Læringsdagene i Alta Grunnleggende regneferdighet matematisk kompetanse. Tone Skori 3. oktober Ditt navn og årstall

Størrelse: px
Begynne med side:

Download "Læringsdagene i Alta Grunnleggende regneferdighet matematisk kompetanse. Tone Skori 3. oktober 2013. Ditt navn og årstall"

Transkript

1 Læringsdagene i Alta Grunnleggende regneferdighet matematisk kompetanse Tone Skori 3. oktober 2013 Ditt navn og årstall

2 Agenda for dagen Læringspartner Grunnleggende ferdigheter i matematikk matematisk kompetanse med ulike aktiviteter

3 Oppgave Tall i T Du har sifrene 1, 2, 3, 4 og 5 Plasser sifrene slik at du får lik sum loddrett og vannrett.

4 Læringspartner

5

6 Verktøyet læringspartner hensikter Utvikle fagkompetanse Utvikle sosiale ferdigheter Skape variasjon Utvikle vurderingskompetanse Læringspartner Involvere elever i læringsprosesser Utvikle muntlig kompetanse

7 Vi lærer best sammen med andre sosiokulturell læring

8 (Referert i Olsen og Aasland, 2013)

9 Hva er en læringspartner? En du sitter sammen med en viss periode (2-3 uker) En du samtaler med/ jobber sammen med En du skal hjelpe / en du får hjelp av En som gir deg tilbakemelding/fremovermelding (VFL) En som oppmuntrer og er positiv til deg En som inspirerer og motiverer deg

10 Hvorfor læringspartner? Tenketid Er ikke alene om svaret Aktiviserer alle Lærer bedre selv ved å forklare/diskutere Alle kan svare etter samtale/diskusjon Rettferdig Fungerer godt for alle type elever

11 Tidspunkt for bruk av læringspartner Læringspartner kan brukes i oppstart av en læringsøkt underveis i en læringsøkt som oppsummering av en læringsøkt når lærer stiller spørsmål til klassen - tenketid når elever skal utføre oppgaver ved gjennomgang av lekser eller prøver når elever skal diskutere eller lage mål og kriterier i forbindelse med skriftlig eller muntlig vurdering (Olsen og Aasland, 2013)

12 Hvordan er en perfekt læringspartner? Elevene må få tid til å reflektere De diskuterer hva som kan være gode kriterier

13 Forslag: Kriterier til en god læringspartner Ser på den som snakker Lytter til den som prater Avbryter ikke Er positiv Er konstruktiv kritisk Diskuterer Samarbeidsvillig Ærlig Hjelpsom Følger med

14 Valg av læringspartner Tilfeldig trekking Ispinner Evt. ulik farge på ispinner knyttet til kjønn Odde antall elever: Tre læringspartnere («vikar» ved sykdom) 2-3 uker Innlede samarbeid: (Kroppsspråkregel) «Det skal bli hyggelig å være læringspartneren din!» Avslutte samarbeid: «Takk for samarbeidet» eller «Det har vært hyggelig å samarbeide med deg» (Olsen og Aasland, 2013)

15 Ispinner

16 Begrunnelser for bruk av læringspartner Utvikle sosiale relasjoner og evne til samarbeid Kan bli kjent med mange i klassen gjennom samarbeid Alle får mulighet til å delta i samtalen alle stemmer høres Elever kan oppleve det mer trygt å være sammen om å svare Elever får trening i å hjelpe og å ta i mot hjelp

17 Grunnleggende ferdigheter i matematikk Ditt navn og årstall

18 Grunnleggende ferdigheter i matematikkfaget Grunnleggende ferdigheter er integrerte i kompetansemålene, der de medvirker til å utvikle fagkompetansen og er en del av den. I beskrivelsene av grunnleggende ferdigheter i muntlig, lesing, skriving, regning og bruk av digitale verktøy for matematikkfaget, finner vi arbeidsmåtene som skal gi matematisk kompetanse. Nøkkelord i beskrivelsene er:

19 Muntlig ferdighet i matematikk: Skape mening gjennom å lytte, tale og samtale om matematikk Gjøre seg opp en mening Stille spørsmål Argumentere ved hjelp av et uformelt språk, presis fagterminologi og begrepsbruk Kommunisere ideer Drøfte problemer og løsningsstrategier med andre Utvikling MF går fra å delta i samtaler om matematikk til å presentere og drøfte komplekse faglige emner

20 Å kunne lese i matematikk: Tolke og dra nytte av tekster med matematisk innhold Lese og tolke matematiske uttrykk, diagrammer, tabeller, symboler, formler og logiske resonnement Utvikling i å lese i matematikk går fra å finne og bruke informasjon i tekster, til å finne mening og reflektere over komplekse fagtekster

21 Å kunne skrive i matematikk: Løse problemer Beskrive og forklare en tankegang Sette ord på oppdagelser og ideer Lage tegninger, skisser, figurer tabeller og diagram Benytte matematiske symboler og det formelle språket Utviklingen i å skrive i matematikk går fra å bruke enkle uttrykksformer til gradvis å ta i bruk et formelt symbolspråk og en presis fagterminologi

22 Digitalt ferdigheter i matematikk: Spill Utforskning Visualisering Publisering Bruke slike hjelpemidler til problemløsing, simulering og modellering Finne informasjon Analysere, behandle og presentere data Kildekritikk Være klar over den nytten bruk av digitale verktøy kan ha for læring i matematikk

23 Å kunne regne i matematikk: Problemløsing Utforsking Mestre regneoperasjoner Varierte strategier Gjøre overslag Kommunisere og vurdere svar Kjenne igjen og beskrive situasjoner der matematikk inngår Utviklingen av å regne i matematikk går fra grunnleggende tallforståelse og til å kjenne igjen og løse problem til å analysere og løse komplekse problem

24 Kompetansemålene i læreplanene innbefatter: 1. Ferdigheter 2. Forståelse 3. Anvendelse Alle disse momentene hører innunder det vi kan kalle grunnleggende ferdigheter i matematikk 1.står for reproduksjon 2. og 3. står for produksjon

25 Jobb sammen to og to. Til topps! Kast 5 terninger kun en gang Dere skal nå bruke de 5 terningene til å lage matematikkoppgaver som gir svar fra 1 og oppover alle fire regningsarter er lov. Pass på at du bruker parenteser riktig og at regneuttrykker stemmer i forhold til hva som kommer først av multiplikasjon/divisjon og addisjon/subtraksjon Eksempel: 2, 5, 4, 6 og = 1, 2 = 2, 6:2 =3 osv

26 Matematisk kompetanse

27 Forståelse Forstå matematiske begreper, representasjoner, operasjoner, prosedyrer og relasjoner

28 Elever som har utviklet forståelse kan; Mer enn isolerte fakta og prosedyrer Tolke, forstå og benytte ulike representasjoner Se mønster og systemer i forskjellige problemer og situasjoner Bruker varierte metoder

29 Tallet har 4 siffer Mitt mystiske tall Tallet på enerplass er det minste oddetallet Tallet på tierplass er det nest minste partallet Tallet på hundreplassen er det dobbelte av enerplass Tallet på tusenplassen er halvparten av tierplass

30 Mitt mystiske tall 2 - Tallet har 6 siffer - Sifrene på enerplassen og tierplassen er de to minste oddetallene. De andre sifrene er partall og ingen av dem er like - Sifferet på hundrerplassen er lik summen av sifrene på enerplassen og tierplassen - Sifferet på tusenplassen er 2 ganger sifferet på tierplassen - Sifferet på hundretusenplassen er det dobbelte av sifferet på hundrerplassen - Det er to løsninger på oppgaven

31 Begrepbingo Begrep

32 Ulike representasjoner Tone Skori 2012

33 Beregning Utføre prosedyrer som involverer tall, størrelser og figurer, effektivt, nøyaktig og fleksibelt

34 Beregning Beherske prosedyrer som: Addisjon, subtraksjon, multiplikasjon og divisjon Måling Algebra Geometri Funksjoner Statistikk

35 Gangekrig Utstyr: kortstokk med kort fra 1 til 10 Hensikt: øve gangetabellen Spill mot hverandre to og to. Alle kortene deles ut, slik at begge får like mange kort. Elevene snur to kort hver og multipliserer tallene. Den med størst produkt vinner. Enklere: bruk to terninger hver. Den som har størst produkt får ett poeng. Elevene kan da spille først til 20.

