UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
|
|
|
- Leiv Arntsen
- 8 år siden
- Visninger:
Transkript
1 Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: Sensur kunngjøres senest: Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler: Alle trykte og skrevne hjelpemdler er tllatt. I tllegg kan du ta med lommekalkulator som kke kan brukes tl å kommunsere med andre. Eksamen blr vurdert etter ECTS-skalaen. A-F, der A er beste karakter og E er dårlgste ståkarakter. F er kke bestått.
2 1 ECON130: EKSAMEN 015 VÅR - UTSATT PRØVE Oppgave 1 V har 4 spar-kort, hentet fra en vanlg kortstokk, med tallverder, 5,,7,8. To av dsse, og 8, er partall (dvs. er delelg med, og to, 5 og 7, er oddetall. A. V trekker to kort uten tlbakeleggng fra dsse fre slk at alle utvalg på to kort er lke sannsynlge. La A 1 være begvenheten at det første kortet trukket ut har et oddetall som verd, og A begvenheten at det andre kortet som blr trukket ut har et oddetall som verd. Fnn sannsynlghetene P( A1, P( A1 A og P( A Anta v vet at det andre kortet som ble trukket ut vste et oddetall (dvs. at A nntraff, men kke hva som skjedde første treknng (dvs. av det første kortet. Hva er sannsynlgheten for at det ble trukket et oddetall også første treknng? B. To skoleelever, Kar og Per, spller et spll de kaller «oddetall og partall» basert på de fre kortene beskrevet nnlednngen. Et spll består å trekke to kort uten tlbakeleggng fra de fre kortene. Dersom summen av de to uttrukne kortverdene er et oddetall, vnner Kar, og hvs summen er et partall, vnner Per. De to elevene tror nemlg det er samme sjanse for at summen blr et oddetall som at den blr et partall, slk at begge har samme sjanse for å vnne. De tar mdlertd fel. Vs at P(Kar vnner. 3 [Hnt. Det kan lønne seg å lage en tabell over aktuelle summer, x y, for alle kombnasjoner av x og y, der x er verden på det første kortet som trekkes ut og y verden på det andre. Du kan anta at alle kombnasjoner som er mulge, er lke sannsynlge. ] C. La ( et spll X være verden på det første kortet som trekkes ut og Y verden på det andre kortet som trekkes ut. 1 Vs at P( X 5 Y 1 Sett opp en tabell over smultanfordelngen for X og Y, bestemt ved f ( x, y P( X x Y y for alle kombnasjoner av x og y. Du kan, som før, anta at alle kombnasjoner som er mulge, er lke sannsynlge. Er X og Y stokastsk uavhengge? Begrunn svaret dtt.
3 D. Kar og Per spller spllet beskrevet punkt B 4 ganger. Det er klart at Kar vl ha en tendens tl å vnne oftere enn Per sden hun har større sannsynlghet for å vnne hvert spll. La U være antall ganger Kar vnner løpet av 4 spll. Beregn sannsynlgheten tlnærmet for at Kar vnner oftere enn Per løpet av 4 spll. Bruk heltallskorreksjon. [Hnt. Forklar at U er bnomsk fordelt. Beregn deretter PU ( 1 tlnærmet. ] La D være forskjellen mellom antall ganger de to vnner (dvs. D er antall ganger Kar vnner mnus antall ganger Per vnner løpet av 4 spll. Beregn forventnngen og varansen tl D. Begrunn at D er tlnærmet normalfordelt. I så fall, hvlken normalfordelng? Oppgave Det er en vanlg erfarng at man må stå kø foran kassen for å få betalt supermarkeder. I tabell 1 er det gtt ervasjoner fra forskjellge tlfeldge tlfeller man kom for å betale, målt lørdag ettermddag ved en bestemt kasse, der x angr antall personer som sto foran køen, og y tden ( mnutter man måtte vente tl man ble betjent for betalng (for tlfelle 1,,,. Tabell 1 Data Antall personer foran køen ( x Ventetd (* tl betjenng ved kassen (mnutter ( y Sum (* Desmaltallene betyr t-deler slk at, for eksempel, 5.5 mnutter betyr 5 mnutter og 30 sekunder.
