MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING"

Transkript

1 MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING Svein H. Torkildsen Ny GIV

2 Dette har vi fokus på God regning effektiv undervisning 10. trinn underyterne Elevers tenking Grunnleggende begrep Representasjoner Praktiske tilnærminger laborasjoner

3 Innhold Dette skal vi se på i dag To historier fra skolehverdagen Aktivitet God regning: Tau med fem tråder God regneundervisning: Seks prinsipper Utvikles videre på slutten av dagen!

4 Fortelling 1 Lengde Eksemplet viser Vi kan ha en kunnskap uten forståelse Vi kan løse oppgavene raskt og riktig Da kan vi klare oss godt i skolen og på prøver Vi kan være skoleflinke uten å kunne anvende matematikken

5 Fortelling 2 Fartskontroll Vi kan gjøre praktiske undersøkelser uten å gripe matematikken som ligger bak Elevene er aktive i situasjonen, men klarer ikke å overføre den til andre tilsvarende situasjoner Er trekanten en god måte å formidle sammenhengen mellom vei, fart og tid på?

6

7 Konklusjon To fortellinger Pugg er ingen garanti for god matematikkunnskap selv om elevene klarer oppgavene Praktisk arbeid aktivitet er ingen garanti for god matematikkunnskap Derfor retter LK06 fokus mot

8 Kompetanser Niss Kyndighet Kilpatric Mathematical profiency Figuren er hentet fra Kilpatrick, Swafford & Findell (2001, s. 117).

9 To måter å si det samme på Kilpatric et al Forståelse Beregning Anvendelse Resonnering Niss og Pisa - kompetanser Tankegang Representasjon Symbol og formalisme Hjelpemiddel Problemløsing Modellering Resonnement Kommunikasjon Engasjement

10 Å verdsette det viktige Flyt i å kalle fram fakta og utføre algoritmer Begrepsforståelse og tolking av representasjoner Strategier for utforsking og problemløsing Hva vektlegger du mest av Vet ikke

11 Tall i trekant Velg kort med verdier 1-6 Legg kortene slik at de danner en trekant. Er det mulig å legge dem slik at summen blir lik langs alle tre sidene?

12 God regning 1 1. Forståelse Forstå matematiske begreper, representasjoner, operasjoner og relasjoner 2. Beregning Utføre prosedyrer som involverer tall, størrelser og figurer, effektivt, nøyaktig og fleksibelt Tall i trekant. Var tråden i bruk?

13 God regning 2 3. Anvendelse Formulere problemer matematisk utvikle strategier for å løse problemer ved å bruke passende begreper og prosedyrer 4. Resonnering Forklare og begrunne en løsning til et problem, eller utvide fra noe kjent til noe som ikke er kjent Tall i trekant. Var tråden i bruk?

14 God regning 3 5. Engasjement Være motivert for å lære matematikk, se på matematikk som nyttig og verdifullt, og tro at innsats bidrar til økt læring i matematikk Tall i trekant. Var DU engasjert?

15 Som trådene i et tau De fem komponentene er avhengige av hverandre som trådene i et tau Elever blir gode i regning når de arbeider med å utvikle alle trådene samtidig Taumodellen er hentet fra et stort forskningsarbeid i USA Figuren er hentet fra Kilpatrick, Swafford & Findell (2001, s. 117).

16 Regning som grunnleggende ferdighet Grunnleggende ferdigheter i regning handler om å kunne formulere, bruke og tolke matematikk i forskjellige kontekster. Den grunnleggende regneferdigheten omfatter alt fra enkel bruk av de fire regneartene til problemløsning og anvendelse i forskjellige situasjoner. Elevene skal utvikle regneferdigheten gjennom hele opplæringsløpet, og ferdigheten er integrert i læreplanene for alle fag på fagets premisser.

17 Eksempeloppgave Fra PISA-rammeverket En pizzarestaurant serverer to runde pizzaer med samme tykkelse i to forskjellige størrelser. Den minste har 30 cm diameter og koster 30 zeds. Den største har 40 cm diameter og koster 40 zeds. Hvilken pizza gir deg mest for pengene? Begrunn svaret ditt. Samme oppgave med denne illustrasjonen?

18 Halveringstid Etter ide fra Grete Tofteberg Mål Elevene: Forstå begrepet halveringstid Lage en modell Tolke hva modellen viser Lærere: Et eksempel på regning i naturfag Vurdere muligheter for kompetanseutvikling Reflektere over god regneundervisning

19 Halveringstid Modell 1. Kast 100 terninger samtidig plukk ut 6-erne notér 2. Gjenta til det er mindre enn 10 % igjen 3. Sett resultatet inn i et regneark 4. Lag en kurve som viser antall aktive atomer 1. Hvor mange kast før det var 50 % av terningene igjen % av terningene igjen 3. Sammenlikn svar i 1 og 2 5. Lag en teoretisk modell for atomkjerner som omdannes slik at de slutter å stråle 6. Sammenlikn med eksperimentet vi utførte

20 Undervisningsprinsipper for planlegging, gjennomføring, vurdering 1. Struktur og sammenheng 2. Varierte aktiviteter 3. Organisering 4. Matematisering 5. Kommunikasjon 6. Hjelpemidler

21 Undervisningsprinsipper Struktur og sammenheng Varierte Aktiviteter Organisering Matematisering Kommunikasjon Hjelpemidler Struktur og sammenheng Sett klare mål, og form undervisningen deretter Sett temaet inn i en sammenheng Få fram elevenes forkunnskaper Samtale, diagnostisk test, liten test formativ vurdering Sett klare mål Presise, vurderbare, tydelige, individuelle Oppsummering Løft fram det sentrale Vurder om målene blir nådd hvordan gå videre Reflekter over egen praksis

