NY GIV I REGNING. Brynhild Farbrot

Størrelse: px
Begynne med side:

Download "NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF"

Transkript

1 NY GIV I

2 Hva er grunnleggende regneferdighet? Hvorfor strever elevene? Hva gjør vi med det?

3 Hva menes med grunnleggende regneferdighet? Hva skiller grunnleggende regneferdighet fra faget matematikk?

4 God regning For å legge til rette for elevenes utvikling i regning som grunnleggende ferdighet, kan det være hensiktsmessig å fokusere på følgende komponenter i god regning Forståelse Beregning Anvendelse Resonnering Engasjement okument_regning_vedlegg_2.pdf?epslanguage=no Fagspesifikk 4

5 Forståelse Forstå matematiske begreper, representasjoner, operasjoner, prosedyrer og relasjoner

6 Forståelse Lettere å løse nye og ukjente problemer Lettere å rekonstruere fakta og prosedyrer som er glemt

7 Forståelse Varierte metoder Konkretisering Veien fra det konkrete til det abstrakte Språk og begreper Muntlighet

8 Forståelse Elever som har utviklet forståelse kan representere situasjonen på flere måter og bruke den som er mest hensiktsmessig.

9 Beregning Utføre prosedyrer som involverer tall, størrelser og figurer, effektivt, nøyaktig og fleksibelt

10 Beregning Beherske prosedyrer Addisjon, subtraksjon, multiplikasjon og divisjon Måling Algebra Geometri Funksjoner Statistikk

11 Anvendelse Formulere problemer matematisk og utvikle strategier for å løse problemer ved å bruke passende begreper og prosedyrer

12 Anvendelse Formulere og avgrense problemer Utvikle løsningsstrategier og modeller Eks: I en kiosk kan du velge mellom fire ulike smaker på kuleis. Du skal ha to kuler. Hvor mange valgmuligheter har du?

13 Resonnering Forklare og begrunne en løsning til et problem, eller utvide fra noe som er kjent til noe som ikke er kjent

14 Resonnering limet som holder matematikken sammen Forklare sammenhengene

15 Engasjement Være motivert for å lære matematikk, se på matematikk som nyttig og verdifullt, og tro at innsats bidrar til økt læring i matematikk

16 Engasjement Nøkkelen til å lære matematikk Innsats Selvtillit Følelse av mestring

17 Historien om fire elever

18

19 Kjennetegn ved god klasseledelse Thomas Nordahl: Læreren har høy bevissthet om betydningen av relasjonen lærer elev, og tar ansvar for kvaliteten på denne relasjonen.

20 Jeg hater matte Jeg kan ikke matte Ble til historien om 12 elever

21 Mestring i matematikk nært knyttet til elevenes selvoppfatning og tro på egne evner

22 Hattie: Elevenes forventninger til egen læring er sterkt påvirket av tidligere erfaringer med det å lære

23 Erfaringer med faget Pugge gangetabellen Skjønte ingenting av det læreren forklarte Oppgaver i boka Ut av klassen Tekstoppgaver GLEM DET!!! Får det ikke til!!!

24 Observasjon i klassen Ser på læreren Later som de prøver Venter til de andre svarer Sitter lent over bøkene Gjør lite eller ingenting Ber ikke om hjelp Ingen aktivitet

25 Elevene synes matte er vanskelig og kjedelig Hva gjør vi?

26 Tidlig innsats Styrking av opplæringen på de lavere trinnene Tiltak så snart vanskene oppdages

27 Opplæringen har stor betydning Forebygging Rask intervensjon Presise tiltak Kan redusere lærevanskene i skolen med opptil 70% (Lyon, et.al 2003)

28 Fakta Vi vet at ca grunnskoleelever (10-15% av elevkullet) årlig står i fare for å gå ut av ungdomstrinnet uten å beherske de fire regningsartene Dette er barn med lærevansker i matematikk med behov for tilrettelagt opplæring Lunde

29 Årsaker til matematikkvansker 1. Medisinske/nevrologiske 2. Psykologiske 3. Sosiologiske 4. Didaktiske Feil undervisningsmetoder Ensidig ferdighetstrening Gal progresjon Marit Holm

30 MATEMATIKKANGST My favorite no

31 Ca 5% Egne opplegg Ca 15 % Skreddersøm i perioder Ca 80% Konfeksjon Lunde

32 Melling-Olsen stiller spørsmål om i hvor stor grad elevene med matematikkvansker også møter samme situasjon den andre gangen Jo flere likhetstrekk det er mellom første møte og andre møte, desto mer hemmende virkning har det på læringsutbytte, mener han Derfor: Det andre møtet med matematikken bør være annerledes enn det første! Melling-Olsen, 1997

33 10 % av det vi leser 20 % av det vi hører 30 % av det vi ser 50 % av det vi ser og hører 80 % av det vi sier Hvordan husker vi? Kinesisk visdomsord 90 % av det vi sier og gjør

34 (Referert i Olsen og Aasland, 2013)

35 Hva gjør vi? Sikre aktivitet Elevene må tenke, snakke og gjøre matematikk

36 Muntlig aktivitet Forklare tankegang og strategier for hverandre Gruppeoppgaver Arbeidspar

37 Matematikklæring på skolen Det er bare i matematikktimene på skolen at det er mulig å sykle i 240 km/t og drikke 1500 liter brus hver dag! (Gunnar Nordberg)

