Tall og tallregning. Kursdag Nord-Gudbrandsdalen sept Svein Torkildsen Anne-Gunn Svorkmo
|
|
- Philip Halvorsen
- 8 år siden
- Visninger:
Transkript
1 Tall og tallregning Kursdag Nord-Gudbrandsdalen sept Svein Torkildsen Anne-Gunn Svorkmo
2 Formål Matematikkfaget i skolen medverkar til å utvikle den matematiske kompetansen som samfunnet og den einskilde treng. For å oppnå dette må elevane få høve til å arbeide både praktisk og teoretisk. Opplæringa vekslar mellom utforskande, leikande, kreative og problemløysande aktivitetar og ferdigheitstrening. I praktisk bruk viser matematikk sin nytte som reiskapsfag. I skolearbeidet utnyttar ein sentrale idear, former, strukturar og samanhengar i faget. Elevane må utfordrast til å kommunisere matematikk skriftleg, munnleg og digitalt.
3 Donald-matematikk Lag to tosifrede tall av disse to sifrene. Legg sammen de to tosifrede tallene. Legg sammen verdien på de to kortene. Divider summen av de to tosifrede tallene med verdien til kortene.
4 La oss se på matematikken 1 Summen av enerne skal deles på summen av sifrene. De to summene er like, så svaret blir alltid 1. Altså 1 på 1-erplassen. Summen av tierne skal deles på summen av sifrene. De to summene er like, så svaret blir alltid 1. Altså 1 på 10-erplassen.
5 La oss se på matematikken 2 Summen av tierne blir a + b tiere. Summen av enerne blir a + b enere. Begge summene skal divideres med summen av sifrene: a + b Når vi dividerer (a + b) på (a + b) får vi??? (a + b) (a + b) Teller = nevner: verdien er 1 Vi får 1 på både 10-er og 1-erplassen: 11
6 La oss se på matematikken 3 Kortverdier a og b De to tosifrede tallene kan skrives som 10a + b og 10b + a Summen av de to tosifrede tallene: 10a + b + 10b + a = 11a + 11b = 11(a + b) Når vi dividerer 11(a + b) på (a + b) får vi??? 11(a + b) (a + b)
7 Utvidelse Hva tror du svaret blir? 1. Velg tre ulike sifre 2. Lag så mange tall som mulig 3. Adder tallene 4. Divider summen i 3 på summen av sifrene Differensiering med samme oppgave!
8 Fra LK06 samanlikne og rekne om mellom heile tal, desimaltal, brøkar, prosent, promille og tal på standardform, uttrykkje slike tal på varierte måtar og vurdere i kva for situasjonar ulike representasjonar er formålstenlege
9 Titallsystemet sentralt Ulike tallsystem Addisjonssystem (romerne - egypterne) Posisjonssystem (ti- og totallsystemet) Arbeide med andre posisjonssystem for å forstå titallsystemet?
10 Hvorfor forstå? Understanding is motivating promotes more understanding promotes memory influences beliefs promotes the development of autonomous learners enhances transfer reduces the amount that must be remembered (Lambdin 2003). Journal of Mathematics Education Leadership, volume 7, number 3
11 Regn med romertall! Utfør addisjonen 1. XLVII + CLXVIII I = 1 V = 5 X = 10 L = 50 C = 100 D = 500 M = 1000 Legg tallene på regnebrettet. 2. XLVII 3. CLXVIII Adder på regnebrettet 4. XLVII + CLXVIII
12 Hvilke lengder? Staver med lengde 1, 2, 4 og 8. Hvilke lengder er det mulig å lage når vi en stav av hver lengde?
13 Addisjon og subtraksjon Utfør regneoperasjonene med stavene. Utfør regneoperasjonene i det symbolske matematikkspråket : 11
14 Representasjoner Elever som forstår er i stand til å tolke, forstå og benytte ulike representasjoner, og de kan se sammenhenger mellom forskjellige representasjoner knyttet til en gitt situasjon. En av 8 kompetanser hos Mogens Niss! konkret materiale tegninger tekst skriftlig og muntlig matematisk symbolspråk, også på ulike måter! (Kilpatrick et. al.: Adding It Up) Lærer: Må innrømme at matematikkundervisningen hos oss er «tal og tal og atter tal»
15 Representasjoner av titallsystemet Perlesnor (Hefte: Hanne og May Else) Tallinje 100-kartet Base 10 (Posisjonssystemet) Abakus / Kuleramme
16 Heltall BIG IDEA #1 NUMBERS The set of real numbers is infinite, and each real number can be associated with a unique point on the number line. Integers Integers are the whole numbers and their opposites on the number line, where zero is its own opposite. Each integer can be associated with a unique point on the number line, but there are many points on the number line that cannot be named by integers. An integer and its opposite are the same distance from zero on the number line. There is no greatest or least integer on the number line.
17 Tallforståelse Tall brukes i ulike sammenhenger: antall nummer i rekken navn (spiller nr.) Sammenlikne tall: Forskjell forhold Egenskaper ved tall: par odde prim kvadrat kubikk delelighet rike fattige perfekte Egenskaper ved titallsystemet 3 + 7, , osv. 1 kan i noen sammenhenger være mye, 1000 kan være lite. Eksempler?