4 3 A. Ventetden køen tl betjenng for betalng, Y, antas generelt å være en stokastsk varabel som er normalfordelt med forventnng, x, og varans, x, der x er antall personer foran køen når man kommer tl kassen for betalng. For enkelthets skyld antas denne oppgaven at antall personer køen, x, alltd er et gtt tall (dvs. kke-stokastsk. og er (ukjente parametre modellen. Forklar hvorfor denne modellen ser det samme som å s at ventetden pr. person køen, Y x er normalfordelt med forventnng og varans x (der altså x er kke-stokastsk. Den samlete tden en kunde tlbrnger ved kassen består av to deler, tden kø pluss betjenngstden ved selve kassen. Forklar kort hvorfor parameteren kan tolkes som gjennomsnttlg betjenngstd pr. kunde ved kassen (dvs. den gjennomsnttlge tden det tar å betjene en kunde. B. I tråd med modellen punkt A, antar v at ventetdene tabell 1 er ervasjoner av stokastske varable, Y1, Y,, Y, som antas å være uavhengge og normalfordelte slk at Y ~ N x, x, der x angr antall personer køen foran for tlfelle ( 1,,,. x -ene antas, som før, gtte tall (dvs. kke-stokastske. Det blr foreslått to estmatorer for : Y1 Y Y 1 Y ˆ og x x x x 1 1 Vs at både ˆ og er forventnngsrette estmatorer for. Beregn estmatene ˆ og. [Hnt. Tl hjelp under regnngen oppgs y x 1.97 ] Beregn varansene, var( ˆ og var(, uttrykt ved. Hvlket av de to estmatene mener du er mest troverdg? G en kort begrunnelse for svaret. [Hnt. Tl hjelp under regnngen oppgs 1 1 x 1.58 ] 1 C. Det kan vses (som du kke trenger å gjøre at W ˆ ˆ 1 x ~ t(5 fordelt 1 ( Y ˆ x fordelt med 5 frhetsgrader, der ˆ ˆ og ˆ. 5 x 1 (dvs. t- Bruk dette tl å fnne et 95% konfdensntervall for. Beregn konfdensntervallet ut fra data.
5 4 [Hnt. For å lette regnngen, oppgs den erverte verden, ˆ ] D. I dette og neste punkt skal v benytte modellen punkt B, men der v, for enkelthets skyld, antar at parameteren er kjent, Forklar hvorfor estmatoren ˆ 0.35 er normalfordelt, med ˆ ~ N,. 8 Tdlgere har man regnet med en gjennomsnttlg betjenngstd på 1.9 mnutter pr. kunde ved kassen lørdag ettermddag. Tyder data på at gjennomsnttlg betjenngstd har økt (basert på sgnfkansnvå 5%? Med andre ord, gjennomfør en 5% test for H0: 1.9 mot H1: 1.9, og formuler en konklusjon. Beregn p-verden (basert på data tabell 1 for testen dn. E. Sett opp et uttrykk for styrkefunksjonen for testen dn punkt D. Beregn sannsynlgheten for å forkaste H 0 hvs den sanne verden av er.
Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).
Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +
TMA4240/4245 Statistikk Eksamen august 2016
Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA44/445 Statstkk Eksamen august 6 Løsnngssksse Oppgave a) Ved kast av to ternnger er det 36 mulge utfall: (, ),..., (6, 6). La Y
(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:
A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:
Statistikk og økonomi, våren 2017
Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9
ØVINGER 2017 Løsninger til oppgaver
ØVINGER 017 Løsnnger tl oppgaver Øvng 1 7.1. Med utgangspunkt de n 5 observasjonsparene (x 1, y 1 ), (x, y ),..., (x 5, y 5 ) beregner v først mddelverdene x 1 5 Estmert kovarans blr x 3. ȳ 1 5 s XY 1
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksamen i: ECON30 Statistikk UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 03.06.06 Sensur kunngjøres: 4.06.06 Tid for eksamen: kl. 09:00 :00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:
Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011
Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt
Eksamensoppgave i SØK Statistikk for økonomer
Insttutt for samfunnsøkonom Eksamensoppgave SØK004 - Statstkk for økonomer Faglg kontakt under eksamen: Hldegunn E. Stokke, tlf 7359665 Bjarne Strøm, tlf 7359933 Eksamensdato: 0..04 Eksamenstd (fra-tl):
MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00
MASTER I IDRETTSVITESKAP 0/04 Indvduell skrftlg eksamen MAS 40- Statstkk Trsdag 9. oktober 0 kl. 0.00-.00 Hjelpemdler: kalkulator Eksamensoppgaven består av 9 sder nkludert forsden Sensurfrst: 30. oktober
Alle deloppgaver teller likt i vurderingen av besvarelsen.