38 Nasjonale Prøver 8. trinn 2008 Oppg. 20 og 21 Divisjon med desimaltall og enheter for volum Hva er riktig svar? Anne drikker et glass juice 12 : 0,5 = hver morgen. Omtrent hvor mye juice A 2,4 25% drikker hun hver morgen? B 6 25 % A 2 liter 4 % B 3 cl 21 % C 12 9 % D % ubesvart 3% C 50 dl 17 % D 200 ml 57 % 2 % ubesvart

39 Kartlegging Sliter med Desimaltall Brøk Forholdsregning Oppgaver med tekst Glemt algoritmene - Automatisering Addisjon og subtraksjon 0-20 Multiplikasjon

40 Tegn på matematikkvansker Vansker med størrelsesbegrepet og å foreta sammenlikninger (hvilket tall er størst i et par) Bruk av tungvinte tellestrategier Langsom identifisering/oppfatning av antall Langsom utføring av enkle hoderegningsoppgaver

41

42 Aktivitet Ukens grublis: I en klasse med 30 elever var det 12 som drev orientering, mens 17 spilte på fotballag. 5 av elevene gjorde begge deler. Hvor mange av de 30 drev verken med fotball eller orientering? Hvordan tenkte du for å løse oppgaven?

43 Les spørsmålet hva betyr det? Les hele teksten Finn opplysningene Tegn skisse eller modell Bruk modellen til å løse utfordringen/e Les spørsmålet - Har du svart på det det spørres om Er svaret rimelig?

44 Beregninger

45 Aktivitet Først til 100

46 Nærmest 100 hundrer tiere enere sum

47 Nærmest 10 tiere enere tideler sum

48 Nærmest 1 enere tideler hundredeler sum

49 Muntlig aktivitet!!! Sette ord på tanken Få oppgaver, mye muntlig trening Felles i gruppen Arbeidspar Forklare tankegang og strategier Fokus på begreper og språk

50 Aktiviteter Begrepskryssord Begrepsbingo

51 Rett abstraksjonsnivå

52 Glemt algoritmene Tilby elevene modeller for tanken! (Ole Enge HIST)

53 53 Forskjellige modeller Arealmodellen for multiplikasjon Divisjon Visuelle modeller generelt

54 54 Utvikling av strategier Et eksempel

55 55 Modell av strategi

56 56 25 * 35

57

58 Divisjonsalgoritmen

59 NY GIV Varierte metoder Relasjoner Positive forventinger Organisering Innsats Elevene må tenke, snakke og gjøre matematikk! Mer forståelse, mindre ferdige oppskrifter! Ingen vits i å gjøre mer av det som ikke virker!

60 TAKK FOR MEG! Lykke til!

Tilpasset opplæring. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no

Tilpasset opplæring. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no Tilpasset opplæring Brynhild.foosnas@baerum.kommune.no Hva sier Kunnskapsløftet? Tilpasset opplæring innenfor fellesskapet er grunnleggende elementer i fellesskolen. Tilpasset opplæring for den enkelte

Detaljer

Regning som grunnleggende ferdighet. Brynhild Farbrot Foosnæs

Regning som grunnleggende ferdighet. Brynhild Farbrot Foosnæs Regning som grunnleggende ferdighet Brynhild.foosnas@baerum.kommune.no Hva er grunnleggende regneferdighet? Historien om fire elever Kjennetegn ved god klasseledelse Thomas Nordahl: Læreren har høy bevissthet

Detaljer

Foreldrene betyr all verden! Brynhild Farbrot

Foreldrene betyr all verden! Brynhild Farbrot Foreldrene betyr all verden! Brynhild Farbrot Foosnæs brynhild.foosnas@ude.oslo.kommune.no @BrynhildFF Plan for kvelden Hva kan dere foreldre bidra med? Matematikkfaget i skolen i dag Spill og aktiviteter

Detaljer

Ny Giv i regning og inkluderende tilpasset opplæring. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no

Ny Giv i regning og inkluderende tilpasset opplæring. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no Ny Giv i regning og inkluderende tilpasset opplæring Brynhild.foosnas@baerum.kommune.no Hva menes med grunnleggende regneferdighet? Hva skiller grunnleggende regneferdighet fra faget matematikk? Regning

Detaljer

Ny Giv og inkluderende tilpasset opplæring. Brynhild Farbrot Foosnæs

Ny Giv og inkluderende tilpasset opplæring. Brynhild Farbrot Foosnæs Ny Giv og inkluderende tilpasset opplæring Brynhild.foosnas@baerum.kommune.no Hva menes med grunnleggende regneferdighet? Hva skiller grunnleggende regneferdighet fra faget matematikk? Historien om fire

Detaljer

Ny Giv og inkluderende tilpasset opplæring. Brynhild Farbrot Foosnæs

Ny Giv og inkluderende tilpasset opplæring. Brynhild Farbrot Foosnæs Ny Giv og inkluderende tilpasset opplæring Brynhild.foosnas@baerum.kommune.no Hva menes med grunnleggende regneferdighet? Hva skiller grunnleggende regneferdighet fra faget matematikk? Historien om fire

Detaljer

Matematikkvansker Hvorfor strever noen og hva gjør vi med det? Brynhild Farbrot Foosnæs

Matematikkvansker Hvorfor strever noen og hva gjør vi med det? Brynhild Farbrot Foosnæs Matematikkvansker Hvorfor strever noen og hva gjør vi med det? Brynhild.foosnas@baerum.kommune.no Historien om fire elever Kjennetegn ved god klasseledelse Thomas Nordahl: Læreren har høy bevissthet om

Detaljer

Matematisk førstehjelp

Matematisk førstehjelp Matematisk førstehjelp Brøk prosent desimaltall Brynhild Farbrot Foosnæs Matematisk kompetanse Kunnskapsløftet Kompetansemål Ferdigheter Forståelse Anvendelse Kunnskapsløftet Kompetansemål Ferdigheter:

Detaljer

DAG 3 AKERSHUS NY GIV - REGNING. Brynhild Farbrot

DAG 3 AKERSHUS NY GIV - REGNING. Brynhild Farbrot DAG 3 AKERSHUS NY GIV - REGNING Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF Hva menes med grunnleggende regneferdighet? Hva skiller grunnleggende regneferdighet fra faget matematikk?

