Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov
|
|
- Ludvig Martinsen
- 7 år siden
- Visninger:
Transkript
1 Forelesnng nr.3 INF 4 Elektronske systemer Parallelle og parallell-serelle kretser Krchhoffs strømlov
2 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt parallelle kretser Krchhoffs strømlov Temaene hentes fra Kapttel og INF 4
3 Parallellkrets En krets kalles parallell hvs den har mer enn én strømve mellom termnalene på en spennngsklde V S Alle elementene har samme spennng over seg INF 4 3
4 esstorer parallell esstorer er koblet parallell hvs endepunktene er koblet sammen det samme nodeparet A 3 4 B En krets kan også ha resstorer som lokalt sett er parallelle (eventuelt serelle) INF 4 4
5 Ekvvalent parallellmotstand Ønsker å fnne samlet motstand eq uttrykt ved og Hvs eq skal være lk og parallell, må spennngen over eq være lk spennngen over og INF 4 5 eq v s v s ) ( v v v v v s s s s s eq ) ( v v eq s eq s
6 Samlet resstans en parallellkrets Den samlede resstansen T en parallellkrets med n resstorer er lk summen av den nverse av resstansen tl hvert enkelt element T n Konduktansen tl en parallellkrets er lk summen av konduktansen tl enkeltelementene: G G G T G n INF 4 6
7 Samlet resstans en parallellkrets (forts) Hvs alle n resstorer har samme Ohm-verd blr den totale resstansen en parallellkoblng T n Notasjonen for resstorer parallell er n m INF 4 7
8 Spennngsdeler med lastmotstand Hvs en spennngsdeler brukes som forsynngsspennng tl f.eks en resstor, vl spennngen synke V S + V out 3 Spennngen V out er nå V 3 out V S 3 Sden 3 <, så synker V out INF 4 8
9 Eksempel V S = +5 V k Uten 3 er Med 3 er 470 Vout VS 5v 8, 8v Vout VS 5v 5v 8, 0v INF 4 9
10 Påvrknng av spennngmålng Et voltmeter kobles parallell med elementet som det skal måles spennng over, vl ntrodusere en parallellmotstand Her Hva måles spennngen med ett voltmeter enten over eller over skjer hvs det brukes to voltmetre samtdg? V S + 0 V 470 k 470 k V V INF 4 0
11 Krchhoffs strømlov (KCL) Den algebraske summen av alle strømmene som går nn mot (eller ut av) en node, er lk 0 Strøm kan verken oppstå, lagres eller forsvnne en node. ( ) ( ) ) ( ) 3 ( INF 4
12 Krchhoffs strømlov (KCL) forts. Det generelle tlfellet er gtt av N n n 0 Forutsetnngen er at alle plene ENTEN peker nn mot noden ELLE ut av noden. Hvs noen peker nn og andre ut, velger man retnng, og multplserer strømmene som avvker med INF 4
13 Strømdvsjon Ofte ønsker man å kunne skalere (dvdere) en strøm med en konstant faktor INF 4 3 ) ( ) ( v ) ( ) ( v s s v s
14 Strømdvsjon (forts) Uttrykket for strømdvsjon kan generalseres tl å gjelde n parallellkoblede grener Strømmen I x gjennom én gren er gtt av Samtdg er V S gtt av den totale strømmen I T ganget med den totale resstansen T INF 4 4 x S x x x S V I I V T x T T T x S x I x I V I
15 Effekt parallellkretser Den totale effekten P T for n resstorer parallell er gtt av Uttrykt ved strøm, spennng og resstans kan effekten vdere skrves som INF 4 5 T S V T T T S T I I V P T P n P P P
16 Spørsmål Fnn verden tl når =A, 3 =-3A og 4 = 0,5A 4 3 Hvs strømretnngene som vst på bldet er korrekte, hvlke verder har da,, 3 og 4? INF 4 6
17 Spørsmål Fnn V s når =5 Ω, =5 Ω og =A Fnn når =5 Ω, V s =5v og =4A Fnn når =0 Ω, V s =4v og =A v s INF 4 7