22 Undervisningsprinsipper Struktur og sammenheng Varierte Aktiviteter Organisering Matematisering Kommunikasjon Hjelpemidler Varierte aktiviteter Vær bevisst i valg av oppgaver Diagnostiske oppgaver Avslører misoppfatninger og delvis utviklede begrep Rike oppgaver Stimulere til utforsking og kommunikasjon Realistiske oppgaver Viser matematikkens relevans i dagligliv og samfunnsliv Treningsoppgaver Ferdighet i valg av metode og presisjon i utføring

23 Undervisningsprinsipper Struktur og sammenheng Varierte Aktiviteter Organisering Matematisering Kommunikasjon Hjelpemidler Organisering Varier mellom hel klasse, grupper og individuelt arbeid Elever lærer på ulike måter Alle elever må utvikle samarbeidsevne Kommunikasjon er en sentral kompetanse Læringsfellesskap gjennom felles aktivitet i hel klasse

24 Undervisningsprinsipper Struktur og sammenheng Varierte Aktiviteter Organisering Matematisering Kommunikasjon Hjelpemidler Matematisering Kjent utgangspunkt modeller matematisering Skape forbindelse mellom skrevne og muntlige matematiske uttrykk, konkrete problem og løsningsmetoder Konkret: støtte for tanken, noe eleven kjenner seg igjen i Modellering gjennom ulike representasjoner: Konkretiseringsmateriell, tegninger, diagrammer, uformelle uttrykk To kuler sju smaker = 21 muligheter To kuler n smaker n (n + 1) 2

25 Undervisningsprinsipper Struktur og sammenheng Varierte Aktiviteter Organisering Matematisering Kommunikasjon Hjelpemidler Kommunikasjon Bruk det matematiske språket aktivt A = πr 2 Snakke og skrive seg til forståelse Argumentere, forklare, beskrive, spørre Oversette mellom ulike typer representasjoner Læreren rollemodell Spørsmål av høyere orden Hvordan tenkte du nå? Hvorfor brukte du denne framgangsmåten Se på saken med ulike typer briller.

26 Undervisningsprinsipper Struktur og sammenheng Varierte Aktiviteter Organisering Matematisering Kommunikasjon Hjelpemidler Hjelpemidler Benytt hjelpemidler slik at de fremmer læring og kreativitet Konkretiseringsmateriell Måleutstyr Digitale verktøy Regneteknisk hjelpemiddel Pedagogisk verktøy

27 På vei ut ta med nok en en gave fra KD! Bli medlem! De fem første får introduksjonspakke på direkten!

28 Mer om 1 Forståelse Elever som har utviklet forståelse kan mer enn isolerte fakta og prosedyrer Elevene er i stand til å tolke, forstå og benytte ulike representasjoner, og de kan se sammenhenger mellom forskjellige representasjoner knyttet til en gitt situasjon De kan forklare hvorfor en algoritme fungerer!

29 Mer om 2 Beregning Beregning handler om å beherske forskjellige prosedyrer ved å bruke hoderegning, blyant og papir, digitale verktøy eller andre hjelpemidler Elever som utfører prosedyrer fleksibelt, kan veksle mellom forskjellige prosedyrer og velge prosedyren(e) som er mest nyttige i den bestemte situasjonen. De kan også tilpasse prosedyrene slik at de blir lette å bruke

30 Mer om 3 Anvendelse Et begrep eller en prosedyre er ikke nyttig hvis ikke elevene vet når og hvor det skal brukes Elevene må være i stand til å formulere og avgrense problemer De må utvikle løsningsstrategier, velge den strategien som er mest hensiktsmessig for å løse problemene, bruke den og tolke resultatet

31 Mer om 4 Resonnering Resonnering er limet som holder matematikken sammen Resonnering handler om å forklare sammenhengen mellom begreper og situasjoner Elevene bruker resonnering for å navigere mellom faktakunnskap, begreper, prosedyrer og løsningsmetoder Elevene blir gode i resonnering ved å forklare og begrunne løsningene sine for andre

32 Mer om 5 Engasjement Å være engasjert i en matematisk aktivitet er nøkkelen til å lære matematikk Det handler også om elevenes selvtillit og følelse av mestring i læringsprosessen Tett bundet sammen med de fire andre trådene

Matematisk kompetanse God regning. Svein H. Torkildsen, NSMO

Matematisk kompetanse God regning. Svein H. Torkildsen, NSMO Matematisk kompetanse God regning Svein H. Torkildsen, NSMO Hent presentasjoner mv www.matematikksenteret.no/nygivvg Dette har vi fokus på Robust matematikkunnskap God undervisning Teoretisk grunnlag Sentrale

Detaljer

Prinsipper for god undervisning. Anne-Gunn Svorkmo Svein Torkildsen Astrid Bondø

Prinsipper for god undervisning. Anne-Gunn Svorkmo Svein Torkildsen Astrid Bondø Prinsipper for god undervisning Anne-Gunn Svorkmo Svein Torkildsen Astrid Bondø Lærere kan ikke gjøre hva de vil Vi er forpliktet på en læreplan som blant annet sier Opplæringa vekslar mellom utforskande,

Detaljer

Ny GIV. et løft for alle. Realfagskonferansen Astrid Bondø Svein H Torkildsen NSMO

Ny GIV. et løft for alle. Realfagskonferansen Astrid Bondø Svein H Torkildsen NSMO Ny GIV et løft for alle Realfagskonferansen 2013 Astrid Bondø Svein H Torkildsen NSMO Hva Hvorfor Hvordan Ny GIV Bakgrunn Resultater Tilbakemeldinger Matematikksenterets rolle Didaktisk grunnlag Materiell

Detaljer

Matematisk kompetanse God regning. Svein H. Torkildsen, NSMO

Matematisk kompetanse God regning. Svein H. Torkildsen, NSMO Matematisk kompetanse God regning Svein H. Torkildsen, NSMO Dette har vi fokus på Robust matematikkunnskap God undervisning Teoretisk grunnlag Sentrale begrep Kommunikasjon Representasjoner Praktiske tilnærminger