Detaljer

DAG 3 HAMAR NY GIV - REGNING. Brynhild Farbrot

DAG 3 HAMAR NY GIV - REGNING. Brynhild Farbrot DAG 3 HAMAR NY GIV - REGNING Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF Plan for dagen Ulike undervisningsmetoder Matematikkvansker Aktiviteter Hva menes med grunnleggende

Detaljer

GRUNNLEGGENDE REGNEFERDIGHET

GRUNNLEGGENDE REGNEFERDIGHET GRUNNLEGGENDE REGNEFERDIGHET Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF Hva menes med grunnleggende regneferdighet? Hva skiller grunnleggende regneferdighet fra faget matematikk?

Detaljer

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs Ny Giv Grunnleggende regneferdighet Brynhild Farbrot Foosnæs Læring innebærer endring Hva har du endret siden sist? Læring innebærer at du blir utfordret og at du tør å ta utfordringen. Hvilke utfordringer

Detaljer

NY GIV REGNING HVORFOR STREVER NOEN OG HVA GJØR VI MED DET?

NY GIV REGNING HVORFOR STREVER NOEN OG HVA GJØR VI MED DET? NY GIV REGNING HVORFOR STREVER NOEN OG HVA GJØR VI MED DET? Brynhild.foosnas@baerum.kommune.no @BrynhildFF Historien om fire elever Kjennetegn ved god klasseledelse Thomas Nordahl: Læreren har høy bevissthet

Detaljer

DAG 3 AKERSHUS NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

DAG 3 AKERSHUS NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF DAG 3 AKERSHUS NY GIV - REGNING Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF Hva menes med grunnleggende regneferdighet? Hva skiller grunnleggende regneferdighet fra faget matematikk?

Detaljer

å gjenkjenne regning i ulike kontekster å kommunisere og argumentere for valg som er foretatt

å gjenkjenne regning i ulike kontekster å kommunisere og argumentere for valg som er foretatt 13. mai 2014 å gjenkjenne regning i ulike kontekster å velge holdbare løsningsmetoder - gjennomføre å kommunisere og argumentere for valg som er foretatt tolke resultater kunne gå tilbake og gjøre nye

Detaljer

Matematikk med familien. Lofsrud skole 20.01.2016

Matematikk med familien. Lofsrud skole 20.01.2016 Matematikk med familien Lofsrud skole 20.01.2016 Siv.ing. Magnus Jakobsen Lektor med opprykk, F21 www.lektorjakobsen.no Hanan Abdelrahman Lektor med opprykk, Lofsrud skole www.fb.com/matematikkhjelperen

Detaljer

Eksamen i K2RSGFAF Regning som grunnleggende ferdighet i alle fag, Kompetanse for kvalitet 2014. Emne 1: 2KUOR19 Kunnskap om regning 15 sp

Eksamen i K2RSGFAF Regning som grunnleggende ferdighet i alle fag, Kompetanse for kvalitet 2014. Emne 1: 2KUOR19 Kunnskap om regning 15 sp Eksamen i K2RSGFAF Regning som grunnleggende ferdighet i alle fag, Kompetanse for kvalitet 2014 Emne 1: 2KUOR19 Kunnskap om regning 15 sp Eksamensdag: Torsdag 18. desember 2014 Eksamenstid: Kl. 09:00 kl.

Detaljer

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09.

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09. Hva er Hvorfor Singaporematematikk er folk interesserte i Singapore-matematikk Fordi elevene i Singapore stadig får best resultat på En samling undervisningsstrategier vanlig i Singapore internasjonale

Detaljer

MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING

MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING Svein H. Torkildsen Ny GIV 2012-13 Dette har vi fokus på God regning effektiv undervisning 10. trinn underyterne Elevers tenking Grunnleggende

Detaljer

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012 Mekanisk regneferdighet GODE ALGORITMER IKKE SØRGELIG SUBTRAKSJON OG DYSTER DIVISJON Bjørnar Alseth Multi i Vest 2012 Forskningens konklusjon Hva kreves i læreplanen? Forskerne er enige om 1. Vi må ikke

Detaljer

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og

Detaljer

Hva måler nasjonal prøve i regning?

Hva måler nasjonal prøve i regning? Hva måler nasjonal prøve i regning? Prøven skal måle i hvilken grad elevenes regneferdigheter er i samsvar med beskrivelsene av regning som grunnleggende ferdighet i læreplanen til hvert fag. Prøven er

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

KONGSVINGER 08.11.13 NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

KONGSVINGER 08.11.13 NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF KONGSVINGER 08.11.13 NY GIV - REGNING Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF Mattelæreren God regning For å legge til rette for elevenes utvikling i regning som grunnleggende

Detaljer

Ny Giv. Grunnleggende regneferdighet. Tone Skori Stavanger 270213. Ditt navn og årstall

Ny Giv. Grunnleggende regneferdighet. Tone Skori Stavanger 270213. Ditt navn og årstall Ny Giv Grunnleggende regneferdighet Tone Skori Stavanger 270213 Ditt navn og årstall Læringspartner (Kilde: Hilde Ødegaard Olsen, Skøyen skole) Hva er en læringspartner? En du sitter sammen med en viss