36 Anvendelse Formulere problemer matematisk og utvikle strategier for å løse problemer ved å bruke passende begreper og prosedyrer

37 Anvendelse Formulere og avgrense problemer Utvikle løsningsstrategier og modeller Eks: I en kiosk kan du velge mellom fire ulike smaker på kuleis. Du skal ha to kuler. Hvor mange valgmuligheter har du?

38 Resonnering Forklare og begrunne en løsning til et problem, eller utvide fra noe som er kjent til noe som ikke er kjent

39 Resonnering Limet som holder matematikken sammen Handler om å forklare sammenhengen mellom begreper og situasjoner Elevene bruker resonnering for å navigere mellom faktakunnskap, begreper, prosedyrer og situasjoner Handler om å vurdere gyldigheten til løsningen på et problem og reflektere over valgte strategier Å kunne forklare sine løsninger til andre og presentere strategier på ulike nivåer Å kunne tolke og forstå matematiske tekster og andre sine løsninger og utsagn

40 Resonnement Denne henger nøye sammen med å kunne anvende det du har av ferdigheter og forståelse og vi kan si at resonneringskompetansen er disse kompetansenes juridiske side, den som vurderer om svaret er rett eller galt.

41 Nærmest 1500 Hver deltaker lager et rutenett som det nedenfor. Læreren (eller en elev) kaster en terning (1-6). Alle deltakerne velger hvor de vil plassere det sifferet terningen viser. Den sifferplassen er da opptatt. Når terningen er kastet 9 ganger, har du laga 3 tresifrede tall. Summen av tallene skal være nærmest mulig =

42 Gjett tre kort 4-Oct-13 42

43 Engasjement Være motivert for å lære matematikk, se på matematikk som nyttig og verdifullt, og tro at innsats bidrar til økt læring i matematikk

44 Engasjement Nøkkelen til å lære matematikk Innsats Selvtillit Følelse av mestring

45 Kilpatric - Niss Kilpatric Niss Forståelse Beregning Anvendelse Resonnering Tankegang - Representasjon Symbol og formalise - Hjelpemiddel Problemløsning Modellering Resonnering - Kommunikasjon Engasjement

46 Matematisk kompetanse består i å kunne: Resonnere Tenke logisk Forstå begreper Kunne bruke symboler og vite hvilke regler som gjelder i ulike situasjoner Kunne bruke ulike matematiske representasjoner som formler, grafer, tabeller osv. Kunne bruke hjelpemidler Løse problemer der det ikke finnes noen på forhånd gitt oppskrift Kunne kommunisere sin egen matematiske tenkemåte med andre og forstå andres forklaringer Kunne lage og forstå ulike matematiske modeller

47 Formålet med faget En del av den globale kulturarven vår Faget går inn i mange vitale samfunnsområde God matematiskkompetanse er en forutsetning for utvikling av samfunnet En skal jobbe med problemløsning og modellering til å analysere og omforme et problem til matematisk form, løse det og vurdere om løsningen er gyldig Språklig aspekt, som det å formidle, samtale og resonnere rundt ideer En skal kunne bruke og vurdere ulike hjelpemiddel Elevene må arbeide både praktisk og teoretisk Opplæringen skal veksle mellom utforskende, lekende, kreative og problemløsende aktiviteter og ferdighetstrening Elevene må utfordres til å kommunisere matematikk skriftlig, muntlig og digitalt

48 Prinsipper for god regneopplæring Sette klare mål, og form undervisningen deretter Vær bevisst i valg av oppgaver Varier mellom arbeid i hel klasse, i mindre grupper og individuelt Ta utgangspunkt i noe elevene kan eller kjenner fra før Bruk det matematiske språket aktivt Benytt hjelpemidler slik at de fremmer læring og kreativitet Oppsummering av timen - refleksjon

49 Metode betyr en måte å gå frem på. Hvilken metode er best? og for hvem? for læreren? for elevene? Gårsdagens metode : Sett med elevens øyne: Hvilket svar ønsker læreren? Dagens metode : Hva lærer bør være opptatt av: Hvordan tenker egentlig eleven? Hvorfor svarer eleven slik eller sånn? Hvilket resonnement ligger bak elevens forslag til løsning? 49 49

50 TIMSS: Forskning En mulig årsak til de svake resultatene i matematikk i norsk skole er knyttet til ensidige arbeidsmåter i opplæringen Norsk skole må legge mer vekt på både trening med sikte på å automatisere viktige ferdigheter og diskusjon og refleksjon rundt svar og løsningsmetoder

51 FINN EN SOM KAN 1. Tegne et trapes 2. Løse likningen 2x+4=3(x-1) 3. Vise hva som er størst av 3/8 og 2/5 Finn en som kan klare utfordringene nedenfor. Den du finner, skal si det muntlig, skrive det ned og signere. Hver person kan bare svare på en utfordring. 4. Finne det neste tallet I tallrekka 1, 2, 4, 7, Forklare hvordan du kan finne omtrent hvor mye 241:79 er 6. Kan finne alle faktorene til 64

52 Anvendt matematikk Problembehandlingskompetanse Modelleringskompetanse (Niss, 2002)

53 Modelleringskompetanse å kunne matematisere en situasjon. Dvs å kunne oversette situasjonen til et matematisk språk med matematiske problemstillinger, nødvendige symboler og matematiske uttrykk, Å kunne behandle den matematiske modellen og løse de matematiske problemene

54 Organisering, systematisering krever matematiske modeller 54 Modellbegrepet tenkes bredt. Det er mye som kan være en modell: - Tegninger -Konkreter -Symboler -Diagrammer -Overordna, generelle strategier, som for eksempel gjentatt addisjon

55 Rett abstraksjonsnivå

56 Oppgaver i modellering Kai har halvparten så mye penger som Tim. Chris har 186kr, og det er 126kr mer enn Tim. Hvor mye penger har Kai? Lag en modell!

57 Forslag løsning Kai Tim Chris

58 Hva koster sekkene? Susann, Mariell og Petter kjøper hver sin sekk. Sekken til Mariell er tre ganger så dyr som sekken til Susann. Petter sin sekk koster halvparten så mye som Mariells sekk. Petter betaler 50 kr mer for sin sekk enn Susann gjør for sin. Hva er prisen på hver sekk?