18 Serell-parallellkretser De fleste kretser er en blandng av sere- og parallell-koblede elementer Man ønsker som regel å bruke færrest mulg komponenter For å forenkle må man dentfsere hvlke elementer som er sere og parallell, og benytte formlene for resstorer hhv sere og parallell S n P n INF 4 8
19 Serell-parallellkretser (forts) Kretser kalles ekvvalente hvs de har de samme elektrske egenskapene mellom et nodepar Sett fra «utsden» har krets A og B de samme elektrsk egenskapene ( dette tlfellet samme resstans).0 k.0 k A.0 k B INF 4 9
20 Serell-parallellkretser (forts).0 k.7 k k 3.7 k, k,,3.07 k Målt mellom de røde termnalene er det kke mulg å avgjøre hva som er forskjellen mellom dsse kretsene INF 4 0
21 Analyse av serell-parallelle kretser Ved analyse og desgn må man ofte fnne strømmer og spennnger noder og grener av en krets, og gjennom serell- og parallellkoblede elementer Ukjente strømmer og spennnger kan være avhengge av andre strømmer og spennnger kretsen Ved å bruke KVL, KCL og Ohms lov kan man mange tlfeller fnne de ukjente strømmene og spennngene INF 4
22 Eksempel Fnn spennngen v x kretsen under A 0Ω Ω 30V 0Ω Ω x v x + - Forberedelse: Sett navn på relevante noder, løkker, strømmer, spennnger og elementer (teratv prosess) INF 4
23 Eksempel forts 30V A 0Ω A Ω L L v 0Ω Ω v + A x - x - Steg : Fnn v A ved å bruke KVL på løkke L: 30v v 30v 0 Av v 0v v A 0 0 A INF 4 3 A
24 Eksempel forts 30V A 0Ω A Ω L L v 0Ω Ω v + A x - x - Steg 3: Fnn ved å bruke Ohms lov: 0v 0 A INF 4 4
25 Eksempel forts 30V 3 A 0Ω Ω A L L v 0Ω Ω v + A x - x - Steg 4: Bruk KCL mot node A A3 3 A A A INF 4 5
26 Eksempel forts 30V 3 A 0Ω Ω A L v L 0Ω Ω v + A x - x - Steg 5: Bruk KVL på løkke L v A v 3 v Bruker Ohms lov for å fnne V 3 som da gr x INF v Avx 0 vx 8v
27 Eksempel forts 30V 3 A 0Ω Ω A L v L 0Ω Ω v + A x - x - V fant den ukjente spennngen ved bruk av KVL, KCL og Ohms lov Det fnnes mer systematske metoder (node og mesh-analyse, superpossjon) For større kretser brukes smulerngsverktøy, f.eks LtSPICE INF 4 7
28 Nøtt tl neste gang Gtt en krets som skal brukes tl å lage 5 ulke strømmer slk vst: v s =3v,6A 0,8A 0,4A 0,A 0,A Hvs du bare har én motstandsstørrelse tlgjengelg, hvor stor må denne være for at du skal klare deg med så få motstander som mulg? INF 4 8
29 Oppsummerngsspørsmål Spørsmål fra forelesnngene og 3
30 Spørsmål Om effekt a) Effekt kan være både postv og negatv b) Effekt kan bare være postv c) Effekt kan bare være negatv d) Effekt angs uten fortegn INF 4 30
31 Spørsmål Energtap pga resstans gjør at energen tl elektronene går over tl a) Varme b) Lys c) Overførngstap d) Alle fenomenene over INF 4 3
32 Spørsmål 3 En serell krets kjennetegnes ved at a) Den har kun én klde b) Den har kun ett element c) Bare én felles løkke som strømmen går gjennom d) Mnst en felles løkke som strømmen går gjennom INF 4 3
33 Spørsmål 4 Den totale motstanden en resstv serell krets fnnes ved å a) Multplsere resstansene tl hver enkelt resstor b) Addere resstansene tl hver enkelt resstor c) Addere resstansene tl hver enkelt resstor og klden(e) d) Multplsere resstansene tl hver enkelt resstor og spennngsklden INF 4 33
34 Spørsmål 5 Ved å koble sammen flere spennngsklder sere får man a) Økt spennng b) Økt konduktans c) Økt strøm d) edusert resstans INF 4 34