Detaljer

Forebygging av matematikkvansker

Forebygging av matematikkvansker Forebygging av matematikkvansker Lunde peker på hvor viktig forebygging er. Vi vil vise til tre ressurser her: En engelsk rapport Mathematics Matters: h"ps://www.ncetm.org.uk/public/files/309231/mathema>cs

Detaljer

Fokus på matematikkvansker og matematikkfaget. Jeanette Wagelid Schjetne

Fokus på matematikkvansker og matematikkfaget. Jeanette Wagelid Schjetne Fokus på matematikkvansker og matematikkfaget Jeanette Wagelid Schjetne Presentasjon av meg Adjunkt fra Høyskolen i Finnmark, Alta Studert tysk ved Volkshochschule, Münster, Tyskland Studie for Matematikkterapi,

Detaljer

Vi jobber med fremmede tallord. Definisjon. Øvingsoppgaver. Sekundære matematikkvansker. Forebygging av matematikkvansker

Vi jobber med fremmede tallord. Definisjon. Øvingsoppgaver. Sekundære matematikkvansker. Forebygging av matematikkvansker Forebygging av matematikkvansker Ann-Christin Arnås acarnaas@yahoo.no 1Lul 2Laa 3Bay 4Bey 5Bee 6Lol 7Lie 8Pop 9Taa 10 Boo Vi jobber med fremmede tallord Hvor mange? Regn ut: 1) bay+bey 2) pop+lul 3) boo-lie

Detaljer

To likninger med to ukjente

To likninger med to ukjente To likninger med to ukjente 1. En skisse av undervisningsopplegget Mål Målet er at elevene skal lære seg addisjonsmetoden til å løse lineære likningssett med to ukjente. I stedet for å få metoden forklart

Detaljer

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.

Detaljer

Løft matematikkundervisningen. med Multi 01.05.2010. Gruppere ulike mengder. Telling. Lineær modell

Løft matematikkundervisningen. med Multi 01.05.2010. Gruppere ulike mengder. Telling. Lineær modell Løft matematikkundervisningen med Multi 1. 1.trinnsboka har vært for lite utfordrende for mange elever. Revidert Multi 1 består nå av to grunnbøker Elevene får med dette bedre tid til å utvikle grunnleggende

Detaljer

Oppdatert august 2014. Helhetlig regneplan Olsvik skole

Oppdatert august 2014. Helhetlig regneplan Olsvik skole Oppdatert august 2014 Helhetlig regneplan Olsvik skole Å regne Skolens er en strategier basis for for livslang å få gode, læring. funksjonelle elever i regning. 1 Vi på Olsvik skole tror at eleven ønsker

Detaljer

ÅRSPLAN. Grunnleggende ferdigheter

ÅRSPLAN. Grunnleggende ferdigheter ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for

Detaljer

Felles klasseundervisning og tilpasset opplæring kan det forenes?

Felles klasseundervisning og tilpasset opplæring kan det forenes? Felles klasseundervisning og tilpasset opplæring kan det forenes? 5.-7.trinn Innhold Hvordan skal vi klare å få alle elevene til å oppleve mestring og samtidig bli utfordret nok og få mulighet til å strekke

Detaljer

Matematikk i praksis - eller grunnleggende basiskunnskaper og ferdigheter?

Matematikk i praksis - eller grunnleggende basiskunnskaper og ferdigheter? Introduksjon Viktige spørsmål om skolematematikken: Hvorfor skal alle lære matematikk? Hvor MYE (og hva slags) matematikk skal ALLE lære? Hvor LENGE skal alle lære den SAMME matematikken? Matematikken

Detaljer

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Hovedområde Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale sressurser for 5. trinn Fra Lese-forlivet-planen brukes jevnlig i alle fag

Detaljer

Tall og algebra - begrep, forutsetninger og aktiviteter

Tall og algebra - begrep, forutsetninger og aktiviteter Tall og algebra - begrep, forutsetninger og aktiviteter Astrid Bondø NSMO 17-Sep-08 Hvordan gjøre oppgavene rikere? Oppgave A Regn ut svaret: a. 985 67 b. 897 65 c. 875 96 d. 586 97 addisjon subtraksjon

Detaljer

Nasjonale prøver 01.11.2012

Nasjonale prøver 01.11.2012 Nasjonale prøver 01.11.2012 Veiledning til lærere Regning 8. og 9. trinn. DEL 2 Bokmål Innhold Hvordan bruke resultatene i opplæringen?... 3 Oversikt over oppgavene til nasjonale prøver i regning 2012...

Detaljer

Definisjon av god regning

Definisjon av god regning Definisjon av god regning Å kunne regne er en viktig forutsetning for egen utvikling, og for å ta hensiktsmessige avgjørelser på en rekke områder i eget daglig- og arbeidsliv. Videre er det nødvendig for

Detaljer

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi Forfatterne bak Multi: Multi i praksis 5.-7.trinn Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Grunntanken

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Årsplan i matematikk 6.trinn 2015/2016 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 36 /37 Tall og tallforståelse -siffer og tall -beskrive plassverdisystemet

Detaljer

LOKAL LÆREPLAN ETTER LK-06 VED TORDENSKJOLDS GATE SKOLE. FAG: Matematikk TRINN: 5. Timefordeling på trinnet: 4 timer i uka

LOKAL LÆREPLAN ETTER LK-06 VED TORDENSKJOLDS GATE SKOLE. FAG: Matematikk TRINN: 5. Timefordeling på trinnet: 4 timer i uka LOKAL LÆREPLAN ETTER LK-06 VED TORDENSKJOLDS GATE SKOLE FAG: Matematikk TRINN: 5 Timefordeling på trinnet: 4 timer i uka Grunnleggende ferdigheter i regning, lesing, skriving og digitale ferdigheter. Uke