18 Tall en oversikt Hele positive tall Negative tall Brøk og Desimaltall (endelige og periodiske desimalbrøker) Tall som IKKE kan skrives som brøk med heltall i teller og nevner Naturlige tall Hele tall Rasjonale tall Reelle tall
19 Primtallsfaktorisering Se du systemet? Bilde av primtalsfaktoriseringen til tallene Lag «primtallsbilder» av 15, 18 og 20.
20 Eratostenes sil Hundrebrett, centikuber Vi bruker bare tallene opp til Sett en brikke på 1. Den regnes ikke med her. 2. La 2 stå åpen, men sett en brikke i alle tall delelig med La 3 stå åpen, men sett en brikke på alle tall som er delelig med Fortsett med 4, osv.
21 Desimaltall Barns (og voksnes) misoppfatninger skyldes ofte to forhold 1. Kunnskap/erfaring med heltall blir generalisert og brukt feil 2. Erfaring fra dagliglivet, penger/måling gir overflatisk fornemmelse av desimaltall. Eksempler på måter vi bruker måleenhet på i dagliglivet: 1. «6,50» seks komma femti. To heltall? Alt.: seks komma fem null 2. «Veggen er ni meter og førti høy», ikke centimeter! 3. Lommeregneren viser fire komma fem, fire kroner og fem øre
22 Noen desimal-misoppfatninger 13,65 består av to separate tall, 13 og 65 0,1504 er større enn 0,150 fordi 1504 er større enn 150 0,1504 er mindre enn 0,150 fordi det har titusendeler, og det er mindre enn tusendeler 0,5 er ikke det samme tallet som 0,50 Det fins ingen desimaltall mellom 0,5 og 0,6 fordi det ikke er noen hele tall mellom 5 og 6!
23 Alle Teller Tall og tallforståelse Misoppfatninger om tall Anbefalte oppgaver/problemstillinger Regning med tallene Kartleggingstester Allistar McIntoch Matematikksenteret
24 Læringsstøttende prøver
25 Arbeid med desimaltall 1 Hvor lange er linjestykkene? Blått linjestykke har lengde 1.
26 Arbeid med desimaltall 2
27 Tallfølger mm Regneark: 04_Tallfølger_Blink_mm.xlsx 04b_Tallfølger_ARBEIDSARK.xlsx Kan brukes til å lage arbeidsark elevene skal bruke før de tester ut rekkene og formlene de har laget med regnearket.
28 Standardform En million to hundre tusen 1, 2 millioner 1, , Standard 1 10?
29 Hva betyr det? utvikle, bruke og gjere greie for ulike metodar i hovudrekning, overslagsrekning og skriftleg rekning med dei fire rekneartane
30 Addisjon - subtraksjon Få misoppfatninger! Men noen regneregler (huske-) kan være med å skape problemer for multiplikasjon! Ta bort nullene og legg sammen: = 16 Sett til en null: 160. Med forståelse: 12 tiere pluss 4 tiere er 16 tiere: 160 Gi eksempel på en vanlig subtraksjonfeil.
31 Addisjon
32 Subtraksjon Sett tallene under hverandre: Anbefaler andre metoder: Utfør en av operasjonene med basemateriell. Skriv hva dere gjør!
33 Matte er mer enn pugging (1) Valente, Enge og Botten i Aftenposten
34 Matte er mer enn pugging (2) Det er gjort mye forskning, både i Norge og internasjonalt, der man har sett på elevprestasjoner i regning. I en av disse undersøkelsene ble andre og tredjeklassinger bedt om å regne ut Elever i klasser vant til en tradisjonell undervisning, der lærer viser regneregler og oppsett for så å la elevene øve på disse, satte i gang med det vanlige oppsettet - tallene under hverandre, «låning» og markering på tallene en «lånte fra». Kun 42 % av annenklassingene og 35 % av tredjeklassingene fikk riktig svar. I klasser der en derimot arbeidet med å utvikle uformelle regnemetoder og resonnering (som for eksempel 306 pluss 200 er 3 for mye så svaret er 3 mindre enn 200, altså 197), var det 67 % av annenklassingene som fikk rett svar og 80 % av tredjeklassingene. Valente, Enge og Botten i Aftenposten
35 Negative tall Er det sant? Minus minus gir pluss! Kan vi «se» resultatet av regneoperasjoner med negative tall? Heksegryte Kort
36 Selvsagt blir det slik! Regnestykke Svar 5 4 = = = = 5 0 = 5 (-1) = Hva er likt i hvert regnestykke? Hva er forskjellig? Ser du et mønster? Hvordan endrer tallet du trekker fra seg? Hvordan endrer svaret seg Fortsett mønsteret. Hva blir 5 (-2)?
37 Dagens tall Svaret er 1 Hva kan regnestykket være? Regneart Mønster og systemer Hva ønsker vi at elever skal lære? Hva ønsker vi at elever skal lære?
38 Multiplikasjon Bruk basemateriell og lag multiplikasjonen Hvordan skriftliggjøre? 32 4
39 34 6
40
41 Fra basemateriell til tegning
42 Utvidelse til desimaltall
43 Utfordringer Fire på linje Fins i flere varianter. Noen med kun desimaltall. BLINK!
44 Delingsdivisjon - Målingsdivisjon 24 drops skal deles likt på fire barn. Hvordan skjer delingen rent fysisk? Utfør delingen med plastbrikker! Skriv divisjonen! 24 drops skal fordeles på poser med 4 drops i hver pose. Utfør fordelingen med brikkene! Skriv divisjonen.