35 Spørsmål 6 En parallellkrets kjennetegnes ved at a) Den har kun en strømklde b) Det fnnes kun en strømve mellom termnalene på spennngsklden c) Alle elementene har samme spennng over termnalene d) Den har kun én spennngsklde INF 4 35
36 Spørsmål 7 Hva er den mnste og største verden V out kan ha? a) Mnste verd=0v, største=.5v b) Mnste verd=0v, største=7.5v c) Mnste verd=5v, største=7.5v d) Mnste verd=.5v, største=5v V S + 5 V 500Ω 0 k 500Ω 0 k V OUT INF 4 36
37 Spørsmål 8 For parallellkoblede resstanser er a) den totale konduktansen lk summen av enkeltkonduktansene b) den totale resstansen lk summen av enkeltresstansene c) den totale resstansen større enn den mnste enkeltresstansen d) den totale resstansen større enn den største enkeltesstansen INF 4 37
38 Spørsmål 9 Krchhoffs strømlov ser at a) Summen av strømmene rundt en lukket st er 0 b) Den algebraske summen av strømmene nn mot er node er 0 c) Den algebraske summen av spennngene en node er 0 d) Summen av resstansene tl elementer en lukket st er INF 4 38
39 Spørsmål 0 To kretser er ekvvalente hvs a) De nneholder samme antall elementer b) Samme antallet strøm- og spennngsklder c) Oppbygngen nternt de to kretsene er dentske d) De elektrske egenskapene mellom et nodepar er dentske INF 4 39
Forelesning nr.3 INF 1411 Elektroniske systemer
Forelesnng nr.3 INF 4 Elektronske systemer 009 04 Parallelle og parallell-serelle kretser Krchhoffs strømlov 30.0.04 INF 4 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt
DetaljerForelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov
Forelenng nr.3 INF 4 Elektronke ytemer Parallelle og parallell-erelle kreter Krchhoff trømlo Dagen temaer Krchhoff trømlo Parallelle kreter Kreter med parallelle og erelle ter Effekt parallelle kreter
DetaljerForelesning nr.3 IN 1080 Mekatronikk. Parallelle og parallell-serielle kretser Kirchhoffs strømlov
Forelenng nr.3 IN 080 Mekatronkk Parallelle og parallell-erelle kreter Krchhoff trømlo Dagen temaer Krchhoff trømlo Parallelle kreter Kreter med parallelle og erelle ter Effekt parallelle kreter Temaene
DetaljerForelesning nr.3 INF 1410
Forelesnng nr. INF 40 009 Node og mesh-analyse 6.0.009 INF 40 Oerskt dagens temaer Bakgrunn Nodeanalyse og motasjon Meshanalyse 009 Supernode Bruksområder og supermesh for node- og meshanalyse 6.0.009
DetaljerForelesning nr.2 INF 1410
009 Forelenng nr. INF 40 Strøm og pennngloer 3.0.009 INF 40 009 Oerkt dagen temaer Defnjon a løkker, ter, noder og grener Krchhoff trøm og pennngloer (KCV og KCL) Serelle Serelle og parallelle kreter Forenklng
DetaljerForelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov
Forelesning nr.2 INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslov Dagens temaer Sammenheng mellom strøm, spenning, energi og effekt Strøm og resistans i serielle kretser
DetaljerForelesning 17 torsdag den 16. oktober
Forelesnng 17 torsdag den 16. oktober 4.12 Orden modulo et prmtall Defnsjon 4.12.1. La p være et prmtall. La x være et heltall slk at det kke er sant at x 0 Et naturlg tall t er ordenen tl a modulo p dersom
DetaljerForelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov
Forelesning nr.2 INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslov Dagens temaer Sammenheng mellom strøm, spenning, energi og effekt Strøm og resistans i serielle kretser
DetaljerSeleksjon og uttak av alderspensjon fra Folketrygden
ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.
DetaljerSimpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering
Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng
DetaljerLøsningsforslag ST2301 Øving 8
Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de
DetaljerEKSAMEN Løsningsforslag
. desember 6 EKSAMEN Løsnngsorslag Emnekode: ITD Emnenavn: Matematkk ørste deleksamen Dato:. desember 6 Hjelpemdler: - To A-ark med valgrtt nnold på begge sder. - Formelete. - Kalkulator som deles ut samtdg
DetaljerAlternerende rekker og absolutt konvergens
Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne
DetaljerIT1105 Algoritmer og datastrukturer
Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle
DetaljerDynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet
Dynamsk programmerng Hvlke problemer? Metoden ble formalsert av Rchard Bellmann (RAND Corporaton) på -tallet. Har ngen tng med programmerng å gøre. Dynamsk er et ord som kan aldr brukes negatvt. Skal v
Detaljeri kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2
Repetsjon 4 (16.09.06) Regler for oksdasjonstall 1. Oksdasjonstall for alle fre element er 0 (O, N, C 60 ). Oksdasjonstall for enkle monoatomske on er lk ladnngen tl onet (Na + : +1, Cl - : -1, Mg + :
DetaljerUNIVERSITETET I OSLO.
UNIVERSITETET I OSO. Det matematsk - naturvtenskapelge fakultet. Eksamen : FY-IN 204 Eksamensdag : 13 jun 2001 Td for eksamen : l.0900-1500 Oppgavesettet er på 5 sder. Vedlegg Tllatte hjelpemdler : ogartmepapr
DetaljerLøsningsskisse til eksamen i TFY112 Elektromagnetisme,
Løsnngssksse tl eksamen TFY11 Elektromagnetsme, høst 003 (med forbehold om fel) Oppgave 1 a) Ved elektrostatsk lkevekt har v E = 0 nne metall. Ellers bruker v Gauss lov med gaussflate konsentrsk om lederkulen.
DetaljerTMA4240/4245 Statistikk Eksamen august 2016
Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA44/445 Statstkk Eksamen august 6 Løsnngssksse Oppgave a) Ved kast av to ternnger er det 36 mulge utfall: (, ),..., (6, 6). La Y
DetaljerEKSAMEN Ny og utsatt Løsningsforslag
. jun 0 EKSAMEN Ny og utsatt Løsnngsorslag Emnekode: ITD50 Dato:. jun 0 Emne: Matematkk, deleksamen Eksamenstd: 09.00.00 Hjelpemdler: To A-ark med valgrtt nnhold på begge sder. Formelhete. Kalkulator er
DetaljerMA1301 Tallteori Høsten 2014
MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................
DetaljerOppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011
Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt
DetaljerEKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00
Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:
DetaljerNÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL
NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL Norman & Orvedal, kap. 1-5 Bævre & Vsle Generell lkevekt En lten, åpen økonom Nærngsstruktur Skjermet versus konkurranseutsatt vrksomhet Handel og komparatve fortrnn
DetaljerForelesning nr.2 INF 1411 Elektroniske systemer
Forelesning nr. INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslo 1 Dagens temaer Sammenheng, strøm, spenning, energi og effekt Strøm og motstand i serielle kretser Bruk
DetaljerEksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS
Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73
DetaljerØVINGER 2017 Løsninger til oppgaver
ØVINGER 017 Løsnnger tl oppgaver Øvng 1 7.1. Med utgangspunkt de n 5 observasjonsparene (x 1, y 1 ), (x, y ),..., (x 5, y 5 ) beregner v først mddelverdene x 1 5 Estmert kovarans blr x 3. ȳ 1 5 s XY 1
DetaljerLøsningsforslag øving 10 TMA4110 høsten 2018
Løsnngsforslag øvng TMA4 høsten 8 [ + + Projeksjonen av u på v er: u v v u v v v + ( 5) [ + u v v u [ 8/5 6/5 For å fnne ut om en matrse P representerer en projeksjon, må v sjekke om P P a) b) c) [ d)
DetaljerTFE4101 Vår Løsningsforslag Øving 1. 1 Ohms lov. Serie- og parallellkobling. (35 poeng)
TFE4101 Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon Løsningsforslag Øving 1 1 Ohms lov. Serie- og parallellkobling. (35 poeng) a) Hvilke av påstandene
DetaljerC(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse)