Detaljer

Presentasjon av Multi

Presentasjon av Multi Presentasjon av Multi Mellomtrinnet Eksempler på Multi i praktisk bruk Faglig fokus og tydelige læringsmål Nettstedet Tilpasset opplæring Ulike oppgavetyper og aktivitetsformer Faglig fokus og tydelige

Detaljer

Undervisning som stimulerer barns evne til matematiske tenkning «russisk matematikk» i norsk skole

Undervisning som stimulerer barns evne til matematiske tenkning «russisk matematikk» i norsk skole Undervisning som stimulerer barns evne til matematiske tenkning «russisk matematikk» i norsk skole Novemberkonferansen 26. 27. november 2014 Kjersti Melhus Disposisjon for presentasjonen Litt om bakgrunnen

Detaljer

Satsingsområdene i Ungdomstrinn i utvikling

Satsingsområdene i Ungdomstrinn i utvikling Satsingsområdene i Ungdomstrinn i utvikling INNHOLD Innføring av grunnleggende ferdigheter i LK06 Satsingsområdene: Regning, lesing, skriving, klasseledelse Rundtur i nettressursene Verktøy for implementering

Detaljer

Årsplan i matematikk 5.klasse 2015/16

Årsplan i matematikk 5.klasse 2015/16 Årsplan i matematikk 5.klasse 2015/16 Emne/Innhold Uke Presisering Læremidler Kompetansemål Hele tall 34- Tall og algebra Multi s. 4-10 Multi 5a Kap 1 39 Bestemme tallverdien til sifrene i tall med opp

Detaljer

10.03.2011. Hvorfor får elevene problemer med tekstoppgaver? Hva kan vi gjøre for at elevene skal mestre tekstoppgaver bedre?

10.03.2011. Hvorfor får elevene problemer med tekstoppgaver? Hva kan vi gjøre for at elevene skal mestre tekstoppgaver bedre? Hvorfor får elevene problemer med tekstoppgaver? Hva kan vi gjøre for at elevene skal mestre tekstoppgaver bedre? Mona Røsseland Matematikksenteret (for tiden i studiepermisjon) Lærebokforfatter, MULTI

Detaljer

Årsplan i matematikk 6.trinn Læreverk: MULTI Uke Kompetansemål Tema Delmål Arbeidsmåte Vurdering

Årsplan i matematikk 6.trinn Læreverk: MULTI Uke Kompetansemål Tema Delmål Arbeidsmåte Vurdering Årsplan i matematikk 6.trinn 2016-17 Læreverk: MULTI Uke Kompetansemål Tema Delmål Arbeidsmåte Vurdering i kunnskapsløftet. 33-38 beskrive og plassverdisystem et for regne med positive og brøker og prosent,

Detaljer

ÅRSPLAN. Skoleåret: 16/17 Trinn: 6.trinn Fag: Matematikk

ÅRSPLAN. Skoleåret: 16/17 Trinn: 6.trinn Fag: Matematikk ÅRSPLAN Skoleåret: 16/17 Trinn: 6.trinn Fag: Matematikk Periode med tema Uke 33 35 Tall og regning Titallsystemet, avrunding uke 36 Hoderegning, Addisjon og subtraksjon Uke 37 Negative tall, Kompetansemål

Detaljer

Årsplan i matematikk for 5., 6. og 7. klasse 2011/2012 For hvert kapittel/nytt emne vil det bli laget egne periodeplaner

Årsplan i matematikk for 5., 6. og 7. klasse 2011/2012 For hvert kapittel/nytt emne vil det bli laget egne periodeplaner Årsplan i matematikk for 5., 6. og 7. klasse 2011/2012 For hvert kapittel/nytt emne vil det bli laget egne periodeplaner - Gjennom hele året: Vurdering - Ukesluttprøver utgangspunkt i ukas undervisningsmål

Detaljer

Matematikk i 1. klasse

Matematikk i 1. klasse Matematikk i 1. klasse Bergen kommune 3. og 4. juni 2009 Anne Kari SælensmindeS 08.06.2009 1 tall siffer mengder antall doble sirkler ruter kanter posisjoner tiere mønster 08.06.2009 2 Mål l for denne

Detaljer

KAN MÅ ARBEIDE MER MED

KAN MÅ ARBEIDE MER MED MÅLARK 1 KAPITTEL 1 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut fra tallinjer Kunne tegne en tallinje og dele den riktig opp

Detaljer

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING

(K06) TEMA INNHOLD ARBEIDSFORM VURDERING HALVÅRSPLAN I MATEMATIKK FOR 6. TRINN 2016-2017 Læreverk: Multi 6a Lærer: Anita Nordland Uke MÅL (K06) TEMA INNHOLD ARBEIDSFORM VURDERING 34-39 - Finne verdien av et siffer avhengig av hvor i tallet det

Detaljer

2.3 Delelighetsregler

2.3 Delelighetsregler 2.3 Delelighetsregler Begrepene multiplikasjon og divisjon og regneferdigheter med disse operasjonene utgjør sentralt lærestoff på barnetrinnet. Det er mange tabellfakta å huske og operasjonene skal kunne

Detaljer

TID TEMA KOMPETANSEMÅL ARBEIDSMETODER VURDERINGSFORMER RESSURSER

TID TEMA KOMPETANSEMÅL ARBEIDSMETODER VURDERINGSFORMER RESSURSER RENDALEN KOMMUNE Fagertun skole Årsplan i matematikk for 6. trinn 2015/16 Lekser: Elevene får hver uke et lekseark som skal gjøres i lekseboka. Dette leksearket er trening på de fire regneartene, samt

