of Southeast Norway HANS-PETTER HALVORSEN http://home.hit.no/~hansha Forord Dette dokumentet brukes som forelesningsnotater i modellbasert regulering over temaet systemidentifikasjon.

Detaljer

MAT 1001. Vår 2010. Oblig 1. Innleveringsfrist: Fredag 19.februar kl. 1430

MAT 1001. Vår 2010. Oblig 1. Innleveringsfrist: Fredag 19.februar kl. 1430 MAT Vår Oblig Innleveringsfrist: Fredag 9februar kl 43 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7 etg i Niels Henrik Abels hus innen fristen Oppgaven vil

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium 1 i MAT1001 Matematikk 1 Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT1001!

Detaljer

Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe.

Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe. Endelige grupper Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. En gruppe er en mengde S sammen med en binær operasjon definert på S, betegnes (S, ), med følgende egenskaper: 1. a, b S, a b S 2. det

Detaljer

Løsningsforslag. Vedlegg C: Kapittel 2. e) Ingen løsning. f) Flere løsninger: x = 4 + 2t, y = t. c) x 1 = 2, x 2 = 3, x 3 = 1

Løsningsforslag. Vedlegg C: Kapittel 2. e) Ingen løsning. f) Flere løsninger: x = 4 + 2t, y = t. c) x 1 = 2, x 2 = 3, x 3 = 1 Vedlegg C: Løsningsforslag Kapittel. a x =, y = 3 b x =, y = 0 cx =, y = 5 d x =, y = 3 e Ingen løsning. f Flere løsninger: x = 4 + t, y = t. a x = 7, x = 6, x 3 = bx =, x =, x 3 = c x =, x = 3, x 3 =.3

Detaljer

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.

Detaljer

Litt enkel matematikk for SOS3003

Litt enkel matematikk for SOS3003 Litt enkel matematikk for SOS3003 Erling Berge 24 Aug 2004 Erling Berge 1 Om matematikk Matematikk er ikkje vanskeleg Det er eit språk for logikken. Det er lett å lære å lese Litt vanskelegare å forstå

Detaljer

Permutasjoner og symmetriske grupper

Permutasjoner og symmetriske grupper 4. Del Permutasjoner og symmetriske grupper Verbet permutere kommer av det latinske verbet permutare og betyr å bytte om, og ombyttinger,elleraltsåpermutasjoner,ernoevikjennerfradagliglivet.imatematikker

Detaljer

Heltallsdivisjon og rest div og mod

Heltallsdivisjon og rest div og mod Heltallsdivisjon og rest div og mod La a og b være to heltall med a 0. Vi sier at a går opp i b (eng. a divides b) hvis det finnes et heltall c slik at b = ac. I så fall kalles a for en faktor i b og b

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00

Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00 SENSORVEILEDNING MET 803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 9.04.05 Kl. 09:00 Innlevering: 9.04.05 Kl. 4:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave Beregn følgende

Detaljer

Oppfriskningskurs dag 1

Oppfriskningskurs dag 1 Oppfriskningskurs dag 1 og ligninger Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Outline 1 Outline 1 Typiske problem Ranger følgende brøker etter størrelse: 1 2, 7 12, 2 3, 5 8, 17 24

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (2 poeng) Oppgave 2 (4 poeng) Oppgave 3 (4 poeng) I er en konstant. Deriver funksjonene

DEL 1. Uten hjelpemidler. Oppgave 1 (2 poeng) Oppgave 2 (4 poeng) Oppgave 3 (4 poeng) I er en konstant. Deriver funksjonene DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Deriver funksjonene 3 a) f( x) 5x x 5 b) g( x) x e x Oppgave (4 poeng) Polynomfunksjonen P er gitt ved 3 P( x) x x 10x 8, DP a) Faktoriser P( x ) i førstegradsfaktorer.

Detaljer

NTNU KOMPiS Studieplan for MATEMATIKK 2 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016

NTNU KOMPiS Studieplan for MATEMATIKK 2 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016 NTNU KOMPiS Studieplan for MATEMATIKK 2 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016 Profesjons- og yrkesmål Dette studiet er beregnet for lærere på ungdomstrinnet som ønsker videreutdanning

Detaljer

Løsningsforslag ST2301 Øving 10

Løsningsforslag ST2301 Øving 10 Løsningsforslag ST2301 Øving 10 Kapittel 5 Exercise 6 Hva er innavlskoeffisienten for individ I i følgende stamtre? Svar: Her er det best å bruke en annen metode enn løkkemetoden. Slektskapskoeffisientmetoden

Detaljer

Differensiallikninger definisjoner, eksempler og litt om løsning

Differensiallikninger definisjoner, eksempler og litt om løsning Differensiallikninger definisjoner, eksempler og litt om løsning MAT-INF1100 Differensiallikninger i MAT-INF1100 Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning

Detaljer

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015 Divide-and-Conquer Lars Vidar Magnusson 13.1.2015 Kapittel 4 Maximum sub-array problemet Matrix multiplikasjon Analyse av divide-and-conquer algoritmer ved hjelp av substitusjonsmetoden Divide-and-Conquer

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Husk at minustegn foran et tall eller en variabel er å tenke på som tallet multiplisert med det som kommer etter:

Husk at minustegn foran et tall eller en variabel er å tenke på som tallet multiplisert med det som kommer etter: Økonomisk Institutt, november 2006 Robert G. Hansen, rom 1207 ECON 1210: Noen regneregler og løsningsprosedyrer som brukes i kurset (A) Faktorisering og brøkregning (1) Vi kan sette en felles faktor utenfor

Detaljer

Litt enkel matematikk for SOS3003

Litt enkel matematikk for SOS3003 Litt enkel matematikk for SOS3003 Erling Berge Fall 2009 Erling Berge 1 Om matematikk Matematikk er ikkje vanskeleg Det er eit språk for logikken. Det er lett å lære og å lese Det kan vere litt vanskelegare

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden

Detaljer

Komplekse tall og trigonometri

Komplekse tall og trigonometri Kapittel Komplekse tall og trigonometri Grunnen til at vi har dette kapittelet midt i temaet Differenslikninger er for å kunne løse andre ordens differenslikninger. Da vil vi trenge å løse andregradslikninger.

Detaljer

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) ii) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) ( x + ) dx x x dx+ x dx x +

Detaljer

Kapittel 3: degenerasjon.

Kapittel 3: degenerasjon. LP. Leksjon 3 Kapittel 3: degenerasjon. degenerasjon eksempel på sirkling den leksikografiske metoden andre pivoteringsregler fundamentaleoremet i LP LP. Leksjon 3: #1 of 15 Repetisjon simpleksalgoritmen:

Detaljer

Vektorer og matriser

Vektorer og matriser DUMMY Vektorer og matriser Lars Sydnes 1.september 2014 OBS: UNDER UTVIKLING Oppgaver Det finnes passende oppgaver og løsningsforslag til dette notatet. 1 Innledning La oss se på et system av tre lineære

Detaljer