Fyskk / ermodynamkk Våren 2001 5. ermokjem 5.1. ermokjem I termokjemen ser v på de energendrnger som fnner sted kjemske reaksjoner. Hver reaktant og hvert produkt som nngår en kjemsk reaksjon kan beskrves
DetaljerOppgave 3, SØK400 våren 2002, v/d. Lund
Oppgave 3, SØK400 våren 00, v/d. Lnd En bonde bonde dyrker poteter. Hvs det blr mldvær, blr avlngen 0. Hvs det blr frost, blr avlngen. Naboen bonde, som vl være tsatt for samme vær, dyrker også poteter,
DetaljerLøsningsforslag for obligatorisk øving 1
TFY4185 Måleteknikk Institutt for fysikk Løsningsforslag for obligatorisk øving 1 Oppgave 1 a Vi starter med å angi strømmen i alle grener For Wheatstone-brua trenger vi 6 ukjente strømmer I 1 I 6, som
DetaljerInvestering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet
Investerng under uskkerhet Rsko og avkastnng Høy rsko Lav rsko Presserng av rskobegreet Realnvesterng Fnansnvesterng Rsko for enkeltaksjer og ortefølje-sammenheng Fnansnvesterng Realnvesterng John-Erk
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i INF 1411 Introduksjon til elektroniske systemer Eksamensdag: 30. mai 2010 Tid for eksamen: 3 timer Oppgavesettet er på
DetaljerAnvendelser. Kapittel 12. Minste kvadraters metode
Kapttel Anvendelser I dette kaptlet skal v se på forskjellge anvendelser av teknkke v har utvklet løpet av de sste ukene Avsnttene og eksemplene v skal se på er derfor forholdsvs uavhengge Mnste kvadraters
DetaljerDynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet
Dynamsk programmerng Metoden ble formalsert av Rchard Bellmann (RAND Corporaton på -tallet. Programmerng betydnngen planlegge, ta beslutnnger. (Har kke noe med kode eller å skrve kode å gøre. Dynamsk for
DetaljerOppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1
ECON 213 EKSAMEN 26 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å vee lke mye, Kommentarer og tallsvar er skrevet nn mellom , Oppgave 1 I en by med 1 stemmeberettgete nnbyggere
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer
DetaljerIllustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).
Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +
DetaljerEksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f).
Eksamen ECON 00, Sensorvelednng Våren 0 Oppgave (8 poeng ) Derver følgende funksjoner. Derver med hensyn på begge argumenter e) og f). (Ett poeng per dervasjon, dvs, poeng e og f) a) f( x) = 3x x + ln
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.
ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Elektroniske systemer Eksamensdag: 4. juni 2012 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg: Ingen
DetaljerForelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser
Forelesning nr.5 INF 1411 Elektroniske systemer R-kretser Dagens temaer Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og fasevinkler Serielle
DetaljerForelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011
Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp
DetaljerVekst i skjermet virksomhet: Er dette et problem? Trend mot større andel sysselsetting i skjermet
Forelesnng NO kapttel 4 Skjermet og konkurranseutsatt vrksomhet Det grunnleggende formål med eksport: Mulggjøre mport Samfunnsøkonomsk balanse mellom eksport og mportkonkurrerende: Samme valutanntjenng/besparelse
DetaljerEKSAMEN ny og utsatt løsningsforslag
8.. EKSAMEN n og utsatt løsnngsorslag Emnekode: ITD Dato:. jun Hjelpemdler: - To A-ark med valgrtt nnhold på begge sder. Emnenavn: Matematkk ørste deleksamen Eksamenstd: 9.. Faglærer: Chrstan F Hede -
DetaljerFleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015
Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 2015 Prvate gjøremål på jobben Spørsmål: Omtrent hvor mye td bruker du per dag på å utføre prvate gjøremål arbedstden (n=623) Mer
Detaljer4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse
4 Energbalanse Innhold: Potensell energ Konservatve krefter Konserverng av energ Vrtuelt arbed for deformerbare legemer Vrtuelle forskvnngers prnspp Vrtuelle krefters prnspp Ltteratur: Irgens, Fasthetslære,
DetaljerSparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk.