Detaljer

Undervisningsprinsipper

Undervisningsprinsipper Undervisningsprinsipper Mange veier fører til ROM, men de har alle noen felles karakteristiske trekk Svein H. Torkildsen, NSMO Fra TIMMS Advanced 2008 Figur 2.8 Lærernes syn på hvor ofte ulike arbeidsmåter

Detaljer

Matematisk kompetanse God regning

Matematisk kompetanse God regning Matematisk kompetanse God regning Svein H. Torkildsen, NSMO Hent presentasjoner mv på: www.matematikksenteret.no/nygivvg Oppdrag Matematikkundervisning i videregående skole Vidt spekter fra 1P-Y til R2

Detaljer

Kjennetegn for god matematikk og regneopplæring. Susanne Stengrundet Jens Arne Meistad Matematikksenteret

Kjennetegn for god matematikk og regneopplæring. Susanne Stengrundet Jens Arne Meistad Matematikksenteret Kjennetegn for god matematikk og regneopplæring Susanne Stengrundet Jens Arne Meistad Matematikksenteret Til topps Kast alle terninger én gang 1=1 2=2 3=2+1 4=4 5=4+1.. 12=2 6.. 36=6 (4+2) pluss minus

Detaljer

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter Regning i alle fag Hva er å kunne regne? Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer å resonnere og bruke matematiske begreper, fremgangsmåter, fakta og verktøy

Detaljer

Definisjon av god regning

Definisjon av god regning Definisjon av god regning Å kunne regne er en viktig forutsetning for egen utvikling, og for å ta hensiktsmessige avgjørelser på en rekke områder i eget daglig- og arbeidsliv. Videre er det nødvendig for

Detaljer

Matematisk kompetanse

Matematisk kompetanse Matematisk kompetanse Svein H. Torkildsen, NSMO Hent presentasjoner mv på: www.matematikksenteret.no Oppdrag Matematikkundervisning i videregående skole spenner over vidt spekter fra 1PY til R2 1PY dekkes

Detaljer

Matematisk kompetanse God regning

Matematisk kompetanse God regning Matematisk kompetanse God regning Svein H. Torkildsen, NSMO Hent presentasjoner mv på: www.matematikksenteret.no/nygivmellomtrinn Dette har vi fokus på Robust matematikkunnskap God undervisning Teoretisk

Detaljer

Undervisningsprinsipper

Undervisningsprinsipper Undervisningsprinsipper Mange veier fører til ROM, men de har alle noen felles milepæler Svein H. Torkildsen, NSMO Lærere kan ikke gjøre hva de vil Vi er forpliktet på en læreplan som blant annet sier

Detaljer

Matematisk kompetanse

Matematisk kompetanse Matematisk kompetanse Svein H. Torkildsen, NSMO Hent presentasjoner mv på: www.matematikksenteret.no/nygivvg Oppdrag Matematikkundervisning i videregående skole spenner over vidt spekter fra 1PY til R2

Detaljer

Matematisk kompetanse en aktivitet

Matematisk kompetanse en aktivitet Matematisk kompetanse en aktivitet Matematisk kompetanse - Aktivitet Hvor mange røde kvadrater? Matematisk kompetanse - Aktivitet Hvor mange røde kvadrater? Prinsipper for god regneopplæring 1. Sett klare

Detaljer

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs Ny Giv Grunnleggende regneferdighet Brynhild Farbrot Foosnæs Læring innebærer endring Hva har du endret siden sist? Læring innebærer at du blir utfordret og at du tør å ta utfordringen. Hvilke utfordringer

Detaljer

Vi har alle et ansvar for å bidra til å endre slike holdninger. REGNING FOR ALLE LÆRERE EN FAMILIE PÅ FEM

Vi har alle et ansvar for å bidra til å endre slike holdninger. REGNING FOR ALLE LÆRERE EN FAMILIE PÅ FEM EN FAMILIE PÅ FEM REGNING FOR ALLE LÆRERE Mysen, 27.09.13 gretof@ostfoldfk.no DIGITAL Jeg har aldri forstått matematikk hatet faget på skolen. Ikke har jeg hatt bruk for det heller, det har gått helt fint

Detaljer

Undervisningsprinsipper

Undervisningsprinsipper Undervisningsprinsipper Mange veier fører til ROM, men de har alle noen felles karakteristiske trekk Svein H. Torkildsen, NSMO Fra læreplanen Opplæringa vekslar mellom utforskande, leikande, kreative og

Detaljer

Eksempelundervisning utforsking. Nord-Gudbrandsdalen mars 2016 Anne-Gunn Svorkmo Astrid Bondø

Eksempelundervisning utforsking. Nord-Gudbrandsdalen mars 2016 Anne-Gunn Svorkmo Astrid Bondø Eksempelundervisning utforsking Nord-Gudbrandsdalen mars 2016 Anne-Gunn Svorkmo Astrid Bondø Matematikfaget skal lære eleverne at formulere faglige spørgsmål, fastlægge manglende opplysninger, vende tingene

Detaljer

Matematisk førstehjelp

Matematisk førstehjelp Matematisk førstehjelp Brøk prosent desimaltall Brynhild Farbrot Foosnæs Matematisk kompetanse Kunnskapsløftet Kompetansemål Ferdigheter Forståelse Anvendelse Kunnskapsløftet Kompetansemål Ferdigheter:

Detaljer

EFFEKTIV MATEMATIKKUNDERVISNING Begrepsforståelse Representasjoner Problemløsing. Svein H. Torkildsen NSMO

EFFEKTIV MATEMATIKKUNDERVISNING Begrepsforståelse Representasjoner Problemløsing. Svein H. Torkildsen NSMO EFFEKTIV MATEMATIKKUNDERVISNING Begrepsforståelse Representasjoner Problemløsing Svein H. Torkildsen NSMO Kompetanser Niss Kyndighet Kilpatric Mathematical profiency Figuren er hentet fra Kilpatrick, Swafford