59 Tegn-modell-strategi Susanne Mariell Petter 1ookr 50kr

60 Tegne modell som hjelp i brøk Chris brukte 1/7 av ukelønnen sin hver dag. Tre dager etter at han hadde fått utbetalt ukelønnen hadde han 60kr igjen. Hvor mye penger brukte Chris de tre første dagene?

61 Forslag løsning For å løse oppgaven må vi først finne ut hvor mye 1/7 er. Det er ikke helt enkelt, fordi vi vet jo ikke hvor mye helheten er. Vi må da starte med det vi vet, nemlig at 4/7 = 60 kr. Det best er kanskje å lage en tegning. De første 3 dagene 60 kr

62 62 Utvikling av strategier Et eksempel

63 63 Modell av strategi

64 25 * 35 64

65 Divisjonsalgoritmen Utfordring

66 Spørsmål? Hva med divisjon? Kan vi lage en modell for det?

67 Målingsdivisjon - delingsdivisjon 488 : 4? Hvordan konkretisere dette?

68 Divisjon med konkreter

69 Moro?

70 Problembehandlingskompetanse å kunne finne og formulere matematiske problemstillinger, å kunne løse matematiske problemstillinger og etter hvert også kunne løse dem på forskjellige måter

71 Problembehandlingskompetanse Bygge ny matematisk kunnskap gjennom problemløsning Løse problemer som dukker opp i matematiske og andre kontekster Bruke og tilpasse et mangfold av hensiktsmessige strategier til å løse problemer Bevisst reflektering over matematikken i problemløsningen

72 Faser i problemløsning 1. fase: Identifisere problemet 2. fase: Selve problemløsningen 3. fase: Presentere løsningen og løsningsmetoden Læreren spiller en vesentlig rolle ved problemløsning!

73 Problemløsningsstrategier. Gjør det på ordentlig Bruk konkreter Tegne Forenkle problemet Søk etter mønster Arbeid baklengs Lag en tabell Gjett og prøv Resonere seg fram

74 Drops 3 barn skal dele 7 drops. Alle dropsene må brukes hver gang og alle barna må ha minst ett drops. På hvor mange måter kan du fordele dropsene på?

75 Kortspill for barnetrinnet Utstyr: Kortstokk med kortene fra 1 til 10 Matematiske begreper: sum, differanse, produkt, minst, mest, nærmest og hoderegning Antall: For to eller flere spillere eller lag

76 Hvem har mest? Kortbunken stikkes og deles likt mellom spillerne. Snu 2 kort hver. Den som har mest, får kortene og legger dem på bunnen av sin bunke. Hvis det er likt, kan dere ta halvparten hver, eller krige (det vil si fortsette med 2 nye kort hver til en har mest og får alle kortene fra den omgangen).

77 Par eller odde? Kortbunken stokkes og deles likt mellom spillerne. Vi snur ett kort hver, samtidig. Den som først kan si om summen er par eller odde, får kortene og legger dem under sin bunke. Her kan vi være flere enn to spillere.

78 Gjett 2 kort 2-6 spillere. Kortene stokkes og legges i ei bunke mellom spillerne. Første spiller trekker to kort og sier både summen av kortene og produktet av kortene. Den som gjetter riktig får kortene og trekker to nye kort.

79 Største forskjell. Største produkt Som over, men hvem har størst differanse mellom sine kort? Begge tar det største tallet minus det minste. Da ser dere hvem som har størst forskjell. Eller: Vi multipliserer tallene på våre to kort med hverandre.

80 Gjett summen? Før vi snur ett kort hver, skal vi gjette hvor mye de blir til sammen. Bytt om å gjette først. Det er ikke lov å gjette likt. Så snur vi kortene og legger dem sammen. Den som gjettet nærmest, får kortene. (Øver på differanse: nærmest )

81 Hvorfor er den matematiske samtalen viktig? For å få tak i: elevenes matematiske tenkning elevenes forkunnskaper som legger premisser for videre undervisning begrepsforståelsen til elevene metakognisjon: Elevene blir bevisste sin egen tenkning og egne strategier. Trene og utvikle resonnementskompetanse, logisk tenkning og argumentasjon. 4-Oct-13 81

82 Hvorfor er den matematiske samtalen viktig? Å formulere matematikkoppgaver med egne ord Å tenke høyt når man løser oppgaver Å høre seg selv i regneregler og tabellkunnskap Å stille spørsmål og drøfte løsninger med både medelever og lærer Å bruke varierte arbeidsmåter med rom for differensiering Å bruke nok tid og samtale om nye begreper når de skal innføres (eks: brøkbegrepet, funksjonsbegrepet) 4-Oct-13 82

83 Veien mot matematisk kompetanse Vektlegging av Grunnleggende ferdigheter Begrepsforståelse Opparbeidelse av et bredt spekter av metoder Evne til å tenke logisk, kunne resonnere Gjenkjenne matematikken i ulike kontekster Kunne gå fra det spesielle til det generelle. Finne mønster og system Kunne anvende tidligere erfaringer på nye problemstillinger Kunne vurdere holdbarheten og gyldigheten av egne løsninger

84 Ulike oppgavetyper Rutineoppgaver Rike oppgaver Problemløsningsoppgaver Flervalgsoppgaver Utforsking, åpne oppgaver Interaktive oppgaver

85 Sats på eleven Elevene Kan tenke selv Er nysgjerrige Liker å finne ut av ting Liker utfordringer Lærer best Av det de tenker å gjør selv

86 Praktiske konsekvenser Mindre av: Lærer forklarer Elevene øver Prøver Mer av: Problem Diskusjon Oppsummering

87 Nettsider

88 Kilder =Fra+matteskrekk+til+mattemestring M.Røsseland (2011) Jeg gidder ikke bry meg mer! Høgskolen i Bergen Olsen, H., Ø og M. Aasland (2013): Læringspartner, underveisvurdering i praksis. Pedlex Håndboka Alle teller Multi lærerens bok 2b Multi lærerens bok 7b Multi kopiperm 5-7

Ny Giv. Grunnleggende regneferdighet. Tone Skori Stavanger 270213. Ditt navn og årstall

Ny Giv. Grunnleggende regneferdighet. Tone Skori Stavanger 270213. Ditt navn og årstall Ny Giv Grunnleggende regneferdighet Tone Skori Stavanger 270213 Ditt navn og årstall Læringspartner (Kilde: Hilde Ødegaard Olsen, Skøyen skole) Hva er en læringspartner? En du sitter sammen med en viss

Detaljer

Gloppen, Firda videregående skole. Ny Giv. Tone Skori 16. oktober 2013

Gloppen, Firda videregående skole. Ny Giv. Tone Skori 16. oktober 2013 Gloppen, Firda videregående skole Ny Giv Tone Skori 16. oktober 2013 Ditt navn og årstall Agenda for dagen Læringspartner Grunnleggende ferdigheter i matematikk matematisk kompetanse Misforståelser brøk,

Detaljer

Ny Giv. Grunnleggende regneferdighet. Ålesund 22/1-13. Tone Skori. Ditt navn og årstall

Ny Giv. Grunnleggende regneferdighet. Ålesund 22/1-13. Tone Skori. Ditt navn og årstall Ny Giv Grunnleggende regneferdighet Ålesund 22/1-13 Tone Skori Ditt navn og årstall ? Hva har du endra siden sist? Tone Skori 2013 Oppgave Tall i T Du har sifrene 1, 2, 3, 4 og 5 Plasser sifrene slik at