Detaljer

Årsplan matematikk 3. trinn 2015/2016

Årsplan matematikk 3. trinn 2015/2016 Årsplan matematikk 3. trinn 2015/2016 Katrine Hansen Tidspunkt (uke ) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 34-35 kap 1 samle, sortere, notere og illustrere data på

Detaljer

De fire regningsartene

De fire regningsartene De fire regningsartene Det går ikke an å si at elevene først skal ha forstått posisjonssystemet, og deretter kan de begynne med addisjon og subtraksjon. Dette må utvikles gradvis og om hverandre. Elevene

Detaljer

Argumentasjon og regnestrategier

Argumentasjon og regnestrategier Ole Enge, Anita Valenta Argumentasjon og regnestrategier Undersøkelser (se for eksempel Boaler, 2008) viser at det er en stor forskjell på hvilke oppfatninger matematikere og folk flest har om matematikk.

Detaljer

Reviderte læreplaner konsekvenser for undervisningen?

Reviderte læreplaner konsekvenser for undervisningen? Reviderte læreplaner konsekvenser for undervisningen? Multiaden 2013 Innhold Kompetanse i matematikk Den reviderte læreplanen Hva skal elevene lære? Grunnleggende ferdigheter i matematikk Konsekvenser

Detaljer

Regning som grunnleggende ferdighet Kurs for yrkesfaglærere

Regning som grunnleggende ferdighet Kurs for yrkesfaglærere Regning som grunnleggende ferdighet. Kurs for yrkesfaglærere 3.april 2014 Tone Elisabeth Bakken tone.bakken@ohg.vgs.no Bestillingen For å greie problemløsing og utforsking som tar utgangspunkt i praktiske,

Detaljer

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring Overordnet plan for fagene. Fag: MATEMATIKK Trinn: 9 KLASSE Skole: LINDESNES UNGDOMSSKOLE År: 2015-2016 Lærestoff: MEGA 9A OG 9B Vurdering. Prinsipper i vurdering. 1. Elevene forstår hva de skal lære og

Detaljer

Målenheter for vekt: tonn, kg, hg, g. Måling med omgjøring i km, m, dm, cm, mm. Måling med volum.

Målenheter for vekt: tonn, kg, hg, g. Måling med omgjøring i km, m, dm, cm, mm. Måling med volum. Årsplan i matematikk 6.trinn 2015-16 Læreverk: MULTI Uk Kompetansemål i Tema Delmål Arbeidsmåte Vurdering e kunnskapsløftet. 34-37 Repetisjon Målenheter for vekt: tonn, kg, hg, g - De fire regneartene.

Detaljer

ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012

ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012 ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012 Lærer: Knut Brattfjord Læreverk: Grunntall 2 a og b, av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene er fra Lærerplanverket for kunnskapsløftet

Detaljer

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne?

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne? Elevaktiv matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? hvorfor og hvordan? Mona Røsseland Leder i Lamis Nasjonalt senter for matematikk i opplæringen Lærebokforfatter

Detaljer

Årsplan i Matematikk

Årsplan i Matematikk Årsplan i Matematikk Tidspunkt (uke eller mnd) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 5A Kap 1: God start Kunne utvikle og bruke ulike regnemetoder for addisjon og subtraksjon

Detaljer

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34-45

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34-45 MAL ÅRSPLAN I MATEMATIKK FOR 6 TRINN 2014/2015. Utarbeidet av: Britt G. Reigstad Læreverk: Multi 6a, 6b, Oppgavebok, Parallellbok, Multi kopiperm og Multi grublishefte 5-7 UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL

Detaljer

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Alle teller - en introduksjon Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor

Detaljer

Nasjonale prøver 17.10.2013

Nasjonale prøver 17.10.2013 Nasjonale prøver 17.10.2013 Veiledning til lærere Regning 5. trinn. Del 2 Bokmål Innhold Hvordan bruke resultatene i undervisningen?... 3 Oversikt over oppgavene til nasjonal prøve i regning 2013 versjon

Detaljer

Delemneplan for undervisningskunnskap i brøk og desimaltall

Delemneplan for undervisningskunnskap i brøk og desimaltall Delemneplan for undervisningskunnskap i brøk og desimaltall Emnet omfatter matematikkdidaktiske og matematikkfaglige tema innen brøk og desimaltall som er viktige for alle som skal undervise i matematikk

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse KJØP OG SALG Lære om : - Sedler og mynters

Detaljer

Kompetansesenter for læringsutvikling. Matematikkvansker

Kompetansesenter for læringsutvikling. Matematikkvansker Matematikkvansker Kjennetegn Spesifikke matematikkvansker, kjennetegnes med et forståelses- og mestringsnivå som er markert svakere enn eget evnenivå og mestring i skolefagene for øvrig, på tross av en

Detaljer

Pedagogisk rapport for skole

Pedagogisk rapport for skole Unntatt offentlighet, jf. Offl. 5a, jf. Fvl. 13 Pedagogisk rapport for skole Navn Fødselsdato Skole Trinn Kjent eleven i antall måneder/år Vedlagt kartlegging (sett kryss og dater) Carlsten leseprøve Kåre

Detaljer

Men hvorfor trenger vi et didaktisk verktøy og hvorfor skulle vi endre eller lage oppgaver?