45 To typer divisjon! Delingsdivisjon Målingsdivisjon
46 Eksamen - divisjon Lag 460 med basemateriell. Utfør divisjonen fysisk. Beskriv med tall og regnetegn hva dere gjør etter hvert. Bruk rutepapir og lag en tegning som viser tallet 264. Divider med 4. Beskriv med tall og regnetegn hva dere gjør etter hvert.
47
48 264 : 4
49 Matematikk et språk Gjøre noe Snakke om det Hvordan skrive det?
50 Utfordring Divisjonsalgoritme
51 Divisjon med konkreter 2380 : til hver til hver til hver til hver i alt
52 Moro?
53 Multiplikasjon Bruk sifrene 1, 2, 3 og 4 og lag to tosifrede tall slik at produktet blir størst mulig. Bruk sifrene 1, 2, 3, 4 og 5 og lag et tosifret og et tresifret tall slik at produktet blir størst mulig. Når blir det slik: = 82 14
54 Til ettertanke Undervisningsprinsipper som IKKE er effektive Learn how to do it first understanding will come later. Repetition will improve understanding. There is a best way to teach, an optimal sequence for learning, a right way to solve each problem. Explain clearly how to do the problem before you give it to your class. Learning must be preceded by instruction.
55 De fem trådene Matematikkfaget har hovedansvaret for at elevene skal utvikle gode regneferdigheter, og faget skal gi elevene muligheter til å utvikle de fem komponentene i god regning, slik disse er beskrevet i rammeverket for kompetanse-utvikling på ungdomstrinnet.
56 Beregning Utføre prosedyrer som involverer operasjoner med tall, størrelser og figurer, effektivt, nøyaktig og fleksibelt.
57 Fleksibilitet Beregning handler om å beherske forskjellige prosedyrer ved å bruke hoderegning, blyant og papir, digitale verktøy eller andre hjelpemidler. Elever som utfører prosedyrer fleksibelt, kan veksle mellom forskjellige prosedyrer og velge prosedyren(e) som er mest nyttige i den bestemte situasjonen. De kan også tilpasse prosedyrene slik at de blir lette å bruke.
58 Kunnskapsstrukturer - nettverk I hvilke sammenhenger bruker vi denne strukturen?
59 Nettverk felles egenskaper Mange anvendelser én matematisk struktur
60 Multiplikativ tenking Hva tror du dine elever vil gjøre?
61 Viktige lover Hvordan konkretisere 2(5 + 3)? Regn ut 5 39 i hodet = = = 200, trekker fra 5 og får = 390, halvdelen er 195 Assosiative lov (a + b) + c = a + (b + c) a (b c) = (a b) c Distributive lov a (b + c) = a b + a c Kommutative lov a + b = b + a a b = b a
62 Grunnleggende ferdigheter Muntlige ferdigheter Å kunne lese Å kunne skrive Å kunne regne Digitale ferdigheter
EFFEKTIV MATEMATIKKUNDERVISNING Begrepsforståelse Representasjoner Problemløsing. Svein H. Torkildsen NSMO
EFFEKTIV MATEMATIKKUNDERVISNING Begrepsforståelse Representasjoner Problemløsing Svein H. Torkildsen NSMO Kompetanser Niss Kyndighet Kilpatric Mathematical profiency Figuren er hentet fra Kilpatrick, Swafford
Begrep. Den matematiske tenkingens grunnlag. Svein H. Torkildsen, LAMIS og NSMO
Begrep Den matematiske tenkingens grunnlag Svein H. Torkildsen, LAMIS og NSMO Dette har vi fokus på 10. trinn Elevers tenking Grunnleggende begrep Representasjoner Praktiske tilnærminger - laborasjoner
Ny GIV. et løft for alle. Realfagskonferansen Astrid Bondø Svein H Torkildsen NSMO
Ny GIV et løft for alle Realfagskonferansen 2013 Astrid Bondø Svein H Torkildsen NSMO Hva Hvorfor Hvordan Ny GIV Bakgrunn Resultater Tilbakemeldinger Matematikksenterets rolle Didaktisk grunnlag Materiell
Matematisk kompetanse God regning
Matematisk kompetanse God regning Svein H. Torkildsen, NSMO Hent presentasjoner mv på: www.matematikksenteret.no/nygivmellomtrinn Dette har vi fokus på Robust matematikkunnskap God undervisning Teoretisk
Innhold. Begrep den matematiske tankens grunnlag. Mathematics Matters. Å vedsette det viktige. Prinsipper for effektiv undervisning
Innhold Begrep den matematiske tankens grunnlag Mathematics Matters Å vedsette det viktige Prinsipper for effektiv undervisning Prinsipper som IKKE er effektive De fire regneartene og representasjoner
GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012
Mekanisk regneferdighet GODE ALGORITMER IKKE SØRGELIG SUBTRAKSJON OG DYSTER DIVISJON Bjørnar Alseth Multi i Vest 2012 Forskningens konklusjon Hva kreves i læreplanen? Forskerne er enige om 1. Vi må ikke
Matematisk kompetanse God regning. Svein H. Torkildsen, NSMO
Matematisk kompetanse God regning Svein H. Torkildsen, NSMO Dette har vi fokus på Robust matematikkunnskap God undervisning Teoretisk grunnlag Sentrale begrep Kommunikasjon Representasjoner Praktiske tilnærminger
Tall og tallregning. Kursdag Nord-Gudbrandsdalen sept. 2013 Svein Torkildsen Anne-Gunn Svorkmo
Tall og tallregning Kursdag Nord-Gudbrandsdalen sept. 2013 Svein Torkildsen Anne-Gunn Svorkmo Å telle -Hovedideer Elementary & middle school mathematics av John Van De Walle (2010) Å telle forteller hvor
Fagplan Matte, 3. trinn, 2010/2011
Fagplan Matte, 3. trinn, 2010/2011 Måned Kompetansemål K06 Læringsmål / Delmål Kjennetegn på måloppnåelse / kriterier August 34-35 Mål for opplæringen er at eleven skal kunne: samle, sortere, notere og
Kjennetegn for god matematikk og regneopplæring. Susanne Stengrundet Jens Arne Meistad Matematikksenteret
Kjennetegn for god matematikk og regneopplæring Susanne Stengrundet Jens Arne Meistad Matematikksenteret Til topps Kast alle terninger én gang 1=1 2=2 3=2+1 4=4 5=4+1.. 12=2 6.. 36=6 (4+2) pluss minus
Prinsipper for god undervisning. Anne-Gunn Svorkmo Svein Torkildsen Astrid Bondø
Prinsipper for god undervisning Anne-Gunn Svorkmo Svein Torkildsen Astrid Bondø Lærere kan ikke gjøre hva de vil Vi er forpliktet på en læreplan som blant annet sier Opplæringa vekslar mellom utforskande,
Hva er god matematikkundervisning?