ECON 0 Forbruker, bedrft og marked Forelesnngsnotater 09.0.07 Nls-Henrk von der Fehr FORBRUK OG SPARING Innlednng I denne delen skal v anvende det generelle modellapparatet for konsumentens tlpasnng tl
DetaljerTMA4265 Stokastiske prosesser
orges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA4265 Stokastske prosesser Våren 2004 Løsnngsforslag - Øvng 6 Oppgaver fra læreboka 4.56 X n Antallet hvte baller urna Trekk tlf.
DetaljerFasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1
Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar
Detaljer1653B/1654B. Installasjonstest på et IT anlegg i drift
65B/654B Installasjonstest på et IT anlegg drft Utførng av testene Spennngsmålnger Testeren kan brkes som et ac voltmeter hvor spennng og frekvens kan vses samtdg ved å sette rotasjonsbryteren tl V. Alle
Detaljermå det justeres for i avkastningsberegningene. se nærmere nedenfor om valg av beregningsmetoder.
40 Metoder for å måle avkastnng Totalavkastnngen tl Statens petroleumsfond blr målt med stor nøyaktghet. En vktg forutsetnng er at det alltd beregnes kvaltetsskret markedsverd av fondet når det kommer
DetaljerMoD233 - Geir Hasle - Leksjon 10 2
Leksjon 10 Anvendelser nettverksflyt Transportproblemet Htchcock-problemet Tlordnngsproblemet Korteste-ve problemet Nettverksflyt med øvre begrensnnger Maksmum-flyt problemet Teorem: Maksmum-flyt Mnmum-kutt
DetaljerUNIVERSITETET I OSLO
UNIVERITETET I OO Det matematsk-naturvtenskapelge fakultet Eksamen : FY110 Elektromagnetsme Eksamensdag: 6. desember 01 Td for eksamen: 14:30 18:30 Oppgavesettet er på: sder Vedlegg: Formelark (3 sder)
DetaljerStatistikk og økonomi, våren 2017
Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9
DetaljerForelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser
Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike typer respons Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og
DetaljerFast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid
Makroøkonom Publserngsoppgave Uke 48 November 29. 2009, Rev - Jan Erk Skog Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td I utsagnet Fast valutakurs, selvstendg
DetaljerForelesning nr.8 INF 1410
Forelesning nr.8 INF 4 C og kretser 2.3. INF 4 Oversikt dagens temaer inearitet Opampkretser i C- og -kretser med kondensatorer Naturlig respons for - og C-kretser Eksponensiell respons 2.3. INF 4 2 Node
DetaljerForelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer
Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon
DetaljerForelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer
Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen : ECON13 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 11.8.16 Sensur kunngjøres senest: 6.8.16 Td for eksamen: kl. 9: 1: Oppgavesettet er på 4 sder Tllatte hjelpemdler:
DetaljerTFE4101 Vår Løsningsforslag Øving 2. 1 Strøm- og spenningsdeling. (5 poeng)
TFE4101 Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon Løsningsforslag Øving 2 1 Strøm- og spenningsdeling. (5 poeng) Sett opp formelen for strømdeling
DetaljerFasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1
Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar
DetaljerForelesning nr.5 INF 1411 Elektroniske systemer
Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike Kondensatorer typer impedans og konduktans i serie og parallell Bruk R-kretser av kondensator Temaene Impedans og fasevinkler
DetaljerAppendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:
Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67
DetaljerElektrolaboratoriet RAPPORT. Oppgave nr. 1. Spenningsdeling og strømdeling. Skrevet av xxxxxxxx. Klasse: 09HBINEA. Faglærer: Tor Arne Folkestad
Elektrolaboratoriet RAPPORT Oppgave nr. 1 Spenningsdeling og strømdeling Skrevet av xxxxxxxx Klasse: 09HBINEA Faglærer: Tor Arne Folkestad Oppgaven utført, dato: 5.10.2010 Rapporten innlevert, dato: 01.11.2010
DetaljerEKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Professor Asle Sudbø, tlf 93403 EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, 2005 09.00-13.00
Detaljer(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:
A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:
DetaljerFleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015
Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 015 Antall dager med hjemmekontor Spørsmål: Omtrent hvor mange dager jobber du hjemmefra løpet av en gjennomsnttsmåned (n=63) Prosent
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.