Men hvorfor trenger vi et didaktisk verktøy og hvorfor skulle vi endre eller lage oppgaver? DiVeLOpp - DEL 1 Didaktisk Verktøy for å Lage Oppgaver Vi vil snakke om kunnskaper og læringsaktiviteter i fire ganger. Vi begynner med å identifisere kunnskaper. Deretter ser vi på læringsaktiviteter.

Detaljer

Etter en lang ferie er det en del regneferdigheter vi må friske opp:

Etter en lang ferie er det en del regneferdigheter vi må friske opp: Repetisjonshefte matematikk høsten 7. trinn Navn: Etter en lang ferie er det en del regneferdigheter vi må friske opp: Ganging med store tall s. 2 Deling med store tall s. 2 Brøkregning s. 3 Finne brøkdeler

Detaljer

Gjett tre kort. Foreldrene betyr all verden! Grunntanken bak Multi. Mastermind. Faglig fokus og tydelige læringsmål. En bred matematisk kompetanse

Gjett tre kort. Foreldrene betyr all verden! Grunntanken bak Multi. Mastermind. Faglig fokus og tydelige læringsmål. En bred matematisk kompetanse Foreldrene betyr all verden! Gjett tre kort Mona Røsseland Lærebokforfatter, MULTI Matematikksenteret, NTNU 10-Oct-10 2 Mastermind Grunntanken bak Multi Faglig fokus og tydelige læringsmål Elevene skal

Detaljer

«Kan vi dele tall slik vi deler epler?»

«Kan vi dele tall slik vi deler epler?» «Kan vi dele tall slik vi deler epler?» Matematikk er naturlig for alle barn! Odense Congress Center 7. mai 2013 Olav Lunde Odense 7. mai 2013 1 eple delt i to 2 8 delt i to 8 8 3 3 E 8 : 2 = 4 8 delt

Detaljer

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den?

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? side 1 Detaljert eksempel om Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? Dette er et forslag til undervisningsopplegg der utgangspunktet er sentrale problemstillinger

Detaljer

KOMPETANSEMÅL ETTER 2. TRINNET Tall:

KOMPETANSEMÅL ETTER 2. TRINNET Tall: KOMPETANSEMÅL ETTER 2. TRINNET Tall: 1. Telle til 100, dele opp og byggemengder oppt il 10, sette sammen og dele opp tiergrupper. 2. Bruke tallinjen til beregninger og å angi tallstørrelser. 3. Gjøre overslag

Detaljer

Oversikt over innholdet i «Tempolex matematikk, ver. 1.5», veilederversjon 1.0

Oversikt over innholdet i «Tempolex matematikk, ver. 1.5», veilederversjon 1.0 Oversikt over innholdet i «Tempolex matematikk, ver. 1.5», veilederversjon 1.0 Tema referer til de ni hovedtemaene i Tempolex-programmet (+ Kartlegging og Egne lister). Katalognivået er en oppdeling av

Detaljer

Bergen kommune. Matematikk er et redskap for å se, oppdage og løse dagliglivets små og store problemer. Dato: 13.08.13

Bergen kommune. Matematikk er et redskap for å se, oppdage og løse dagliglivets små og store problemer. Dato: 13.08.13 Bergen kommune Matematikk er et redskap for å se, oppdage og løse dagliglivets små og store problemer. Dato: 13.08.13 Kaland skole, Bergen kommune, 13.08.13 Medbestemmelse Respekt for alle Omsorg. ros

Detaljer

Kyrkjekrinsen skole Årsplan for perioden: 2012-2013

Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 3ab Lærer: Therese Hermansen og Monica Strand Brunvoll Uke Årshjul Hovedtema Kompetansemål Delmål Arbeidsmetode

Detaljer

Arbeidsplan 7. klasse

Arbeidsplan 7. klasse Arbeidsplan 7. klasse Melding fra lærer UKE 51 & 52 Gratulerer til Julie som ble 12 år søndag 13.12 og Isabella som blir 12 år mandag 21.12! Dette er siste arbeidsplan for 2009! Det blir lite hjemmelekse

Detaljer

Læreplanene for Kunnskapsløftet

Læreplanene for Kunnskapsløftet Læreplanene for Kunnskapsløftet Hvordan få samsvar mellom intensjon og praksis? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i Lamis Lærebokforfatter; MULTI 21-Mar-06 Intensjoner

Detaljer

Ny GIV. et løft for alle. Realfagskonferansen Astrid Bondø Svein H Torkildsen NSMO

Ny GIV. et løft for alle. Realfagskonferansen Astrid Bondø Svein H Torkildsen NSMO Ny GIV et løft for alle Realfagskonferansen 2013 Astrid Bondø Svein H Torkildsen NSMO Hva Hvorfor Hvordan Ny GIV Bakgrunn Resultater Tilbakemeldinger Matematikksenterets rolle Didaktisk grunnlag Materiell

Detaljer

Kvikkbilde 8 6. Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 8 6

Kvikkbilde 8 6. Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 8 6 Kvikkbilde 8 6 Mål Generelt: Sammenligne og diskutere ulike måter å se et antall på. Utfordre elevene på å resonnere omkring tallenes struktur og egenskaper, samt egenskaper ved regneoperasjoner. Spesielt:

Detaljer

Hjemmet og matematikkundervisningen. (Uavhengig av de voksnes tidligere erfaringer med matematikk?!)

Hjemmet og matematikkundervisningen. (Uavhengig av de voksnes tidligere erfaringer med matematikk?!) Foreldre teller!! Hjemmet og matematikkundervisningen. (Uavhengig av de voksnes tidligere erfaringer med matematikk?!) Denne økten: Hva kan vi gjøre hjemme for at matematikk skal bli et spennende fag?