Detaljer

Ny Giv. Tone Skori Kongsvinger 190313. Ditt navn og årstall

Ny Giv. Tone Skori Kongsvinger 190313. Ditt navn og årstall Ny Giv Tone Skori Kongsvinger 190313 Ditt navn og årstall Mål med økta, lære om: Læringspartner Grunnleggende ferdigheter i matematikk Matematisk kompetanse (Kilde: Hilde Ødegaard Olsen, Skøyen skole)

Detaljer

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs Ny Giv Grunnleggende regneferdighet Brynhild Farbrot Foosnæs Læring innebærer endring Hva har du endret siden sist? Læring innebærer at du blir utfordret og at du tør å ta utfordringen. Hvilke utfordringer

Detaljer

MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING

MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING MATEMATISK KOMPETANSE PRINSIPPER FOR EFFEKTIV UNDERVISNING Svein H. Torkildsen Ny GIV 2012-13 Dette har vi fokus på God regning effektiv undervisning 10. trinn underyterne Elevers tenking Grunnleggende

Detaljer

Matematisk førstehjelp

Matematisk førstehjelp Matematisk førstehjelp Brøk prosent desimaltall Brynhild Farbrot Foosnæs Matematisk kompetanse Kunnskapsløftet Kompetansemål Ferdigheter Forståelse Anvendelse Kunnskapsløftet Kompetansemål Ferdigheter:

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 13-Oct-06 Kursinnhald Hva er matematisk kompetanse? Hvordan styrke den hos elevene på en slik måte

Detaljer

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring Overordnet plan for fagene. Fag: Matematikk Trinn: 8. trinn Skole: Lindesnes ungdomsskole År: 2015/2016 Lærestoff: Nye Mega 8 a og 8b Vurdering. Prinsipper i vurdering. 1. Elevene forstår hva de skal lære

Detaljer

Grunnleggende regneferdighet matematisk kompetanse. Kongsvinger. Tone Skori 30. og 31. oktober 2013

Grunnleggende regneferdighet matematisk kompetanse. Kongsvinger. Tone Skori 30. og 31. oktober 2013 Grunnleggende regneferdighet matematisk kompetanse Kongsvinger Tone Skori 30. og 31. oktober 2013 Ditt navn og årstall Agenda for dagen Læringspartner Grunnleggende ferdigheter i matematikk matematisk

Detaljer

timene og hjemme 36 både med og uten digitale verktøy fortløpende Kapittelprøve Arbeidsinnsats i 38 de hele tallene, bruke positive og mindre enn 0

timene og hjemme 36 både med og uten digitale verktøy fortløpende Kapittelprøve Arbeidsinnsats i 38 de hele tallene, bruke positive og mindre enn 0 ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2017/2018 Læreverk: Multi Lærer: Kaia Bøen Jæger og Carl Petter Tresselt UKE MÅL (K06) TEMA ARBEIDSFORM VURDERING 34 lese av, plassere og beskrive posisjoner i Koordinatsystemet

Detaljer

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter Regning i alle fag Hva er å kunne regne? Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer å resonnere og bruke matematiske begreper, fremgangsmåter, fakta og verktøy

Detaljer

ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst)

ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst) ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst) Læreverk: Multi Lærer: Mona Haukås Olsen og Anne Marte Urdal/Ruben Elias Austnes 34-36 37-40 MÅL (K06) TEMA ARBEIDSFORM VURDERING lese avlassere og beskrive

Detaljer

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring Overordnet plan for fagene. Fag: MATEMATIKK Trinn: 9 KLASSE Skole: LINDESNES UNGDOMSSKOLE År: 2015-2016 Lærestoff: MEGA 9A OG 9B Vurdering. Prinsipper i vurdering. 1. Elevene forstår hva de skal lære og

Detaljer

8 årstrinn, Høst Tina Dufke & Arne Christian Ringbsu

8 årstrinn, Høst Tina Dufke & Arne Christian Ringbsu 35-38 TALLÆRE OG GRUNNLEGGENDE REGNING Periode 8 årstrinn, Høst 2016. Tina Dufke & Arne Christian Ringbsu Hovedemne Mål Innhold Læringsressurser Vurdering Titallssystemet med heltall og desimaltall Regning

Detaljer

Lese og snakke og skrive og regne er bra - og digitale verktøy skal FULL PAKKE! Nå er det Kunnskapsløftet som gjelder! Ingvill Merete Stedøy-Johansen

Lese og snakke og skrive og regne er bra - og digitale verktøy skal FULL PAKKE! Nå er det Kunnskapsløftet som gjelder! Ingvill Merete Stedøy-Johansen Lese og snakke og skrive og regne er bra - og digitale verktøy skal vi ha FULL PAKKE! Nå er det Kunnskapsløftet som gjelder! Ingvill Merete Stedøy-Johansen Hvilke nye utfordringer gir Kunnskapsløftet?

Detaljer

Årsplan i 7. klasse matematikk 2016-2106

Årsplan i 7. klasse matematikk 2016-2106 Årsplan i 7. klasse matematikk 2016-2106 Antall timer pr : 4 Lærere: Marianne Fjose Læreverk: Multi 7a og 7b, Gyldendal undervisning Nettstedene: gyldendal.no/multi Moava.org Grunnleggende ferdigheter:

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse KJØP OG SALG Lære om : - Sedler og mynters

Detaljer

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE 2014-2015. Lærer: Turid Nilsen

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE 2014-2015. Lærer: Turid Nilsen ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE 2014-2015 Lærer: Turid Nilsen Matematikkverket består av: Grunntall 1a + 1b Ressursperm Nettsted med oppgaver Grunnleggende ferdigheter Grunnleggjande ferdigheiter

Detaljer

Gje meg eit tresifra. Hvordan skal jeg regne, lærer? 1. Arbeide både praktisk og teoretisk. Retningslinjer for undervisningen

Gje meg eit tresifra. Hvordan skal jeg regne, lærer? 1. Arbeide både praktisk og teoretisk. Retningslinjer for undervisningen Hvordan skal jeg regne, lærer? Fokus på tall og utvikling av god tall forståelse Mona Røsseland Nasjonalt senter for matematikk i opplæringen Gje meg eit tresifra tal 17-Apr-06 17-Apr-06 2 Intensjoner

Detaljer

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring

Ønsker å få til: -Elevmedvirkning for å lykkes med egenvurdering differensiering, mestring og progresjon -Utvikle vurdering for læring Overordnet plan for fagene. Fag: Matematikk Trinn: 10 Skole: Lindesnes ungdomsskole År: 2015-16 Lærestoff: Mega 10 A og 10B Vurdering. Prinsipper i vurdering. 1. Elevene forstår hva de skal lære og hva

Detaljer

REGNEPLAN FOR LANDÅS SKOLE

REGNEPLAN FOR LANDÅS SKOLE 1 REGNEPLAN FOR LANDÅS SKOLE På Landås skole har alle lærere, i alle fag, på alle trinn ansvar for elevenes regneutvikling. Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer

Detaljer

HELHETLIG PLAN I REGNING VED OLSVIK SKOLE.