ECON: EKSAMEN 6 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:
DetaljerForelesning nr.4 INF 1410
Forelesning nr.4 INF 1410 Flere teknikker for kretsanalyse og -transformasjon 1 Oversikt dagens temaer inearitet Praktiske Ekvivalente Nortons Thévenins Norton- og superposisjonsprinsippet (virkelige)
DetaljerLøsningsforslag eksamen inf 1410 våren 2009
Løsningsforslag eksamen inf 1410 våren 2009 Oppgave 1- Strøm og spenningslover. (Vekt: 15%) a) Finn den ukjente strømmen I 5 i Figur 1 og vis hvordan du kom frem til svaret Figur 1 Løsning: Ved enten å
DetaljerAutomatisk koplingspåsats Komfort Bruksanvisning
Bruksanvsnng System 2000 Art. Nr.: 0661 xx /0671 xx Innholdsfortegnelse 1. rmasjon om farer 2. Funksjon 2.1. Funksjonsprnspp 2.2. Regstrerngsområde versjon med 1,10 m lnse 2.3. Regstrerngsområde versjon
DetaljerFourieranalyse. Fourierrekker på reell form. Eksempel La. TMA4135 Matematikk 4D. En funksjon sies å ha periode p > 0 dersom
TMA435 Matematkk 4D Foureranalyse Fourerrekker på reell form En funksjon ses å ha perode p > dersom f(x + p) = f(x) () for alle x defnsjonsmengden tl f. Den mnste p slk at () holder, kalles fundamentalperoden
DetaljerSluttrapport. utprøvingen av
Fagenhet vderegående opplærng Sluttrapport utprøvngen av Gjennomgående dokumenterng fag- og yrkesopplærngen Februar 2012 Det å ha lett tlgjengelg dokumentasjon er en verd seg selv. Dokumentasjon gr ungedommene
DetaljerKONTINUASJONSEKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Fredag 13. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Martn Grønsleth, tlf 93772 KONTINUASJONSEKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Fredag 13. august, 2004
DetaljerEKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. mai, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Martn Grønsleth, tlf 93772 EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. ma, 2005 09.00-13.00 Tllatte
DetaljerFor å finne amplituden kan vi f.eks. ta utgangspunkt i AB=-30 og siden vi nå kjenner B finner vi A :
Ukeoppgaver INF 1410 til uke 18 (7-30 april) våren 009 Fra kapittel 10 i læreboka: Lett: 10.1, 10.3, 10. Middels: 10.9, 10.11, 10.53 Vanskelig: 10.13, 10.8, 10., 10.55 Fra kapittel 14 i læreboka: Lett:
DetaljerGenerell likevekt med skjermet og konkurranseutsatt sektor 1
1 Jon Vsle; februar 2018 ECON 3735 vår 2018 Forelesnngsnotat #1 Generell lkevekt med skjermet og konkurranseutsatt sektor 1 V betrakter en økonom med to sektorer; en skjermet sektor («-sektor») som produserer
DetaljerDenne anvisningen er en del av produktet og skal være hos sluttkunden. Bilde 1: Trådløs håndsender dobbel og firedobbel
Radohåndsender 2 kanaler Best.-nr. : 5352 10 Radohåndsender 4 kanaler Best.-nr. : 5354 10 Bruksanvsnng 1 Skkerhetsnformasjon Knappeceller skal oppbevares utlgjengelg for barn! Hvs knappecellene svelges
DetaljerUNIVERSITETET I OSLO
Løsnngsforslag UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : INF3 Dgtal bldebehandlng Eksamensdag : Trsdag 9. mars 3 Td for eksamen : 5: 9: Løsnngsforslaget er på : sder Vedlegg
DetaljerIN1 Projector. Innføring og hurtigreferanse
IN Projector Innførng og hurtgreferanse Les heftet med skkerhetsnstruksjoner før du konfgurerer projektoren. Pakk ut av esken Innhold: A/V-kabler følger kke med. Dsse kan kjøpes fra www.nfocus.com/store
DetaljerSTK desember 2007
Løsnngsfrslag tl eksamen STK0 5. desember 2007 Oppgave a V antar at slaktevektene tl kalkunene fra Vrgna er bserverte verder av stkastske varabler X, X 2, X, X 4 sm er uavhengge g Nµ, σ 2 -frdelte, g at
DetaljerHI-FI KOMPONENTSYSTEM
VENNLIGST MERK: Dne høyttalere (følger kke med) kan være forskjellge fra de som er llustrert dette nstruksjonsheftet. modell RNV70 HI-FI KOMPONENTSYSTEM Vedlkehold og spesfkasjoner Du MÅ lese bruksanvsnngen
DetaljerLøsningskisse for oppgaver til uke 15 ( april)
HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene
DetaljerELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02.