Detaljer

å gjenkjenne regning i ulike kontekster å kommunisere og argumentere for valg som er foretatt

å gjenkjenne regning i ulike kontekster å kommunisere og argumentere for valg som er foretatt 13. mai 2014 å gjenkjenne regning i ulike kontekster å velge holdbare løsningsmetoder - gjennomføre å kommunisere og argumentere for valg som er foretatt tolke resultater kunne gå tilbake og gjøre nye

Detaljer

Begrep. Den matematiske tenkingens grunnlag. Svein H. Torkildsen, LAMIS og NSMO

Begrep. Den matematiske tenkingens grunnlag. Svein H. Torkildsen, LAMIS og NSMO Begrep Den matematiske tenkingens grunnlag Svein H. Torkildsen, LAMIS og NSMO Dette har vi fokus på 10. trinn Elevers tenking Grunnleggende begrep Representasjoner Praktiske tilnærminger - laborasjoner

Detaljer

REGNEPLAN FOR LANDÅS SKOLE

REGNEPLAN FOR LANDÅS SKOLE 1 REGNEPLAN FOR LANDÅS SKOLE På Landås skole har alle lærere, i alle fag, på alle trinn ansvar for elevenes regneutvikling. Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer

Detaljer

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring Overordnet plan for fagene. Fag: Matematikk Trinn: 8. trinn Skole: Lindesnes ungdomsskole År: 2015/2016 Lærestoff: Nye Mega 8 a og 8b Vurdering. Prinsipper i vurdering. 1. Elevene forstår hva de skal lære

Detaljer

Hva kjennetegner god matematikkundervisning? Sammen om oppdraget! Gardermoen Airport hotel, 15. november 2017 Astrid Bondø, NSMO

Hva kjennetegner god matematikkundervisning? Sammen om oppdraget! Gardermoen Airport hotel, 15. november 2017 Astrid Bondø, NSMO Hva kjennetegner god matematikkundervisning? Sammen om oppdraget! Gardermoen Airport hotel, 15. november 2017 Astrid Bondø, NSMO Hvem skal ut? pen pil ku penn Hvem skal ut? Hva kan være felles for denne

Detaljer

Nye læreplaner, nye utfordringer i matematikk!

Nye læreplaner, nye utfordringer i matematikk! Oversikt Nye læreplaner, nye utfordringer i matematikk! Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Ny læreplan, nye utfordringer for undervisningen

Detaljer

NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF NY GIV I REGNING Brynhild.foosnas@baerum.kommune.no @BrynhildFF Hva er grunnleggende regneferdighet? Hvorfor strever elevene? Hva gjør vi med det? Hva menes med grunnleggende regneferdighet? Hva skiller

Detaljer

Forebygging av matematikkvansker

Forebygging av matematikkvansker Forebygging av matematikkvansker Lunde peker på hvor viktig forebygging er. Vi vil vise til tre ressurser her: En engelsk rapport Mathematics Matters: h"ps://www.ncetm.org.uk/public/files/309231/mathema>cs

Detaljer

Teoretisk bakgrunnsdokument for arbeid med regning på ungdomstrinnet

Teoretisk bakgrunnsdokument for arbeid med regning på ungdomstrinnet Teoretisk bakgrunnsdokument for arbeid med regning på ungdomstrinnet 1 Innholdsfortegnelse INNHOLDSFORTEGNELSE... 2 INNLEDNING... 3 Fire fagområder i teorien, én integrert praksis... 3 Bakgrunnsdokument

Detaljer

timene og hjemme 36 både med og uten digitale verktøy fortløpende Kapittelprøve Arbeidsinnsats i 38 de hele tallene, bruke positive og mindre enn 0

timene og hjemme 36 både med og uten digitale verktøy fortløpende Kapittelprøve Arbeidsinnsats i 38 de hele tallene, bruke positive og mindre enn 0 ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2017/2018 Læreverk: Multi Lærer: Kaia Bøen Jæger og Carl Petter Tresselt UKE MÅL (K06) TEMA ARBEIDSFORM VURDERING 34 lese av, plassere og beskrive posisjoner i Koordinatsystemet

Detaljer

VELKOMMEN TIL FØRLANSERING. Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg

VELKOMMEN TIL FØRLANSERING. Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg VELKOMMEN TIL FØRLANSERING Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg Innledning hvem og hvorfor Arbeidsmåter og aktiviteter Pause Arbeidsmåter og aktiviteter

Detaljer

Gje meg eit tresifra. Hvordan skal jeg regne, lærer? 1. Arbeide både praktisk og teoretisk. Retningslinjer for undervisningen

Gje meg eit tresifra. Hvordan skal jeg regne, lærer? 1. Arbeide både praktisk og teoretisk. Retningslinjer for undervisningen Hvordan skal jeg regne, lærer? Fokus på tall og utvikling av god tall forståelse Mona Røsseland Nasjonalt senter for matematikk i opplæringen Gje meg eit tresifra tal 17-Apr-06 17-Apr-06 2 Intensjoner

Detaljer

Årsplan i matematikk for 8. trinn

Årsplan i matematikk for 8. trinn Årsplan i matematikk for 8. trinn Emne KAP A GEOMETRI Før høstferien analysere, også digitalt, egenskaper ved to- og tredimensjonale figurer og bruke dem i sammenheng med konstruksjoner og beregninger

Detaljer

Undervisningsprinsipper

Undervisningsprinsipper Undervisningsprinsipper Mange veier fører til ROM, men de har alle noen felles milepæler Svein H. Torkildsen, NSMO Sier statsministeren Det er viktig å ikke detaljstyre alt som skjær i klasserommet. (Solamøtet

Detaljer

Dagsinnhold 23.09.2014. God regneopplæring på mellomtrinnet. God regning Matematisk samtale Matematiske tekster. Tine Foss Pedersen tinefp@online.