Detaljer

Veiledning. Nasjonale prøver i regning for 5. trinn. Versjon: juli 2010, bokmål

Veiledning. Nasjonale prøver i regning for 5. trinn. Versjon: juli 2010, bokmål Veiledning Nasjonale prøver i regning for 5. trinn Versjon: juli 2010, bokmål Nasjonale prøver i regning for 5. trinn Her får du informasjon om nasjonale prøver i regning og hva prøven måler. Videre presenteres

Detaljer

Mestringsforventninger i matematikk. Learning Regions Karin Sørlie, Ingrid Syse & Göran Söderlund

Mestringsforventninger i matematikk. Learning Regions Karin Sørlie, Ingrid Syse & Göran Söderlund Mestringsforventninger i matematikk Learning Regions Karin Sørlie, Ingrid Syse & Göran Söderlund Plan Generelt om mestringsforventninger Hva er mestringsforventninger? Hvorfor er de viktige? Fase 1 av

Detaljer

SAKSFREMLEGG. Saksnummer: 15/91-1. Saksbehandler: Tove Kristensen Knudsen Sakstittel: RESULTATER NASJONALE PRØVER 2014

SAKSFREMLEGG. Saksnummer: 15/91-1. Saksbehandler: Tove Kristensen Knudsen Sakstittel: RESULTATER NASJONALE PRØVER 2014 SAKSFREMLEGG Saksnummer: 15/91-1 Arkiv: B65 Saksbehandler: Tove Kristensen Knudsen Sakstittel: RESULTATER NASJONALE PRØVER 2014 Planlagt behandling: Hovedutvalg for oppvekst og kultur Administrasjonens

Detaljer

MATEMATIKK. September

MATEMATIKK. September MATEMATIKK Periode Hovedområde Kompetansemål Innhold / metode August Tall og algebra Sette sammen og dele opp tiergrupper Gjenkjenne, samtale om og videreføre September strukturer i enkle tallmønstre Bruke

Detaljer

ÅRSPLAN I MATEMATIKK FOR 7. TRINN, SKOLEÅRET

ÅRSPLAN I MATEMATIKK FOR 7. TRINN, SKOLEÅRET ÅRSPLAN I MATEMATIKK FOR 7. TRINN, SKOLEÅRET 2016-2017 Faglærer: Cato Olastuen Fagbøker/lærestoff: Grunntall 7a og 7b Uker 34 35 36 37 Læreplanmål (kunnskapsløftet) Delmål Tema/emne Tall og algebra Beskrive

Detaljer

Årsplan Matematikk 2013 2014 Årstrinn: 5. årstrinn

Årsplan Matematikk 2013 2014 Årstrinn: 5. årstrinn Årsplan Matematikk 2013 2014 Årstrinn: 5. årstrinn Måns Bodemar, Anlaug Laugerud, Karianne Flagstad Moen Akersveien 4, 0177 OSLO oppdatert 25.08. 14 Tlf: 23 29 25 00 Kompetansemål Tidspunkt Tema/Innhold

Detaljer

8 årstrinn, Høst Tina Dufke & Arne Christian Ringbsu

8 årstrinn, Høst Tina Dufke & Arne Christian Ringbsu 35-38 TALLÆRE OG GRUNNLEGGENDE REGNING Periode 8 årstrinn, Høst 2016. Tina Dufke & Arne Christian Ringbsu Hovedemne Mål Innhold Læringsressurser Vurdering Titallssystemet med heltall og desimaltall Regning

Detaljer

Trondheim 29. november 2012

Trondheim 29. november 2012 Trondheim 29. november 2012 Grethe Ravlo Universitetslektor Leder gruppa som utvikler nasjonale prøver i regning Nasjonalt senter for matematikk i opplæringen NTNU PROGRAM Nasjonal prøve i regning Trondheim

Detaljer

Forfatterne bak Multi:

Forfatterne bak Multi: Multi i praksis Tilpasset opplæring Program for dagen 12.00 13.30: Tankene bak Multi Varierte uttrykksformer gir differensiering og god læring 13.30 14.10: Mat 14.10 15.00: Varierte uttrykksformer gir

Detaljer

ÅRSPLAN Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner )

ÅRSPLAN Arbeidsmåter ( forelesing, individuelt elevarbeid, gruppearbeid, forsøk, ekskursjoner ) Øyslebø oppvekstsenter ÅRSPLAN 2016-2017 Fag: MATEMATIKK Trinn: 6 Lærer: Kari Oftebro /Bente Krågeland Organisering: 6.klasse har 2 økter i uka med matematikk. En økt med halv klasse og en økt med full

Detaljer

Årsplan i matematikk 6.trinn 2016/2017

Årsplan i matematikk 6.trinn 2016/2017 Årsplan i matematikk 6.trinn 2016/2017 Faglærere: Anne Kristin Helland og Marte Hegg Hellebø Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 34 /37 Tall og tallforståelse

Detaljer

Matematikk - veilednings- og støttemateriell

Matematikk - veilednings- og støttemateriell Matematikk - veilednings- og Veilednings-/ Veiledning til læreplanene i matematikk fellesfag Veiledning 16.08. 21.08. 0,- Lærer på videregående Veiledningen gir praktiske eksempler på hvordan lærer kan

Detaljer

ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst)

ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst) ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst) Læreverk: Multi Lærer: Mona Haukås Olsen og Anne Marte Urdal/Ruben Elias Austnes 34-36 37-40 MÅL (K06) TEMA ARBEIDSFORM VURDERING lese avlassere og beskrive

Detaljer

Tall og enheter. Mål. for opplæringen er at eleven skal kunne

Tall og enheter. Mål. for opplæringen er at eleven skal kunne 8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen

Detaljer