ELEKTRISITET - Sammenhengen mellom spenning, strøm og resistans Lene Dypvik NN Øyvind Nilsen Naturfag 1 Høgskolen i Bodø 18.01.02.2008 Revidert av Lene, Øyvind og NN Innledning Dette forsøket handler om
DetaljerTMA4265 Stokastiske prosesser
Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA65 Stokastske prosesser Våren Løsnngsforslag - Øvng Oppgaver fra læreboka.6 P er dobbelt stokastsk P j j La en slk kjede være rredusbel,
DetaljerBalanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985)
alanserte søketrær VL-trær Et bnært tre er et VL-tre hvs ølgende holder: VL-trær delson-velsk og Lands, 96 play-trær leator og Tarjan, 98. orskjellen høyde mellom det høyre og det venstre deltreet er maksmalt,
DetaljerNorske CO 2 -avgifter - differensiert eller uniform skatt?
Norske CO 2 -avgfter - dfferensert eller unform skatt? av Sven Egl Ueland Masteroppgave Masteroppgaven er levert for å fullføre graden Master samfunnsøkonom Unverstetet Bergen, Insttutt for økonom Oktober
DetaljerTFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng)
TFE411 Vår 216 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon Løsningsforslag Øving 3 1 Teorispørsmål. (2 poeng) a) Beskriv følgende med egne ord: Nodespenningsmetoden.
DetaljerNOEN SANNSYNLIGHETER I BRIDGE Av Hans-Wilhelm Mørch.
NOEN SANNSYNLIGHETER I BRIGE A Hans-Wlhelm Mørch. SANNSYNLIGHETER FOR HVORAN TRUMFEN(ELLER ANRE SORTER) ER FORELT Anta at du mangler n kort trumffargen. Ha er sannsynlgheten for at est har a a dem? La
DetaljerMakroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende:
Makroøkonom Innlednng Mundells trlemma 1 går ut på følgende: Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td Av de tre faktorene er hypotesen at v kun kan velge
DetaljerTillegg 7 7. Innledning til FY2045/TFY4250
FY1006/TFY4215 Tllegg 7 1 Dette notatet repeterer noen punkter fra Tllegg 2, og dekker detalj målng av degenererte egenverder samt mpulsrepresentasjonen av kvantemekankk. Tllegg 7 7. Innlednng tl FY2045/TFY4250
DetaljerNotater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater
009/30 Notater Mare Lllehammer Notater Uskkerhetsanalyse or utslpp av arlge stoer vdelng or IT og metode/seksjon or statstske metoder og standarder Innhold 1. Bakgrunn og ormål.... Metode....1 Fastsettelse
DetaljerAlderseffekter i NVEs kostnadsnormer. - evaluering og analyser
Alderseffekter NVEs kostnadsnormer - evaluerng og analyser 2009 20 06 20 10 20 10 20 10 21 2011 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 R A P P O R T 20 10 20 10 20 10 20 10 20 10 20 10 20
DetaljerMagnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland
Magnetsk nvåregulerng Prosjektoppgave faget TTK 45 Ulneære systemer Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Innholdsfortegnelse Innholdsfortegnelse... Innlednng... Oppgave
DetaljerVeiledning til obligatorisk oppgave i ECON 3610/4610 høsten N. Vi skal bestemme den fordeling av denne gitte arbeidsstyrken som
Jon sle; oktober 07 Ogave a. elednng tl oblgatorsk ogave ECO 60/60 høsten 07 har nå at samlet arbedskraftmengde er gtt lk, slk at ressurskravet er. skal bestemme den fordelng av denne gtte arbedsstyrken
Detaljer