Dagsinnhold 23.09.2014. God regneopplæring på mellomtrinnet. God regning Matematisk samtale Matematiske tekster. Tine Foss Pedersen tinefp@online. God regneopplæring på mellomtrinnet Tine Foss Pedersen tinefp@online.no God regning Matematisk samtale Matematiske tekster Dagsinnhold Forelesning 5 % Øv deg i klasserommet mellom hver kursdag Lese 10

Detaljer

HELHETLIG PLAN I REGNING VED OLSVIK SKOLE.

HELHETLIG PLAN I REGNING VED OLSVIK SKOLE. HELHETLIG PLAN I REGNING VED OLSVIK SKOLE. Prinsipper og strategier ved Olsvik skole. FORORD Olsvik skole har utarbeidet en helhetlig plan i regning som viser hvilke mål og arbeidsmåter som er forventet

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Mona Røsseland Matematikksenteret, NTNU Leder i Lamis Lærebokforfatter, MULTI Inspirasjon og motivasjon for matematikk God matematikkundervisning... hva er det? for hvem? 15-Oct-06 15-Oct-06 Matte er bare

Detaljer

ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst)

ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst) ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst) Læreverk: Multi Lærer: Mona Haukås Olsen og Anne Marte Urdal/Ruben Elias Austnes 34-36 37-40 MÅL (K06) TEMA ARBEIDSFORM VURDERING lese avlassere og beskrive

Detaljer

Du betyr en forskjell. (Fritt etter foredrag av Brynhild Farbrot)

Du betyr en forskjell. (Fritt etter foredrag av Brynhild Farbrot) Du betyr en forskjell (Fritt etter foredrag av Brynhild Farbrot) Dere foreldre, er like viktige som undervisningen. Gi barnet ditt allsidig erfaringer fra dagliglivet. Barn som har et godt begrepsinnhold

Detaljer

Matematikk i lys av Kunnskapsløftet

Matematikk i lys av Kunnskapsløftet Matematikk i lys av Kunnskapsløftet Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Intensjoner med den nye læreplanen 1. Større handlingsrom for lærerne: Organisering, metoder, arbeidsmåter

Detaljer

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring Overordnet plan for fagene. Fag: MATEMATIKK Trinn: 9 KLASSE Skole: LINDESNES UNGDOMSSKOLE År: 2015-2016 Lærestoff: MEGA 9A OG 9B Vurdering. Prinsipper i vurdering. 1. Elevene forstår hva de skal lære og

Detaljer

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Hovedområde Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale sressurser for 5. trinn Fra Lese-forlivet-planen brukes jevnlig i alle fag

Detaljer

Matematikk i tverrfaglige sammenhenger

Matematikk i tverrfaglige sammenhenger Matematikk i tverrfaglige sammenhenger Ungdomsskolekonferansen Gyldendal kompetanse 17.09.12 grete@tofteberg.net Kan vi tenke oss en dag uten? Innfallsvinkel 1 Hvor finner vi matematikken i fagene? Regneferdigheter

Detaljer

Den gode matematikkundervisning

Den gode matematikkundervisning Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i LAMIS Lærebokforfatter;

Detaljer

Se hvordan Hovseter ungdomsskole arbeidet før, under og etter gjennomføring av prøven.

Se hvordan Hovseter ungdomsskole arbeidet før, under og etter gjennomføring av prøven. Hva måler nasjonal prøve i regning? Prøven skal måle i hvilken grad elevenes regneferdigheter er i samsvar med beskrivelsene av regning som grunnleggende ferdighet i læreplanen til hvert fag. Prøven er

Detaljer

Hva er god matematikkundervisning? Mona Røsseland www.fiboline.no Tilleggskomponenter: Nye digitale kartleggingsprøver: Halvårsprøve og årsprøve Grublishefte 1-4 og 5-7 Oppdragsboka Nettsted: www.gyldendal.no/multi

Detaljer

I følge Kunnskapsløftet er formålet med matematikkfaget å dekke følgende behov: (se s.57)

I følge Kunnskapsløftet er formålet med matematikkfaget å dekke følgende behov: (se s.57) Kunnskapsløftet-06 Grunnlag og mål for planen: Den lokale læreplanen skal være en kvalitetssikring i matematikkopplæringen ved Haukås skole, ved at den bli en bruksplan, et redskap i undervisningshverdagen.

Detaljer

Mona Røsseland Richard Skemp

Mona Røsseland  Richard Skemp Hva er god matematikk- undervisning? Hvordan kan vi sørge for at elevene utvikler en helhetlig kompetanse i matematikk, der elevenes evne til å tenke får større fokus enn elevenes evne til å memorere?

Detaljer

Kvikkbilder i arbeid med tallforståelse. Forfatter Astrid Bondø

Kvikkbilder i arbeid med tallforståelse. Forfatter Astrid Bondø Forfatter Astrid Bondø Publisert dato: April 2016 Matematikksenteret Kvikkbilde Aktiviteten Kvikkbilde er designet for å engasjere elever i å visualisere tall og å forme mentale representasjoner av en

Detaljer

Lese og snakke og skrive og regne er bra - og digitale verktøy skal FULL PAKKE! Nå er det Kunnskapsløftet som gjelder! Ingvill Merete Stedøy-Johansen

Lese og snakke og skrive og regne er bra - og digitale verktøy skal FULL PAKKE! Nå er det Kunnskapsløftet som gjelder! Ingvill Merete Stedøy-Johansen Lese og snakke og skrive og regne er bra - og digitale verktøy skal vi ha FULL PAKKE! Nå er det Kunnskapsløftet som gjelder! Ingvill Merete Stedøy-Johansen Hvilke nye utfordringer gir Kunnskapsløftet?

Detaljer

Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder

Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder Aspekter ved regning som skal vektlegges i ulike fag Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder ARTIKKEL SIST

Detaljer

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne?