STK H-26 Løsnngsforslag Alle deloppgaver teller lkt vurderngen av besvarelsen. Oppgave a) De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Medan og kvartler for
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : STK1000 Innførng anvendt statstkk Eksamensdag: Trsdag 12. desember 2017 Td for eksamen: 14.30 18.30 Oppgavesettet er på 5 sder Tllatte
Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011
Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp
EKSAMENSOPPGAVE I SØK1004 STATISTIKK FOR ØKONOMER STATISTICS FOR ECONOMISTS
NTNU Norges teknsk-naturvtenskapelge unverstet Insttutt for samfunnsøkonom EKSAMENSOPPGAVE I SØK004 STATISTIKK FOR ØKONOMER STATISTICS FOR ECONOMISTS Faglg kontakt under eksamen: Hldegunn E Stokke Tlf:
Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS
Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73
Anvendelser. Kapittel 12. Minste kvadraters metode
Kapttel Anvendelser I dette kaptlet skal v se på forskjellge anvendelser av teknkke v har utvklet løpet av de sste ukene Avsnttene og eksemplene v skal se på er derfor forholdsvs uavhengge Mnste kvadraters
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte
Løsningskisse for oppgaver til uke 15 ( april)
HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene
Eksamensoppgave i SØK2900 Empirisk metode
Insttutt for samfunnsøkonom Eksamensoppgave SØK900 Emprsk metode Faglg kontakt under eksamen: Bjarne Strøm Tlf.: 73 59 9 33 Eksamensdato: 3. jun 05 Eksamenstd (fra-tl): 4 tmer (09.00 3.00) Sensurdato:
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 1306017 Sensur kunngjøres senest: 3006017 Tid for eksamen: kl 09:00 1:00 Oppgavesettet er på 5 sider Tillatte
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Deleksamen MAT-INF Modellerng og beregnnger. Eksamensdag: Onsdag 7. oktober 29. Td for eksamen: 5: 7:. Oppgavesettet er på 6 sder. Vedlegg:
Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:
Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67
IT1105 Algoritmer og datastrukturer
Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOISK INSTITUTT Eksamen : ECON35/45 Elementær økonometr Exam: ECON35/45 Introductory econometrcs Eksamensdag: redag 2. ma 25 Sensur kunngjøres: andag 3. jun ate of exam: rday, ay
Oversikt 1. forelesning. ECON240 Statistikk og økonometri. Utdanning og lønn. Forskning. Datainnsamling; utdanning og inntekt
Overskt. forelesnng ECON40 Statstkk og økonometr Arld Aakvk, professor Insttutt for økonom Hva er statstkk og økonometr? Hvorfor studerer v fagområdet? Statstkk Metoder, teknkker og verktøy tl å produsere
Seleksjon og uttak av alderspensjon fra Folketrygden
ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.
TMA4265 Stokastiske prosesser
Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA65 Stokastske prosesser Våren Løsnngsforslag - Øvng Oppgaver fra læreboka.6 P er dobbelt stokastsk P j j La en slk kjede være rredusbel,
EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00
Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:
Hvordan får man data og modell til å passe sammen?
Hvordan får man data og modell tl å passe sammen? Ekstremverd-analyse Målet er å estmere T-års-ekstremen (flommen). T-års-ekstremen er slk at etter T år vl det forventnng være én overskrdelse av T-års-ekstremen.
NOEN SANNSYNLIGHETER I BRIDGE Av Hans-Wilhelm Mørch.
NOEN SANNSYNLIGHETER I BRIGE A Hans-Wlhelm Mørch. SANNSYNLIGHETER FOR HVORAN TRUMFEN(ELLER ANRE SORTER) ER FORELT Anta at du mangler n kort trumffargen. Ha er sannsynlgheten for at est har a a dem? La
Seminaroppgaver for uke 13
1 ECON 2130 2016 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver) La X og Y være to uavhegge
OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005
OBLIGATORISK OPPGAVE INF 0/0/90 HØSTEN 005 Levergsfrst: 0. september 005 Arbedsform: Løses dvduelt Ileverg tl: Aja Bråthe Krstofferse ([email protected] Levergskrav: Det forutsettes at du er kjet med holdet
EKSAMEN Løsningsforslag
. desember 6 EKSAMEN Løsnngsorslag Emnekode: ITD Emnenavn: Matematkk ørste deleksamen Dato:. desember 6 Hjelpemdler: - To A-ark med valgrtt nnold på begge sder. - Formelete. - Kalkulator som deles ut samtdg
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksamen i: ECON2130 Statistikk 1 UNIVERSITETET I OSLO ØONOIS INSTITUTT Eksamensdag: 01.06.2015 Sensur kunngjøres: 22.06.2015 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider Tillatte hjelpemidler:
STK1100 våren 2015 P A B P B A. Betinget sannsynlighet. Vi trenger en definisjon av betinget sannsynlighet! Eksemplet motiverer definisjonen:
STK00 våren 05 etnget sannsynlghet Svarer tl avsntt.4 læreboa Esempel V vl først ved help av et esempel se ntutvt på hva betnget sannsynlghet betyr V legger fre røde ort og to svarte ort en bune Ørnulf
Løsningsforslag ST2301 Øving 8
Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen : ECON0 Statstkk, våren 004 Exam: ECON0 Statstcs, sprng 004 Eksamensdag: Fredag 8. ma 004 Date of exam: Frday, May 8, 004 Td for eksamen: kl. 09:00 :00
EKSAMEN ny og utsatt løsningsforslag
8.. EKSAMEN n og utsatt løsnngsorslag Emnekode: ITD Dato:. jun Hjelpemdler: - To A-ark med valgrtt nnhold på begge sder. Emnenavn: Matematkk ørste deleksamen Eksamenstd: 9.. Faglærer: Chrstan F Hede -
Forelesning nr.3 INF 1411 Elektroniske systemer
Forelesnng nr.3 INF 4 Elektronske systemer 009 04 Parallelle og parallell-serelle kretser Krchhoffs strømlov 30.0.04 INF 4 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt
Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3))
1 ECON 2130 2017 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 (Oppgave (1), (2), og (3)) (1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver)
MA1301 Tallteori Høsten 2014
MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................