HELHETLIG PLAN I REGNING VED OLSVIK SKOLE. HELHETLIG PLAN I REGNING VED OLSVIK SKOLE. Prinsipper og strategier ved Olsvik skole. FORORD Olsvik skole har utarbeidet en helhetlig plan i regning som viser hvilke mål og arbeidsmåter som er forventet

Detaljer

HALVÅRSPLAN I MATEMATIKK FOR 6. TRINN HØSTEN 2016

HALVÅRSPLAN I MATEMATIKK FOR 6. TRINN HØSTEN 2016 HALVÅRSPLAN I MATEMATIKK FOR 6. TRINN HØSTEN 2016 Grunnleggjande ferdigheiter Grunnleggjande ferdigheiter er integrerte i kompetansemåla, der dei medverkar til utvikling av og er ein del av fagkompetansen.

Detaljer

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Hovedområde Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale sressurser for 5. trinn Fra Lese-forlivet-planen brukes jevnlig i alle fag

Detaljer

Den gode matematikkundervisning

Den gode matematikkundervisning Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i LAMIS Lærebokforfatter;

Detaljer

ÅRSPLAN I MATEMATIKK FOR 4. TRINN HØSTEN

ÅRSPLAN I MATEMATIKK FOR 4. TRINN HØSTEN 34 35 36 37 38 39 40 42 43 44 45 ÅRSPLAN I MATEMATIKK FOR 4. TRINN HØSTEN 2014 Læreverk: Multi Faglærer: Astrid Løland Fløgstad MÅL (K06) TEMA ARBEIDSFORM VURDERING lese avlassere og beskrive posisjoner

Detaljer

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE 2012-2013 MÅLENE ER FRA LÆREPLANVERKET FOR KUNNSKAPSLØFTET 2006 OG VEKTLEGGER HVA ELEVENE SKAL HA TILEGNET SEG ETTER 2. KLASSE Grunnleggende ferdigheter

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk oversikt Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Ny læreplan, nye utfordringer for undervisningen i matematikk

Detaljer

ÅRSPLAN I MATEMATIKK FOR 3. TRINN HØSTEN 2013 Læreverk: Multi Faglærer: Astrid Løland Fløgstad MÅL (K06) TEMA ARBEIDSFORM VURDERING Data og statistikk

ÅRSPLAN I MATEMATIKK FOR 3. TRINN HØSTEN 2013 Læreverk: Multi Faglærer: Astrid Løland Fløgstad MÅL (K06) TEMA ARBEIDSFORM VURDERING Data og statistikk 34 35 36 37 38 39 40 42 43 44 45 46 ÅRSPLAN I MATEMATIKK FOR 3. TRINN HØSTEN 2013 Læreverk: Multi Faglærer: Astrid Løland Fløgstad MÅL (K06) TEMA ARBEIDSFORM VURDERING Data og statistikk samle, sortere,

Detaljer

Nye læreplaner, nye utfordringer i matematikk!

Nye læreplaner, nye utfordringer i matematikk! Oversikt Nye læreplaner, nye utfordringer i matematikk! Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Ny læreplan, nye utfordringer for undervisningen

Detaljer

Hva er matematisk kompetanse?

Hva er matematisk kompetanse? Kursinnhald Hva er matematisk kompetanse? Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS (landslaget for matematikk i skolen) Lærebokforfatter, MULTI Hva er matematisk kompetanse

Detaljer

Data og statistikk 35

Data og statistikk 35 ÅRSPLAN I MATMATIKK FOR 3. TRINN HØSTN 2017 Læreverk: Multi Faglærer: Astrid Løland Fløgstad og Inger-Alice Breistein MÅL/LÆR (LK) TMA ARBIDSFORM/MTOD VURDRING 34 Data og statistikk 35 36 37 38 39 40 samle,

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? Bjørnar Alseth Høgskolen i Oslo Styremedlem i Lamis Lærebokforfatter; MULTI Mona Røsseland

Detaljer

ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012

ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012 ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012 Lærer: Knut Brattfjord Læreverk: Grunntall 2 a og b, av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene er fra Lærerplanverket for kunnskapsløftet

Detaljer

Døli skole Ullensaker kommune 10.september Tone Skori

Døli skole Ullensaker kommune 10.september Tone Skori Døli skole Ullensaker kommune 10.september 2014 Tone Skori Tone.skori@baerum.kommune.no Ditt navn og årstall Agenda (Læringspartner) Grunnleggende regne ferdigheter Grunnleggende regneferdigheter i matematikk

Detaljer

ÅRSPLAN I MATEMATIKK 2. trinn 2014/2015

ÅRSPLAN I MATEMATIKK 2. trinn 2014/2015 ÅRSPLAN I MATEMATIKK 2. trinn 2014/2015 Faglærer: Læreverk: Hege Skogly Grunntall 2a og 2b, Bakke og Bakke Ressursperm og nettsted Grunnleggende ferdigheter i faget (Fra læreplanverket for Kunnskapsløftet,

Detaljer

NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF NY GIV I REGNING Brynhild.foosnas@baerum.kommune.no @BrynhildFF Hva er grunnleggende regneferdighet? Hvorfor strever elevene? Hva gjør vi med det? Hva menes med grunnleggende regneferdighet? Hva skiller

Detaljer

Velkommen til presentasjon av Multi!

Velkommen til presentasjon av Multi! Velkommen til presentasjon av Multi! Bjørnar Alseth Høgskolen i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Dagsoversikt Ny læreplan,

Detaljer

ÅRSPLAN I MATEMATIKK 2. KLASSE BREIVIKBOTN SKOLE 2013-2014

ÅRSPLAN I MATEMATIKK 2. KLASSE BREIVIKBOTN SKOLE 2013-2014 ÅRSPLAN I MATEMATIKK 2. KLASSE BREIVIKBOTN SKOLE 2013-2014 Lærer: Turid Nilsen Matematikkverket består av: - Ressursperm - Grunntall 2a + 2b - CD-rom Forfattere: Bjørn Bakke og Inger Nygjelten Bakke Grunnleggende

Detaljer

å gjenkjenne regning i ulike kontekster å kommunisere og argumentere for valg som er foretatt

å gjenkjenne regning i ulike kontekster å kommunisere og argumentere for valg som er foretatt 13. mai 2014 å gjenkjenne regning i ulike kontekster å velge holdbare løsningsmetoder - gjennomføre å kommunisere og argumentere for valg som er foretatt tolke resultater kunne gå tilbake og gjøre nye

Detaljer

Grunnleggende ferdigheter i faget (fra Kunnskapsløftet)

Grunnleggende ferdigheter i faget (fra Kunnskapsløftet) Årsplan for Matematikk 2013/2014 Klasse 10A, 10B og 10C Lærere: Lars Hauge, Rayner Nygård og Hans Dillekås Læreverk: Nye Mega 10A og 10B Grunnleggende ferdigheter i (fra Kunnskapsløftet) Å uttrykke seg

Detaljer

Foreldrene betyr all verden! Brynhild Farbrot

Foreldrene betyr all verden! Brynhild Farbrot Foreldrene betyr all verden! Brynhild Farbrot Foosnæs brynhild.foosnas@ude.oslo.kommune.no @BrynhildFF Plan for kvelden Hva kan dere foreldre bidra med? Matematikkfaget i skolen i dag Spill og aktiviteter

Detaljer

Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder

Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder Aspekter ved regning som skal vektlegges i ulike fag Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder ARTIKKEL SIST

Detaljer

Matematikk i lys av Kunnskapsløftet

Matematikk i lys av Kunnskapsløftet Matematikk i lys av Kunnskapsløftet Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Intensjoner med den nye læreplanen 1. Større handlingsrom for lærerne: Organisering, metoder, arbeidsmåter

Detaljer

Hva er matematisk kompetanse?