Hva er god matematikkundervisning? Astrid Bondø Nasjonalt Senter for Matematikk i Opplæringen 22-Feb-08 Ny læreplan, nye utfordringer for undervisninga i matematikk? Hva vil det si å ha matematiske kompetanse?
ADDISJON FRA A TIL Å
ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger
Tall og algebra - begrep, forutsetninger og aktiviteter
Tall og algebra - begrep, forutsetninger og aktiviteter Astrid Bondø NSMO 17-Sep-08 Hvordan gjøre oppgavene rikere? Oppgave A Regn ut svaret: a. 985 67 b. 897 65 c. 875 96 d. 586 97 addisjon subtraksjon
FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn
FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Vurderingskriterier vedleggsnummer Samanlikne
HARALDSVANG SKOLE Årsplan 8.trinn FAG: Matematikk
HARALDSVANG SKOLE Årsplan 8.trinn 2018-19 FAG: Matematikk Uke Kompetansemål Emne Arbeidsmåte Læremidler Annet 33-41 Tal og talforståelse: Mål for opplæringa er at eleven skal kunne: Tall og tallforståelse:
Tall og tallregning. Kursdag Nord-Gudbrandsdalen sept Svein Torkildsen Anne-Gunn Svorkmo
Tall og tallregning Kursdag Nord-Gudbrandsdalen sept. 2013 Svein Torkildsen Anne-Gunn Svorkmo Fagets egenart http://www.udir.no/lareplaner/veiledninger-tillareplaner/revidert-2013/veiledning-til-lareplanene-imatematikk-fellesfag/
Hoderegningsstrategier. Novemberkonferansen 2014 Tine Foss Pedersen tinefp@online.no
Hoderegningsstrategier Novemberkonferansen 2014 Tine Foss Pedersen tinefp@online.no Hoderegningsstrategier er lure måter å tenke på som gjør at det blir enklere å regne. Bruk av hoderegning påvirker elevenes
Kapittel 1. Tallregning
Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser
Fagplan, 4. trinn, Matematikk
Fagplan, 4. trinn, Matematikk Måned Kompetansemål - K06 Læringsmål / delmål Kjennetegn på måloppnåelse / kriterier Mål for opplæringen er at eleven skal kunne: August UKE 33, 34 OG 35. September UKE 36-39
Undervisningsprinsipper
Undervisningsprinsipper Mange veier fører til ROM, men de har alle noen felles karakteristiske trekk Svein H. Torkildsen, NSMO Fra TIMMS Advanced 2008 Figur 2.8 Lærernes syn på hvor ofte ulike arbeidsmåter
Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser
Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Hovedområde Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale sressurser for 5. trinn Fra Lese-forlivet-planen brukes jevnlig i alle fag
MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING
MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING Svein H. Torkildsen Ny GIV 2012-13 Dette har vi fokus på God regning effektiv undervisning 10. trinn underyterne Elevers tenking Grunnleggende
Årsplan i Matematikk
Årsplan i Matematikk Tidspunkt (uke eller mnd) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 5A Kap 1: God start Kunne utvikle og bruke ulike regnemetoder for addisjon og subtraksjon
Multi 4A s.1-17 Oppgavebok s. 2-6
ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2014/2015 Utarbeidet av: Hilde Marie Bergfjord Læreverk: Multi 4 UK TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING E 34 Repetisjon 35 36 Koordinatsystemet Multi
Argumentasjon og regnestrategier
Ole Enge, Anita Valenta Argumentasjon og regnestrategier Undersøkelser (se for eksempel Boaler, 2008) viser at det er en stor forskjell på hvilke oppfatninger matematikere og folk flest har om matematikk.
Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra
FAGPLANER Breidablikk ungdomsskole FAG: Matte TRINN: 9.trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra Eleven skal kunne -
Innhald/Lærestoff Elevane skal arbeide med:
Tid Kompetansemål Elevane skal kunne: 34-35 lese av, plassere og beskrive posisjonar i rutenett, på kart og i koordinatsystem, både med og utan digitale verktøy 36-39 beskrive og bruke plassverdisystemet
Årsplan i matematikk for 10. trinn
Årsplan i matematikk for 10. trinn Uke 34-40 Geometri undersøkje og beskrive eigenskapar ved to- og tredimensjonale figurar og bruke eigenskapane i samband med konstruksjonar og berekningar Begreper. Utregning
Posisjonsystemet FRA A TIL Å
Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet
Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY)
Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY) Oslo, 16.-17.10.14 Astrid Bondø 19-Nov-15 Bygda Alvfjord Eksamen har i dag 5000 innbyggere. 2P 2014 Man regner med at innbyggertallet vil
Revidert veiledning til matematikk fellesfag. May Renate Settemsdal Nasjonalt Senter for Matematikk i Opplæringen Lillestrøm 14.
Revidert veiledning til matematikk fellesfag May Renate Settemsdal Nasjonalt Senter for Matematikk i Opplæringen Lillestrøm 14.oktober 2013 Hvorfor ny veiledning Revidert læreplan matematikk fellesfag
Kapittel 1. Tallregning
Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser
Eksempelundervisning utforsking. Nord-Gudbrandsdalen mars 2016 Anne-Gunn Svorkmo Astrid Bondø
Eksempelundervisning utforsking Nord-Gudbrandsdalen mars 2016 Anne-Gunn Svorkmo Astrid Bondø Matematikfaget skal lære eleverne at formulere faglige spørgsmål, fastlægge manglende opplysninger, vende tingene
Uke Tema Kompetansemål Læringsmål Aktiviteter, metoder og læringsressurser Hele. fire regneartene.
Årsplan matematikk 3. trinn Uke Tema Kompetansemål Læringsmål Aktiviteter, metoder og læringsressurser Hele Jeg vet hva symbolet er for de året fire regneartene. Utvikle og bruke varierte metodar for multiplikasjon
UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34 Repetisjon Koordinatsystemet
ÅRSPLAN I MATEMATIKK FOR 4. TRINN Utarbeidet av: Espen Larsen Læreverk: Multi 4 ab UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34 Repetisjon Koordinatsystemet 35 36 37 -beskrive plassering
MAM Mestre Ambisiøs Matematikkundervisning. Novemberkonferansen 2015
MAM Mestre Ambisiøs Matematikkundervisning Novemberkonferansen 2015 Eksempel: Telle i kor Film Kort omtale av aktiviteten Oversikt Introduksjon av aktiviteten Eksempler på aktiviteter Link til plandokument
Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig
Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og
HARALDSVANG SKOLE Årsplan 8.trinn FAG: Matematikk
HARALDSVANG SKOLE Årsplan 8.trinn 2017-18 FAG: Matematikk Uke Kompetansemål Emne Arbeidsmåte Læremidler Annet Uke 34 40 Tal og algebra samanlikne og rekne om heile tal, desimaltal, brøkar, prosent og tal
Årsplan matematikk 4. klasse, Læreverk: Multi 4a og 4b Lærer: Irene Jørgensen Skaret
Årsplan matematikk 4. klasse, 2016-2017 Læreverk: Multi 4a og 4b Lærer: Irene Jørgensen Skaret Uke Kompetansemål (K06) Tema Arbeidsmåter Vurdering 34-35 Lese av, plassere og beskrive posisjoner i rutenett,
Årsplan i matematikk 6.trinn 2015/2016
Uke nr. Kap. Emne/Tema: Kompetansemål etter 7. årstrinn: 34-39 Kap. 1 Hele tall. Beskrive og bruke Titallsystemet. plassverdisystemet for Tall og Avrunding. desimaltal, rekne med regning Addisjon og positive
Kvikkbilde 8 6. Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 8 6
Kvikkbilde 8 6 Mål Generelt: Sammenligne og diskutere ulike måter å se et antall på. Utfordre elevene på å resonnere omkring tallenes struktur og egenskaper, samt egenskaper ved regneoperasjoner. Spesielt:
God matematikkundervisning... - Kva er det? Hva er matematisk kompetanse? Oversikt
God matematikkundervisning... - Kva er det? Mona Røsseland Matematikksenteret, NTNU Leder i Lamis Lærebokforfatter, MULTI 12-Apr-07 Oversikt Noen tanker om hva som kan være kjennetegn på god matematikkundervisning..
Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning. Revidert læreplan i matematikk
Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning Revidert læreplan i matematikk Læreplan i matematikk Skoleforordningen 1734 Regning og matematikk Dagliglivets matematikk Grunnleggende ferdigheter
Årsplan matematikk 3. trinn
Årsplan matematikk 3. trinn Uke Tema Kompetansemål Læringsmål Aktiviteter, metoder og læringsressurser Hele Jeg vet hva symbolet er for de året fire regneartene. Utvikle og bruke varierte metodar for multiplikasjon
LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016
LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse KJØP OG SALG Lære om : - Sedler og mynters
Kjennetegn for god matematikk og regneopplæring. Susanne Stengrundet Jens Arne Meistad Matematikksenteret
Kjennetegn for god matematikk og regneopplæring Susanne Stengrundet Jens Arne Meistad Matematikksenteret Til topps Kast alle terninger én gang 1=1 2=2 3=2+1 4=4 5=4+1.. 12=2 6.. 36=6 (4+2) pluss minus
LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018
LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse J A N U A R KJØP OG SALG Læringsstrategier:
Årsplan matematikk 3. trinn 2015/2016
Årsplan matematikk 3. trinn 2015/2016 Katrine Hansen Tidspunkt (uke ) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 34-35 kap 1 samle, sortere, notere og illustrere data på
UKE Tema Læringsmål Kunnskapsløftet Metoder
ÅRSPLAN MATEMATIKK 6. TRINN 2019-2020 UKE Tema Læringsmål Kunnskapsløftet Metoder /Vurdering 34 40 TALL OG REGNING Elevene skal kunne: 34 Titallsystemet -lese og skrive flersifrede tall - skrive tall på
Årsplan matematikk 6. trinn 2019/2020
Årsplan matematikk 6. trinn 2019/2020 Årsplanen tar utgangspunkt i kunnskapsløftet. I planen tar vi utgangspunkt i kompetansemåla for 7.klasse. I matematikk lærer en litt av et tema på 5.trinn, litt mer
Ny GIV. egen metodikk eller et løft for alle? Namsos Astrid Bondø Svein H. Torkildsen NSMO
Ny GIV egen metodikk eller et løft for alle? Namsos 29.03.12 Astrid Bondø Svein H. Torkildsen NSMO Oppdrag Fokus på den metodikken som lærere nå får opplæring i gjennom Ny GIV-satsningen. Er dette en metodikk
Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider.
ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2014/2015 Utarbeidet av: Elly Østensen Rørvik Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider. UKE TEMA KOMPETANSEMÅL
Tall og enheter. Mål. for opplæringen er at eleven skal kunne
8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen
Misoppfatninger knyttet til tallregning
Misoppfatninger knyttet til tallregning 17.04.18 Olav Dalsegg Tokle, Astrid Bondø og Roberth Åsenhus MATEMATIKKSENTERET, NTNU Innholdsfortegnelse INNLEDNING... 3 FJERNE OG LEGGE TIL NULLER... 4 OPPGAVER...
MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim,
MAM Mestre Ambisiøs Matematikkundervisning Realfagskonferansen Trondheim, 03.05.16 Mestre Ambisiøs Matematikkundervisning matematikksenteret.no Utvikle en modell med tilhørende ressurser for skolebasert
Tallregning og algebra
30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer
Halvårsplan i matematikk fellesfag; Notodden voksenopplæring våren 2013
Halvårsplan i matematikk fellesfag; Notodden voksenopplæring våren 2013 Periodens tema Uke 1-2 Innhold Arbeidsmåter Evaluering/ vurdering Tegning og konstruksjon Mål for det du skal lære: Geometriske ord
Kapittel 1. Tallregning
Kapittel 1. Tallregning Mål for Kapittel 1, Tallregning. Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere
Matematikk 1. 4. årstrinn Smøla kommune
Lokal læreplan i Matematikk 1. 4. årstrinn Smøla kommune Grunnskolen 1 INNHOLDSFORTEGNELSE Hovedområder.. side 3 Gjennomføring.. side 10 Målark. side 11 Digitale ressurser.. side 19 2 HOVEDOMRÅDER Matematikkplanen
Oppgavebok blir ofte brukt som leksebok. Kapittel prøve i uke 35 Arbeidsark i uke 36
Matematikk 4. TRINN, 2017-2018 Uke Tema Kompetansemål Kunnskapsløftet Mål fra Multi: Arbeidsmåter Felles for alle timer: Mål for timen presenteres Aktuell fagtekst leses (ulike lesestrategier) Oppgavebok
- lese og skrive tallene til 100 000 - plassverdisystemet: verdien til et siffer er. Materiell: Abakus avhengig av hvor i tallet det står
Hovedområde: Tall. Kompetansemål etter 4. trinn MÅL: beskrive plassverdisystemet for dei heile tala, bruke positive og negative heile tal, enkle brøkar og desimaltal i praktiske samanhengar, og uttrykkje
KOMPETANSEMÅL ETTER 2. TRINNET Tall:
KOMPETANSEMÅL ETTER 2. TRINNET Tall: 1. Telle til 100, dele opp og byggemengder oppt il 10, sette sammen og dele opp tiergrupper. 2. Bruke tallinjen til beregninger og å angi tallstørrelser. 3. Gjøre overslag
- individuelt arbeid - tavleundervisning - ulike aktiviteter - undersøkelser - regnefortellinger - lesing av diagrammer
RENDALEN KOMMUNE Fagertun skole Årsplan i matematikk for 3. trinn 2014/15 TID TEMA KOMPETANSEMÅL Eleven skal kunne: Uke 34-35 36-39 Flersifrede tall - addisjon og subtraksjon med tresifrede tall - ulike
arbeide med konkreter praktisk arbeid stasjoner uteskole pc samtale samarbeid gruppearbeid arbeide i læreverket andre skriftlige oppgaver
Årsplan i matematikk for 3. trinn 2015/2016 Lærerverk og bøker: Tusen millioner, oppgavebok og tallbok Uke Mål: eleven skal kunne Tema Arbeidsform Vurdering 34,35,36 T.M s. 4-21 tallene, bruke positive
Perlesnor og tom tallinje
Hanne Hafnor Dahl, May Else Nohr Perlesnor og tom tallinje En perlesnor er en konkret representasjon av tallrekka. Den kan bestå av 10, 20 eller 100 perler, alt etter hvilket tallområdet elevene arbeider
Årsplan matematikk 8. trinn
Kompetansemål Delmål/læringsmål (settes på ukeplan) Lærestoff Grf Kommentar 34 36 Tall og tallforståelse samanlikne og rekne om heile tal, desimaltal og brøkar, og uttrykkje slike tal på varierte måtar.
Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall
MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.
Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen
Alle teller - en introduksjon Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor
7. TRINN MATEMATIKK PERIODEPLAN 1
1 7. TRINN MATEMATIKK PERIODEPLAN 1 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal,
ÅRSPLAN. Skoleåret: 2015/16 Trinn: 4.trinn Fag: Matematikk Utarbeidet av: Trine og Espen. Karl Johans Minne skole
ÅRSPLAN Skoleåret: 2015/16 Trinn: 4.trinn Fag: Matematikk Utarbeidet av: Trine og Espen Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse August/september -utvikle, bruke og samtale om
Årsplan i matematikk 6.trinn 2015/2016
Årsplan i matematikk 6.trinn 2015/2016 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 36 /37 Tall og tallforståelse -siffer og tall -beskrive plassverdisystemet
PRØVER OG STØRRE SKRIFTLIGE/MUNTLIGE ARBEIDER: Småtester i gangetabell m.m. test etter hver avsluttende kapittel. Uke EMNE Lærestoff Kompetansemål
Matematikk 4. trinn LÆREBOK: Multi 4 a og b oppgavebok, Gyldendal Forlag. LÆREMIDLER: Læreboken Smart øving Classroom METODER/ARBEIDSMÅTER Tavleundervisning. Samtale. Individuelt arbeid. Gruppearbeid.
Emnebytteplan matematikk trinn
Emnebytteplan matematikk 3. 4. trinn 3. trinn 4. trinn Uke Data og statistikk Koordinatsystemet Flersifrede tall Mer enn 1000 og mindre enn 0 Måling Legge sammen og trekke fra Tid Tid, klokka Geometri
LOKAL LÆREPLAN ETTER LK-06 VED TORDENSKJOLDS GATE SKOLE. FAG: Matematikk TRINN: 5. Timefordeling på trinnet: 4 timer i uka
LOKAL LÆREPLAN ETTER LK-06 VED TORDENSKJOLDS GATE SKOLE FAG: Matematikk TRINN: 5 Timefordeling på trinnet: 4 timer i uka Grunnleggende ferdigheter i regning, lesing, skriving og digitale ferdigheter. Uke
NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF
NY GIV I REGNING Brynhild.foosnas@baerum.kommune.no @BrynhildFF Hva er grunnleggende regneferdighet? Hvorfor strever elevene? Hva gjør vi med det? Hva menes med grunnleggende regneferdighet? Hva skiller
7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44
1 7. TRINN MATEMATIKK PERIODEPLAN 1 - Uke 34-44 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile
Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 8. TRINN SKOLEÅR 2014-2015
Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN I MATEMATIKK 8. TRINN SKOLEÅR 2014-2015 Periode 1: UKE 34 37 Tema: Tall og tallforståelse Samanlikne og rekne om mellom heile tal, desimaltal ( ) og tal
Emnekode: LGU51014/LGU51005 Emnenavn: Matematikk 1 (5-10), emne 1. Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig
Sensurveiledning Emnekode: LGU51014/LGU51005 Emnenavn: Matematikk 1 (5-10), emne 1 Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Oppgaveteksten: Oppgave 1 I en klasse med åtte gutter og tolv
KOMPETANSEMÅL ETTER 2. TRINN MATEMATIKK
KOMPETANSEMÅL ETTER 2. TRINN MATEMATIKK Tal Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis tal og talbehandling inngår i system og mønster. Med tal kan ein kvantifisere
RENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 4. trinn 2014/15 TID TEMA KOMPETANSEMÅL ARBEIDSMETODER VURDERINGSFORME R
Obj113 RENDALEN KOMMUNE Fagertun skole Årsplan i matematikk for 4. trinn 2014/15 TID TEMA KOMPETANSEMÅL ARBEIDSMETODER VURDERINGSFORME R 34-36 Koordinat systemet. å plassere i rutenett finne riktig skal
Kapittel i lærebok Aktiviteter Vurdering
Årsplan for 3.trinn Fag: Matematikk Skoleåret: 2017/2018 Uke Uke 33-35 Uke 36-39 Kompetansemål (LK06) Statistikk : Samle, sortere, notere og illustrere data på formålstenlege måtar med teljestrekar, tabeller
Desimaltall og standard algo ritmen for divisjon med papir Elise Klaveness
Desimaltall og standard algo ritmen for divisjon med papir Elise Klaveness Figur 1. Standardalgoritme for divisjon. Jeg underviser i matematikk for lærerstudenter og opplever år etter år at de færreste
UKE Tema Læringsmål Kunnskapsløftet Metoder
ÅRSPLAN MATEMATIKK 6. TRINN 2018-19 UKE Tema Læringsmål Kunnskapsløftet Metoder /Vurdering 34 40 TALL OG REGNING Elevene skal kunne: 34 Titallsystemet -lese og skrive flersifrede tall - skrive tall på
ÅRSPLAN I MATEMATIKK FOR 1. TRINN 2014/2015 Læreverk: Radius, Multi Hvor mange er en meter? 39+2 matematiske samtaler Elsa H.