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne? Elevaktiv matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? hvorfor og hvordan? Mona Røsseland Leder i Lamis Nasjonalt senter for matematikk i opplæringen Lærebokforfatter

Detaljer

Innhold: Satsingsområdene: Regning, lesing, skriving og klasseledelse. Grunnleggende ferdigheter i LK06 og læreplanforståelse

Innhold: Satsingsområdene: Regning, lesing, skriving og klasseledelse. Grunnleggende ferdigheter i LK06 og læreplanforståelse Innhold: Satsingsområdene: Regning, lesing, skriving og klasseledelse Grunnleggende ferdigheter i LK06 og læreplanforståelse Vurdering for læring som gjennomgående tema Pedagogiske nettressurser Åpne dører

Detaljer

FORFATTERE Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg

FORFATTERE Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg FORFATTERE Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg Slik bygger vi opp Maximum Grunnbok Oppgavebok Lærerens bok Papirkomponenter Lærerrom Vurderingsmateriell

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 13-Oct-06 Kursinnhald Hva er matematisk kompetanse? Hvordan styrke den hos elevene på en slik måte

Detaljer

Satsingsområdene i Ungdomstrinn i utvikling

Satsingsområdene i Ungdomstrinn i utvikling Satsingsområdene i Ungdomstrinn i utvikling INNHOLD Innføring av grunnleggende ferdigheter i LK06 Satsingsområdene: Regning, lesing, skriving, klasseledelse Rundtur i nettressursene Verktøy for implementering

Detaljer

Hva er god matematikkundervisning?

Hva er god matematikkundervisning? Hva er god matematikkundervisning? Astrid Bondø Nasjonalt Senter for Matematikk i Opplæringen 22-Feb-08 Ny læreplan, nye utfordringer for undervisninga i matematikk? Hva vil det si å ha matematiske kompetanse?

Detaljer

Prinsipper for god regneopplæring. - Med utgangspunkt i en ak5vitet

Prinsipper for god regneopplæring. - Med utgangspunkt i en ak5vitet - Med utgangspunkt i en ak5vitet 1. Se% klare mål, og form undervisningen dere%er 2. Vær bevisst i valg av oppgaver Ulike oppgavetyper Diagnos5ske oppgaver Rike oppgaver Realis5ske oppgaver Rike oppgaver

Detaljer

Hva er god matematikkundervisning?

Hva er god matematikkundervisning? Hva er god matematikkundervisning? Astrid Bondø Nasjonalt Senter for Matematikk i Opplæringen 22-Feb-08 Ny læreplan, nye utfordringer for undervisninga i matematikk? Hva vil det si å ha matematiske kompetanse?

Detaljer

Teoretisk bakgrunnsdokument for arbeid med regning på ungdomstrinnet Revidert våren 2014

Teoretisk bakgrunnsdokument for arbeid med regning på ungdomstrinnet Revidert våren 2014 Teoretisk bakgrunnsdokument for arbeid med regning på ungdomstrinnet Revidert våren 2014 Innholdsfortegnelse INNHOLDSFORTEGNELSE... 2 INNLEDNING... 3 Fire fagområder i teorien, én integrert praksis...

Detaljer

Strategisk plan 2015 18. I morgen begynner nå

Strategisk plan 2015 18. I morgen begynner nå Strategisk plan 2015 18 I morgen begynner nå Oslo kommune Utdanningsetaten Bogstad skole BOGSTAD SKOLE STRATEGISKE MÅL Strategisk plan 2015-18 er utviklet på grunnlag av resultater og undersøkelser i 2014

Detaljer

Innhold. Begrep den matematiske tankens grunnlag. Mathematics Matters. Å vedsette det viktige. Prinsipper for effektiv undervisning

Innhold. Begrep den matematiske tankens grunnlag. Mathematics Matters. Å vedsette det viktige. Prinsipper for effektiv undervisning Innhold Begrep den matematiske tankens grunnlag Mathematics Matters Å vedsette det viktige Prinsipper for effektiv undervisning Prinsipper som IKKE er effektive De fire regneartene og representasjoner

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk oversikt Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Ny læreplan, nye utfordringer for undervisningen i matematikk

Detaljer

Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen

Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Fagplan i matematikk for 9. trinn 2014/15. Faglærer: Terje Tønnessen Standarder (gjennom hele semesteret) : - Å kunne uttrykke seg muntlig. Å forstå og kunne bruke det matematiske språket, implementeres

Detaljer

Grunnleggende ferdigheter i faget (fra Kunnskapsløftet)

Grunnleggende ferdigheter i faget (fra Kunnskapsløftet) Årsplan for Matematikk 2013/2014 Klasse 10A, 10B og 10C Lærere: Lars Hauge, Rayner Nygård og Hans Dillekås Læreverk: Nye Mega 10A og 10B Grunnleggende ferdigheter i (fra Kunnskapsløftet) Å uttrykke seg

Detaljer

Oslo kommune Utdanningsetaten. Strategisk Plan Bogstad skole

Oslo kommune Utdanningsetaten. Strategisk Plan Bogstad skole Oslo kommune Utdanningsetaten Strategisk Plan 2016 Bogstad Innhold Skolens profil... 3 Oppsummering Strategisk plan... 4 Alle skal lære mer - Elevenes grunnleggende ferdigheter og kunnskaper i basisfag

Detaljer

God regneopplæring for lærere på ungdomstrinnet

God regneopplæring for lærere på ungdomstrinnet God regneopplæring for lærere på ungdomstrinnet INNLEDNING... 3 REGNING SOM GRUNNLEGGENDE FERDIGHET I ALLE FAG... 4 PRINSIPPER FOR GOD REGNEOPPLÆRING... 5 1. Sett klare mål, og form undervisningen deretter...