Hva er matematisk kompetanse? Hva er matematisk kompetanse? Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS (landslaget for matematikk i skolen) Lærebokforfatter, MULTI 9-Jan-07 Kursinnhald Hva er matematisk

Detaljer

Hva er god matematikkundervisning?

Hva er god matematikkundervisning? Hva er god matematikkundervisning? Astrid Bondø Nasjonalt Senter for Matematikk i Opplæringen 22-Feb-08 Ny læreplan, nye utfordringer for undervisninga i matematikk? Hva vil det si å ha matematiske kompetanse?

Detaljer

Foreldrene betyr all verden

Foreldrene betyr all verden Foreldrene betyr all verden Gjett tre kort Mona Røsseland Nasjonalt senter for Matematikk i opplæringen, NTNU (i studiepermisjon) Lærebokforfatter; MULTI 15-Sep-09 15-Sep-09 2 Mastermind Hva påvirker elevenes

Detaljer

I følge Kunnskapsløftet er formålet med matematikkfaget å dekke følgende behov: (se s.57)

I følge Kunnskapsløftet er formålet med matematikkfaget å dekke følgende behov: (se s.57) Kunnskapsløftet-06 Grunnlag og mål for planen: Den lokale læreplanen skal være en kvalitetssikring i matematikkopplæringen ved Haukås skole, ved at den bli en bruksplan, et redskap i undervisningshverdagen.

Detaljer

Hva måler nasjonal prøve i regning?

Hva måler nasjonal prøve i regning? Hva måler nasjonal prøve i regning? Prøven skal måle i hvilken grad elevenes regneferdigheter er i samsvar med beskrivelsene av regning som grunnleggende ferdighet i læreplanen til hvert fag. Prøven er

Detaljer

RENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 3.og 4.trinn 2017/18

RENDALEN KOMMUNE Fagertun skole. Årsplan i matematikk for 3.og 4.trinn 2017/18 RENDALEN KOMMUNE Fagertun skole Årsplan i matematikk for 3.og 4.trinn 2017/18 Klassen har to timer i uka med stasjonsjobbing der matematikk er fokus. Dette er timer da 1.-4.kl er sammen. De andre matematikktimene

Detaljer

Matematikk 1. 4. årstrinn Smøla kommune

Matematikk 1. 4. årstrinn Smøla kommune Lokal læreplan i Matematikk 1. 4. årstrinn Smøla kommune Grunnskolen 1 INNHOLDSFORTEGNELSE Hovedområder.. side 3 Gjennomføring.. side 10 Målark. side 11 Digitale ressurser.. side 19 2 HOVEDOMRÅDER Matematikkplanen

Detaljer

Hva er god matematikkundervisning?

Hva er god matematikkundervisning? Hva er god matematikkundervisning? Astrid Bondø Nasjonalt Senter for Matematikk i Opplæringen 22-Feb-08 Ny læreplan, nye utfordringer for undervisninga i matematikk? Hva vil det si å ha matematiske kompetanse?

Detaljer

Nye læreplaner, nye utfordringer!

Nye læreplaner, nye utfordringer! Oversikt Nye læreplaner, nye utfordringer! Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Ny læreplan, nye utfordringer for undervisningen i matematikk

Detaljer

KONGSVINGER 08.11.13 NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

KONGSVINGER 08.11.13 NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF KONGSVINGER 08.11.13 NY GIV - REGNING Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF Mattelæreren God regning For å legge til rette for elevenes utvikling i regning som grunnleggende

Detaljer

ÅRSPLAN I MATEMATIKK FOR 1. TRINN 2014/2015 Læreverk: Radius, Multi Hvor mange er en meter? 39+2 matematiske samtaler Elsa H.

ÅRSPLAN I MATEMATIKK FOR 1. TRINN 2014/2015 Læreverk: Radius, Multi Hvor mange er en meter? 39+2 matematiske samtaler Elsa H. ÅPLN KK F 1. NN 2014/2015 Læreverk: adius, ulti Hvor mange er en meter? 39+2 matematiske samtaler lsa H. Devold G P K ÅL (K06) Delmål DF VDNG tatistikk levene skal kunne: ydelige mål og kriterier samle,

Detaljer

Hva er matematisk kompetanse?

Hva er matematisk kompetanse? Kursinnhald Hva er matematisk kompetanse? Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS (landslaget for matematikk i skolen) Lærebokforfatter, MULTI Hva er matematisk kompetanse?

Detaljer

Nye læreplaner, nye utfordringer! Gi meg et tresifret. Oversikt. Intensjoner med den nye læreplanen. Hva er ulikt fra L97? 4.

Nye læreplaner, nye utfordringer! Gi meg et tresifret. Oversikt. Intensjoner med den nye læreplanen. Hva er ulikt fra L97? 4. Oversikt Nye læreplaner, nye utfordringer! Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Ny læreplan, nye utfordringer for undervisningen i matematikk

Detaljer

Læreplanene for Kunnskapsløftet

Læreplanene for Kunnskapsløftet Læreplanene for Kunnskapsløftet Hvordan få samsvar mellom intensjon og praksis? Mona Røsseland Leder i Lamis Nasjonalt senter for matematikk i opplæringen Lærebokforfatter; MULTI 12-Mar-06 Intensjoner

Detaljer

Forfatterne bak Multi:

Forfatterne bak Multi: Multi i praksis Tilpasset opplæring Program for dagen 12.00 13.30: Tankene bak Multi Varierte uttrykksformer gir differensiering og god læring 13.30 14.10: Mat 14.10 15.00: Varierte uttrykksformer gir

Detaljer

VELKOMMEN TIL FØRLANSERING. Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg

VELKOMMEN TIL FØRLANSERING. Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg VELKOMMEN TIL FØRLANSERING Bjørnar Alseth Ingvill Merethe Stedøy-Johansen Janneke Tangen Grete Normann Tofteberg Innledning hvem og hvorfor Arbeidsmåter og aktiviteter Pause Arbeidsmåter og aktiviteter

Detaljer

MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim,

MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim, MAM Mestre Ambisiøs Matematikkundervisning Realfagskonferansen Trondheim, 03.05.16 Mestre Ambisiøs Matematikkundervisning matematikksenteret.no Utvikle en modell med tilhørende ressurser for skolebasert

Detaljer

Reviderte læreplaner konsekvenser for undervisningen?