ÅPLN KK F 1. NN 2014/2015 Læreverk: adius, ulti Hvor mange er en meter? 39+2 matematiske samtaler lsa H. Devold G P K ÅL (K06) Delmål DF VDNG tatistikk levene skal kunne: ydelige mål og kriterier samle,
Unneberg skole ÅRSPLAN I MATEMATIKK. 3. trinn Rød skrift marker det som er fra utviklende matte.
Unneberg skole ÅRSPLAN I MATEMATIKK. trinn 2016-2017 Rød skrift marker det som er fra utviklende matte. KOMPETANSEMÅL FRA LÆREPLANEN Eleven skal kunne LOKALE KJENNETEGN FOR MÅLOPPNÅELSE Eleven skal kunne
UKE Tema Læringsmål Kunnskapsløftet Metoder
ÅRSPLAN MATEMATIKK 6. TRINN 2017/2018 UKE Tema Læringsmål Kunnskapsløftet Metoder /Vurdering 34 40 TALL OG REGNING Elevene skal kunne: 34 Titallsystemet -lese og skrive flersifrede tall - skrive tall på
Årsplan. Uke Tema Kompetansemål Læringsmål Metode; TPO, strategier. Vurdering (i alle perioder)
Årsplan Trinn: 7 Fag: Matematikk Uke Tema Kompetansemål Læringsmål Metode; TPO, strategier Vurdering (i alle perioder) 34(1. -Titallsystemet -Add og sub med hele tall beskrive og bruke plassverdisystemet
Dagens tall i mange varianter
Dagens tall i mange varianter Alle klassetrinn Hensikt: Å bruke dagens tall som innfallsport kan gi mange muligheter, på ulike alderstrinn, innenfor ulike faglige temaer som klassen holder på med. I mange
Halvårsplan for: 3. trinn, høst 2017 Fag: Matematikk
Halvårsplan for: 3. trinn, høst 2017 Fag: Matematikk Uke Tema/emne Læremidler Kompetansemål Læringsmål Vurdering Ansvar samle, sortere, notere samle inn data 33-34 Data og statistikk Grunnbok 3a og illustrere
Halvårsplan for: 3. trinn, høst 2018
Halvårsplan for: 3. trinn, høst 2018 Fag: Matematikk Uke Tema/emne Læremidler Kompetansemål Læringsmål Vurdering Ansvar 34-36 Data og statistikk Kap. 1 samle, sortere, notere og illustrere data på formålstenlege
o Ukentlige tilbakemelding på lekser Kapitel prøve i uke 35 Individuelle arbeidsark i uke 36
Matematikk 4. TRINN Uke Tema Kompetansemål Kunnskapsløftet Mål fra Multi: Arbeidsmåter Felles for alle timer: Mål for timen presenteres Aktuell fagtekst leses (ulike lesestrategier) Oppsummering og vurdering
Skoleåret 2015/16 UKE KAPITTEL EMNER HOVEDOMRÅDE. Naturlige tall. Primtall. Faktorisering. Hoderegning. Desimaltall. Overslagsregning.
MATEMATIKK 8. KLASSE ÅRSPLAN Skoleåret 2015/16 UKE KAPITTEL EMNER HOVEDOMRÅDE 34 35 36 Kapittel 1 Naturlige tall Primtall Faktorisering Hoderegning Tall og algebra punkt: 1, 2, 3 og 4 37 38 Tall og tallforståelse
Sensurveiledning til skriftlig eksamen i Matematikk 1, 1-7
Sensurveiledning til skriftlig eksamen i Matematikk 1, 1-7 24. mai 2011 Oppgavesettet besto av 3 oppgaver. Alle oppgavene skulle besvares og svarene begrunnes. Oppgavene telte i utgangspunktet som vist
Årsplan i matematikk ved Blussuvoll skole.
Årsplan i matematikk ved Blussuvoll skole. Hovedområder i faget: Målinger Statistikk, sannsynlighet og Funksjoner Undervisningstimetall per uke: 8.trinn 9.trinn 10.trinn 3,00 2,25 3,00 Læreverk/materiell:
Årsplan. Uke Tema Kompetansemål Læringsmål Metode; TPO, strategier. Vurdering (i alle perioder)
Årsplan Trinn: 7 Fag: Matematikk Uke Tema Kompetansemål Læringsmål Metode; TPO, strategier Vurdering (i alle perioder) 34(1. -Titallsystemet -Add og sub med hele tall beskrive og bruke plassverdisystemet
Undervisningsprinsipper
Undervisningsprinsipper Mange veier fører til ROM, men de har alle noen felles karakteristiske trekk Svein H. Torkildsen, NSMO Fra læreplanen Opplæringa vekslar mellom utforskande, leikande, kreative og
ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2018/2019 Læreverk: Multi Lærer: Anita Nordland og Astrid Løland Fløgstad UKE MÅL (K06) TEMA ARBEIDSFORM VURDERING
ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2018/2019 Læreverk: Multi Lærer: Anita Nordland og Astrid Løland Fløgstad UKE MÅL (K06) TEMA ARBEIDSFORM VURDERING 34 lese av, plassere og beskrive posisjoner i rutenett,
Årsplan i matematikk for 6. klasse 2015-16
Antall timer pr uke: 3,5 Lærer: Randi Minnesjord Læreverk: Multi 6 a og 6 b Gyldendal Nettstedene: www.moava.org og kikkora Grunnleggjande ferdigheiter (fra Kunnskapsløftet): Grunnleggjande ferdigheiter