Detaljer

Meningsfull matematikk for alle

Meningsfull matematikk for alle Meningsfull matematikk for alle Visjon og strategier 2015 2020 Matematikksenteret et samspill mellom praksis, utvikling og forskning Innhold Visjon 4 Samfunnsoppdrag 6 Mål 6 Strategier på utøvende nivå

Detaljer

Foreldrene betyr all verden! Brynhild Farbrot

Foreldrene betyr all verden! Brynhild Farbrot Foreldrene betyr all verden! Brynhild Farbrot Foosnæs brynhild.foosnas@ude.oslo.kommune.no @BrynhildFF Plan for kvelden Hva kan dere foreldre bidra med? Matematikkfaget i skolen i dag Spill og aktiviteter

Detaljer

INNHOLD. Satsingsområde: Klasseledelse. Grunnleggende ferdigheter i LK06. Satsingsområdene: Regning, lesing, skriving.

INNHOLD. Satsingsområde: Klasseledelse. Grunnleggende ferdigheter i LK06. Satsingsområdene: Regning, lesing, skriving. INNHOLD Satsingsområde: Klasseledelse Grunnleggende ferdigheter i LK06 Satsingsområdene: Regning, lesing, skriving Analyseverktøy Klasseledelse Åpne dører Kvalitet i skolens kjerneoppgaver Personlig utvikling

Detaljer

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring Overordnet plan for fagene. Fag: Matematikk Trinn: 10 Skole: Lindesnes ungdomsskole År: 2015-16 Lærestoff: Mega 10 A og 10B Vurdering. Prinsipper i vurdering. 1. Elevene forstår hva de skal lære og hva

Detaljer

Læringsdagene i Alta Grunnleggende regneferdighet matematisk kompetanse. Tone Skori 3. oktober 2013. Ditt navn og årstall

Læringsdagene i Alta Grunnleggende regneferdighet matematisk kompetanse. Tone Skori 3. oktober 2013. Ditt navn og årstall Læringsdagene i Alta Grunnleggende regneferdighet matematisk kompetanse Tone Skori 3. oktober 2013 Ditt navn og årstall Agenda for dagen Læringspartner Grunnleggende ferdigheter i matematikk matematisk

Detaljer

Oppdatert august 2014. Helhetlig regneplan Olsvik skole

Oppdatert august 2014. Helhetlig regneplan Olsvik skole Oppdatert august 2014 Helhetlig regneplan Olsvik skole Å regne Skolens er en strategier basis for for livslang å få gode, læring. funksjonelle elever i regning. 1 Vi på Olsvik skole tror at eleven ønsker

Detaljer

Bruk av nettressurser i utvikling av matematikkundervisning. Seminar Realfagskommuner Pulje 1, 26. september 2016

Bruk av nettressurser i utvikling av matematikkundervisning. Seminar Realfagskommuner Pulje 1, 26. september 2016 Bruk av nettressurser i utvikling av matematikkundervisning Seminar Realfagskommuner Pulje 1, 26. september 2016 Hva er matematikk? Måter å se matematikk på: Regler resonnering Redskap eget fag Huske kreativitet

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? Bjørnar Alseth Høgskolen i Oslo Styremedlem i Lamis Lærebokforfatter; MULTI Mona Røsseland

Detaljer

Ny Giv. Grunnleggende regneferdighet. Tone Skori Stavanger 270213. Ditt navn og årstall

Ny Giv. Grunnleggende regneferdighet. Tone Skori Stavanger 270213. Ditt navn og årstall Ny Giv Grunnleggende regneferdighet Tone Skori Stavanger 270213 Ditt navn og årstall Læringspartner (Kilde: Hilde Ødegaard Olsen, Skøyen skole) Hva er en læringspartner? En du sitter sammen med en viss

Detaljer

Nye læreplaner, nye utfordringer!

Nye læreplaner, nye utfordringer! Oversikt Nye læreplaner, nye utfordringer! Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Ny læreplan, nye utfordringer for undervisningen i matematikk

Detaljer

ÅRSPLAN I MATEMATIKK FOR 4. TRINN HØSTEN

ÅRSPLAN I MATEMATIKK FOR 4. TRINN HØSTEN 34 35 36 37 38 39 40 42 43 44 45 ÅRSPLAN I MATEMATIKK FOR 4. TRINN HØSTEN 2014 Læreverk: Multi Faglærer: Astrid Løland Fløgstad MÅL (K06) TEMA ARBEIDSFORM VURDERING lese avlassere og beskrive posisjoner

Detaljer

ÅRSPLAN I MATEMATIKK FOR 3. TRINN HØSTEN 2013 Læreverk: Multi Faglærer: Astrid Løland Fløgstad MÅL (K06) TEMA ARBEIDSFORM VURDERING Data og statistikk

ÅRSPLAN I MATEMATIKK FOR 3. TRINN HØSTEN 2013 Læreverk: Multi Faglærer: Astrid Løland Fløgstad MÅL (K06) TEMA ARBEIDSFORM VURDERING Data og statistikk 34 35 36 37 38 39 40 42 43 44 45 46 ÅRSPLAN I MATEMATIKK FOR 3. TRINN HØSTEN 2013 Læreverk: Multi Faglærer: Astrid Løland Fløgstad MÅL (K06) TEMA ARBEIDSFORM VURDERING Data og statistikk samle, sortere,

Detaljer

L06. Den gode matematikkundervisning. - hva er det? Hvordan bli en motiverende lærer? Intensjonene med den nye læreplanen

L06. Den gode matematikkundervisning. - hva er det? Hvordan bli en motiverende lærer? Intensjonene med den nye læreplanen Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen 1-May-06 1-May-06

Detaljer

Data og statistikk 35

Data og statistikk 35 ÅRSPLAN I MATMATIKK FOR 3. TRINN HØSTN 2017 Læreverk: Multi Faglærer: Astrid Løland Fløgstad og Inger-Alice Breistein MÅL/LÆR (LK) TMA ARBIDSFORM/MTOD VURDRING 34 Data og statistikk 35 36 37 38 39 40 samle,

Detaljer

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p

Karakter 2: 10p Karakter 3: 17p Karakter 4: 23p Karakter 5: 30p Karakter 6: 36p 30.09.016 MATEMATIKK (MAT1005) Potenser / Prosent / Mønster / Tid DEL 1 (UTEN HJELPEMIDLER) 45 minutter DEL (MED HJELPEMIDLER) 45 minutter (Del 1 leveres inn etter nøyaktig 45 minutter og før hjelpemidlene

Detaljer

Velkommen til presentasjon av Multi!