Reviderte læreplaner konsekvenser for undervisningen? Reviderte læreplaner konsekvenser for undervisningen? Multiaden 2013 Innhold Kompetanse i matematikk Den reviderte læreplanen Hva skal elevene lære? Grunnleggende ferdigheter i matematikk Konsekvenser

Detaljer

Bergen kommune. Matematikk er et redskap for å se, oppdage og løse dagliglivets små og store problemer. Dato: 13.08.13

Bergen kommune. Matematikk er et redskap for å se, oppdage og løse dagliglivets små og store problemer. Dato: 13.08.13 Bergen kommune Matematikk er et redskap for å se, oppdage og løse dagliglivets små og store problemer. Dato: 13.08.13 Kaland skole, Bergen kommune, 13.08.13 Medbestemmelse Respekt for alle Omsorg. ros

Detaljer

Kjennetegn for god matematikk og regneopplæring. Susanne Stengrundet Jens Arne Meistad Matematikksenteret

Kjennetegn for god matematikk og regneopplæring. Susanne Stengrundet Jens Arne Meistad Matematikksenteret Kjennetegn for god matematikk og regneopplæring Susanne Stengrundet Jens Arne Meistad Matematikksenteret Til topps Kast alle terninger én gang 1=1 2=2 3=2+1 4=4 5=4+1.. 12=2 6.. 36=6 (4+2) pluss minus

Detaljer

Prinsipper for god undervisning. Anne-Gunn Svorkmo Svein Torkildsen Astrid Bondø

Prinsipper for god undervisning. Anne-Gunn Svorkmo Svein Torkildsen Astrid Bondø Prinsipper for god undervisning Anne-Gunn Svorkmo Svein Torkildsen Astrid Bondø Lærere kan ikke gjøre hva de vil Vi er forpliktet på en læreplan som blant annet sier Opplæringa vekslar mellom utforskande,

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler

Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler Sandvika 12.september 2011 Tone Elisabeth Bakken tone.bakken@ohg.vgs.no Hovedpunkter: Praktisk regning dag 1 Læringsmiljø Elevers

Detaljer

Definisjon av god regning

Definisjon av god regning Definisjon av god regning Å kunne regne er en viktig forutsetning for egen utvikling, og for å ta hensiktsmessige avgjørelser på en rekke områder i eget daglig- og arbeidsliv. Videre er det nødvendig for

Detaljer

Gjett tre kort. Foreldrene betyr all verden! Grunntanken bak Multi. Mastermind. Faglig fokus og tydelige læringsmål. En bred matematisk kompetanse

Gjett tre kort. Foreldrene betyr all verden! Grunntanken bak Multi. Mastermind. Faglig fokus og tydelige læringsmål. En bred matematisk kompetanse Foreldrene betyr all verden! Gjett tre kort Mona Røsseland Lærebokforfatter, MULTI Matematikksenteret, NTNU 10-Oct-10 2 Mastermind Grunntanken bak Multi Faglig fokus og tydelige læringsmål Elevene skal

Detaljer

Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning. Revidert læreplan i matematikk

Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning. Revidert læreplan i matematikk Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning Revidert læreplan i matematikk Læreplan i matematikk Skoleforordningen 1734 Regning og matematikk Dagliglivets matematikk Grunnleggende ferdigheter

Detaljer

ÅRSPLAN I MATEMATIKK 3. TRINN

ÅRSPLAN I MATEMATIKK 3. TRINN «På strand vil vi være, mestre og lære i skog og i fjære» ÅRSPLAN I MATEMATIKK 3. TRINN Strand oppvekstsenter avd. skole 2017-2018 Lærer: Janne K. Nordmo GRUNNLEGGENDE FERDIHETER I FAGET Grunnleggjande

Detaljer

Sortering G: Rød farge (1.1) Regnefortelling

Sortering G: Rød farge (1.1) Regnefortelling G T P T ÅPLN I TTIKK FO 1. TINN 2013/2014 Læreverk: ulti, Tuba Luba, og Grunntall Faglærer: Janicke. Oldervoll ÅL (K06) T IDFO VDING LOKL LÆPLN Forstå 1-10er mengde, og forstå at vi bruker tallene 1-10

Detaljer

Årsplan i matematikk for 6. klasse 2015-16

Årsplan i matematikk for 6. klasse 2015-16 Antall timer pr uke: 3,5 Lærer: Randi Minnesjord Læreverk: Multi 6 a og 6 b Gyldendal Nettstedene: www.moava.org og kikkora Grunnleggjande ferdigheiter (fra Kunnskapsløftet): Grunnleggjande ferdigheiter

Detaljer

Kompetanse i faget og kompetansemål: Hovedområdene: 1. Tal og algebra 2. Geometri 3. Måling 4. Statistikk og sannsyn

Kompetanse i faget og kompetansemål: Hovedområdene: 1. Tal og algebra 2. Geometri 3. Måling 4. Statistikk og sannsyn Mal lokallæreplan ved Froland skole Utdanningsdirektoratets veiledninger til de ulike læreplanene for fag danner grunnlaget for arbeidet med lokale læreplaner på Froland skole Fag: matematikk Trinn: 7.

Detaljer

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne?

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne? Elevaktiv matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? hvorfor og hvordan? Mona Røsseland Leder i Lamis Nasjonalt senter for matematikk i opplæringen Lærebokforfatter

Detaljer

Veiledning del 3. Oppfølging av resultater fra. nasjonal prøve i regning. 8. trinn

Veiledning del 3. Oppfølging av resultater fra. nasjonal prøve i regning. 8. trinn Versjon 8. september 2009 Bokmål Veiledning del 3 Oppfølging av resultater fra nasjonal prøve i regning 8. trinn Høsten 2009 1 Dette heftet er del 3 av et samlet veiledningsmateriell til nasjonal prøve

Detaljer

Bergen kommune. Matematikk er et redskap for å se, oppdage og løse dagliglivets små og store problemer. Dato:

Bergen kommune. Matematikk er et redskap for å se, oppdage og løse dagliglivets små og store problemer. Dato: Bergen kommune Matematikk er et redskap for å se, oppdage og løse dagliglivets små og store problemer. Dato: 15.02.11 Kaland skole, Bergen kommune, 18.01.11 Medbestemmelse Respekt for alle Omsorg. ros

Detaljer

Årsplan i matematikk 8.trinn, 2014-2015 Faglærere: Lars Skaale Hauge, Hans Tinggård Dillekås og Ina Hernar Lærebok: Nye Mega 8A og 8B

Årsplan i matematikk 8.trinn, 2014-2015 Faglærere: Lars Skaale Hauge, Hans Tinggård Dillekås og Ina Hernar Lærebok: Nye Mega 8A og 8B Årsplan i matematikk 8.trinn, 2014-2015 Faglærere: Lars Skaale Hauge, Hans Tinggård Dillekås og Ina Hernar Lærebok: 8A og 8B Grunnleggende ferdigheter i faget: Munnlege ferdigheiter i matematikk inneber

Detaljer

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være:

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være: Likninger og algebra Det er større sprang fra å regne med tall til å regne med bokstaver enn det vi skulle tro. Vi tror at både likninger og bokstavregning (som er den algebraen elevene møter i grunnskolen)

Detaljer

Vi har alle et ansvar for å bidra til å endre slike holdninger. REGNING FOR ALLE LÆRERE EN FAMILIE PÅ FEM

Vi har alle et ansvar for å bidra til å endre slike holdninger. REGNING FOR ALLE LÆRERE EN FAMILIE PÅ FEM EN FAMILIE PÅ FEM REGNING FOR ALLE LÆRERE Mysen, 27.09.13 gretof@ostfoldfk.no DIGITAL Jeg har aldri forstått matematikk hatet faget på skolen. Ikke har jeg hatt bruk for det heller, det har gått helt fint

Detaljer

God matematikkundervisning... - Kva er det? Hva er matematisk kompetanse? Oversikt

God matematikkundervisning... - Kva er det? Hva er matematisk kompetanse? Oversikt God matematikkundervisning... - Kva er det? Mona Røsseland Matematikksenteret, NTNU Leder i Lamis Lærebokforfatter, MULTI 12-Apr-07 Oversikt Noen tanker om hva som kan være kjennetegn på god matematikkundervisning..

Detaljer

Årsplan matematikk 1. trinn skoleåret 15/16

Årsplan matematikk 1. trinn skoleåret 15/16 Årsplan matematikk 1. trinn skoleåret 15/16 FAG Den lokale læreplanen for faget må: Sees i sammenheng med det aktuelle trinn Sikre at skolen jobber med alle kompetansemål i faget Aktuelle elementer fra

Detaljer

L06. Den gode matematikkundervisning. - hva er det? Hvordan bli en motiverende lærer? Intensjonene med den nye læreplanen

L06. Den gode matematikkundervisning. - hva er det? Hvordan bli en motiverende lærer? Intensjonene med den nye læreplanen Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen 1-May-06 1-May-06

Detaljer

Vurdering for og av læring

Vurdering for og av læring Vurdering for og av læring Skolens nye trendord? Svein H. Torkildsen, NSMO Dagens program Arbeidet legges opp rundt 1. læreplanens kompetansemål 2. arbeidsmåter i faget 3. læreboka og pedagogens arbeid

Detaljer

5. TRINN MATEMATIKK PERIODEPLAN 1

5. TRINN MATEMATIKK PERIODEPLAN 1 1 5. TRINN MATEMATIKK PERIODEPLAN 1 KOMPETANSEMÅL Tall og algebra Mål for opplæringa er at eleven skal kunne: beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal,

Detaljer

www.fiboline.no 18.02.2012 Gjett tre kort Mastermind www.fiboline.no Resultat i matematikk på kunnskapsnivåer, 8.trinn Utstyr En kortstokk

www.fiboline.no 18.02.2012 Gjett tre kort Mastermind www.fiboline.no Resultat i matematikk på kunnskapsnivåer, 8.trinn Utstyr En kortstokk Foreldrene betyr all verden! Mona Røsseland Lærebokforfatter, MULTI www.fiboline.no Utstyr En kortstokk Gjett tre kort Regler Et spill for 2 3 spillere eller for en stor gruppe En person trekker tre kort

Detaljer

Ny GIV. et løft for alle. Realfagskonferansen Astrid Bondø Svein H Torkildsen NSMO

Ny GIV. et løft for alle. Realfagskonferansen Astrid Bondø Svein H Torkildsen NSMO Ny GIV et løft for alle Realfagskonferansen 2013 Astrid Bondø Svein H Torkildsen NSMO Hva Hvorfor Hvordan Ny GIV Bakgrunn Resultater Tilbakemeldinger Matematikksenterets rolle Didaktisk grunnlag Materiell

Detaljer

Du betyr en forskjell. (Fritt etter foredrag av Brynhild Farbrot)

Du betyr en forskjell. (Fritt etter foredrag av Brynhild Farbrot) Du betyr en forskjell (Fritt etter foredrag av Brynhild Farbrot) Dere foreldre, er like viktige som undervisningen. Gi barnet ditt allsidig erfaringer fra dagliglivet. Barn som har et godt begrepsinnhold

Detaljer

De fire regningsartene

De fire regningsartene De fire regningsartene Det går ikke an å si at elevene først skal ha forstått posisjonssystemet, og deretter kan de begynne med addisjon og subtraksjon. Dette må utvikles gradvis og om hverandre. Elevene

Detaljer

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09.

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09. Hva er Hvorfor Singaporematematikk er folk interesserte i Singapore-matematikk Fordi elevene i Singapore stadig får best resultat på En samling undervisningsstrategier vanlig i Singapore internasjonale

Detaljer

Årsplan Matematikk 8. trinn

Årsplan Matematikk 8. trinn Årsplan Matematikk 8. trinn Innhold Vurdering...1 Årsplan/vekeplan...4 Vurdering Matematikk: Rettleiande nasjonale kjenneteikn på måloppnåing for standpunkt etter 10. trinn Kjenneteikna på måloppnåing

Detaljer

Sammen leker vi matematikk

Sammen leker vi matematikk Sammen leker vi matematikk Bergen, 10.11.17 Kontakt oss gjerne på: Anne.Nakken@matematikksenteret.no Camilla.Justnes@matematikksenteret.no Helhet Barndommen har egenverdi, og barnehagen skal ha en helhetlig

Detaljer

Bruk av nettressurser i utvikling av matematikkundervisning. Seminar Realfagskommuner Pulje 1, 26. september 2016

Bruk av nettressurser i utvikling av matematikkundervisning. Seminar Realfagskommuner Pulje 1, 26. september 2016 Bruk av nettressurser i utvikling av matematikkundervisning Seminar Realfagskommuner Pulje 1, 26. september 2016 Hva er matematikk? Måter å se matematikk på: Regler resonnering Redskap eget fag Huske kreativitet

Detaljer

Den gode matematikkundervisning

Den gode matematikkundervisning Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i LAMIS Lærebokforfatter;

Detaljer

Veiledning del 3. Oppfølging av resultater fra. nasjonal prøve i regning. 5. trinn

Veiledning del 3. Oppfølging av resultater fra. nasjonal prøve i regning. 5. trinn Versjon 8. september 2009 Bokmål Veiledning del 3 Oppfølging av resultater fra nasjonal prøve i regning 5. trinn Høsten 2009 1 Dette heftet er del 3 av et samlet veiledningsmateriell til nasjonal prøve

Detaljer

Telle med 4 fra 4. Mål. Gjennomføring. Telle i kor Telle med 4 fra 4 Planleggingsdokument

Telle med 4 fra 4. Mål. Gjennomføring. Telle i kor Telle med 4 fra 4 Planleggingsdokument Telle med 4 fra 4 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønster ved å utnytte mønster en allerede har funnet. Utfordre elevene på å resonnere og

Detaljer

Årsplan i matematikk 8.trinn, Faglærere: Rolf Eide (8A og 8B) og Halldis Furnes ( 8C) Lærebok: Nye Mega 8A og 8B

Årsplan i matematikk 8.trinn, Faglærere: Rolf Eide (8A og 8B) og Halldis Furnes ( 8C) Lærebok: Nye Mega 8A og 8B Årsplan i matematikk 8.trinn, 2016-2017 Faglærere: Rolf Eide (8A og 8B) og Halldis Furnes ( 8C) Lærebok: Nye Mega 8A og 8B Grunnleggende ferdigheter i faget: Munnlege ferdigheiter i matematikk inneber

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Kursinnhald Kva er matematisk kompetanse og korleis skal vi nå

Detaljer

Læreplanene for Kunnskapsløftet

Læreplanene for Kunnskapsløftet Læreplanene for Kunnskapsløftet Hvordan få samsvar mellom intensjon og praksis? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i Lamis Lærebokforfatter; MULTI 21-Mar-06 Intensjoner

Detaljer

ÅRSPLAN I MATTE 3. og 4. TRINN BREIVIKBOTN SKOLE

ÅRSPLAN I MATTE 3. og 4. TRINN BREIVIKBOTN SKOLE ÅRSPLAN I MATTE 3. og 4. TRINN BREIVIKBOTN SKOLE 2012-2013 Lærer: Knut Brattfjord Læreverk: Grunntall 3 a og b, 4 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene er fra Lærerplanverket

Detaljer