Velkommen til presentasjon av Multi! Velkommen til presentasjon av Multi! Bjørnar Alseth Høgskolen i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Dagsoversikt Ny læreplan,

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse J A N U A R KJØP OG SALG Læringsstrategier:

Detaljer

Livslang læring og sosial kompetanse i Bodøskolene

Livslang læring og sosial kompetanse i Bodøskolene Livslang læring og sosial kompetanse i Bodøskolene Grunnleggende ferdigheter Med denne folderen ønsker vi å: Synliggjøre både hva og hvordan Bodøskolen arbeider for at elevene skal utvikle kompetanse som

Detaljer

Algebra - læring og undervisning

Algebra - læring og undervisning Algebra - læring og undervisning Margrethe Naalsund 17.03.17 Norges miljø- og biovitenskapelige universitet 1 TIMSS 2015, 9.trinn Bergem, Kaarstein og Nilsen (2016) Norges miljø- og biovitenskapelige universitet

Detaljer

Hva er matematisk kompetanse?

Hva er matematisk kompetanse? Kursinnhald Hva er matematisk kompetanse? Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS (landslaget for matematikk i skolen) Lærebokforfatter, MULTI Hva er matematisk kompetanse

Detaljer

Nasjonal prøve i grunnleggende ferdigheter i å kunne regne 5. og 8. (9.) trinn

Nasjonal prøve i grunnleggende ferdigheter i å kunne regne 5. og 8. (9.) trinn Nasjonal prøve i grunnleggende ferdigheter i å kunne regne 5. og 8. (9.) trinn Lillehammer 5. og 6. september 2017 Revidert versjon pga. offentlighet Grethe Ravlo Leder for prøveutviklingsgruppa ved Nasjonalt

Detaljer

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE 2012-2013 MÅLENE ER FRA LÆREPLANVERKET FOR KUNNSKAPSLØFTET 2006 OG VEKTLEGGER HVA ELEVENE SKAL HA TILEGNET SEG ETTER 2. KLASSE Grunnleggende ferdigheter

Detaljer

SMART knyttet til kompetansemål i fag

SMART knyttet til kompetansemål i fag SMART knyttet til kompetansemål i fag Samfunnsfag Formål for faget Samfunnsfag skal bidra til å fremme elevenes forståelse for betydningen av teknologi og entreprenørskap. på denne måten vil faget, gjennom

Detaljer

Vurderingsveiledning

Vurderingsveiledning Lokalt gitt skriftlig eksamen i MAT1001 Matematikk 1P-Y vår 017 Eksamensmodell Eksamen varer i 4 timer og består av to deler. Eksamensordning Eksamen har ingen forberedelsesdel. Del 1 og Del av eksamen

Detaljer

Kompetanse i faget og kompetansemål: Hovedområdene: 1. Tal og algebra 2. Geometri 3. Måling 4. Statistikk og sannsyn

Kompetanse i faget og kompetansemål: Hovedområdene: 1. Tal og algebra 2. Geometri 3. Måling 4. Statistikk og sannsyn Mal lokallæreplan ved Froland skole Utdanningsdirektoratets veiledninger til de ulike læreplanene for fag danner grunnlaget for arbeidet med lokale læreplaner på Froland skole Fag: matematikk Trinn: 7.

Detaljer

Læreplanene for Kunnskapsløftet

Læreplanene for Kunnskapsløftet Læreplanene for Kunnskapsløftet Hvordan få samsvar mellom intensjon og praksis? Mona Røsseland Leder i Lamis Nasjonalt senter for matematikk i opplæringen Lærebokforfatter; MULTI 12-Mar-06 Intensjoner

Detaljer

Vurdering for og av læring

Vurdering for og av læring Vurdering for og av læring Skolens nye trendord? Svein H. Torkildsen, NSMO Dagens program Arbeidet legges opp rundt 1. læreplanens kompetansemål 2. arbeidsmåter i faget 3. læreboka og pedagogens arbeid

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler

Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler Sandvika 12.september 2011 Tone Elisabeth Bakken tone.bakken@ohg.vgs.no Hovedpunkter: Praktisk regning dag 1 Læringsmiljø Elevers

Detaljer

8 årstrinn, Høst Tina Dufke & Arne Christian Ringbsu

8 årstrinn, Høst Tina Dufke & Arne Christian Ringbsu 35-38 TALLÆRE OG GRUNNLEGGENDE REGNING Periode 8 årstrinn, Høst 2016. Tina Dufke & Arne Christian Ringbsu Hovedemne Mål Innhold Læringsressurser Vurdering Titallssystemet med heltall og desimaltall Regning

Detaljer

Andre skisse kjerneelementer i matematikk fellesfag

Andre skisse kjerneelementer i matematikk fellesfag Andre skisse kjerneelementer i matematikk fellesfag Dette er en skisse til hva kjerneelementer kan være. Den viser hvor langt kjerneelementgruppen har kommet i arbeidet med å definere hva som er kjerneelementer

Detaljer

Hva måler nasjonal prøve i regning?

Hva måler nasjonal prøve i regning? Hva måler nasjonal prøve i regning? Prøven skal måle i hvilken grad elevenes regneferdigheter er i samsvar med beskrivelsene av regning som grunnleggende ferdighet i læreplanen til hvert fag. Prøven er

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse KJØP OG SALG Lære om : - Sedler og mynters

Detaljer

Reviderte læreplaner konsekvenser for undervisningen?

Reviderte læreplaner konsekvenser for undervisningen? Reviderte læreplaner konsekvenser for undervisningen? Multiaden 2013 Innhold Kompetanse i matematikk Den reviderte læreplanen Hva skal elevene lære? Grunnleggende ferdigheter i matematikk Konsekvenser

Detaljer