Eksamensoppgave i TMA4240 Statistikk
Insu for maemaske fag Eksamensoppgave TMA44 Saskk Faglg konak under eksamen: John Tyssedal, aakon akka. Tlf.: John Tyssedal: 4645376. Tlf: aakon akka: 97955667. Eksamensdao: 7..4 Eksamensd (fra-l): 9.-3.
Econ 2130 uke 15 (HG)
Eco 130 uke 15 (HG) Kofdestervall Løvås: 6.1., 6.3.1 3. (Avstt 6.3.4 6 leses på ege håd. Se også overskt over kofdestercvall ekstra otat på ettet.) 1 Defsjo av kofdestervall La θ være e ukjet parameter
Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n.
Løsgsforslag ST20/ST620 205, kotuasjoseksame. a Rmelghetsfuksjoe blr Logartme Derverer Løser lgge Løsge er SME: L = 2 e l L = 2 l X X. X + l X. l L = 2 + 2 X = 2. ˆ = 2 X. X. b Her ka ma beytte trasformasjosformele,
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksmen : ECON00 Mtemtkk /Mkro (MM) Eksmensdg: 7.05.05 Sensur kunngjøres: 7.06.05 Td for eksmen: kl. 09:00 5:00 Oppgvesettet er på 4 sder Tlltte hjelpemdler: Det
Forelesning Enveis ANOVA
STAT111 Statstkk Metoder [email protected] Forelesg 14 + 15 Eves ANOVA 1. troduksjo a. Z-, t- test Uka 1: tester for forvetgsdfferase to populasjoer (grupper) b. ANOVA (aalyss of varace): tester om det er forskjeller
Notasjoner, gjennomsnitt og kvadratsummer. Enveis ANOVA, modell. Flere enn to grupper. Enveis variansanalyse (One-way ANOVA, fixed effects model)
Enves varansanalyse (One-way ANOVA, fxed effects model Reaptulerng av t-testen for uavhengge utvalg fra to grupper, G og G : Observasjoner fra G : Y N(, σ j, j=,,...,n Observasjoner fra G : Y N(, σ, j=,,...,n
Notater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir)
2009/48 Notater Bjørn Gabrelsen, Magnar Lllegård, Bert Otnes, Brth Sundby, Dag Abrahamsen, Pål Strand (Hdr) Notater Indvdbasert statstkk for pleeog omsorgstjenesten kommunene (IPLOS) Foreløpge resultater
Eksempel på poengbergegning fra grunnskolen til Vg1
Eksempel på poengbergegnng fra grunnskolen tl Vg1 Etter skrv: "Førng av vtnemål og kompetansebevs for grunnskolen Kunnskapsløftet" av 09.01.2015. Sde 5 Elever som kke får standpunktkarakter på grunn av
2007/30. Notater. Nina Hagesæther. Notater. Bruk av applikasjonen Struktur. Stabsavdeling/Seksjon for statistiske metoder og standarder
007/30 Notater Nna Hagesæter Notater Bruk av applkasjonen Struktur Stabsavdelng/Seksjon for statstske metoder og standarder Innold 1. Innlednng... 1.1 Hva er Struktur, og va kan applkasjonen brukes tl?...
NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer
Sde: av 7 orsk akkredterng Dok.d.: VII..5 A Dok. 5: Angvelse av måleuskkerhet ved kalbrernger Utarbedet av: Saeed Behdad Godkjent av: ICL Versjon:.00 Mandatory/Krav Gjelder fra: 09.05.008 Sdenr: av 7 A
Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007
Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).
Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f).
Eksamen ECON 00, Sensorvelednng Våren 0 Oppgave (8 poeng ) Derver følgende funksjoner. Derver med hensyn på begge argumenter e) og f). (Ett poeng per dervasjon, dvs, poeng e og f) a) f( x) = 3x x + ln
Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering
Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng
Eksamen 31.05.2016. Nynorsk side 2 4. Bokmål side 5 7. Felles vedlegg side 9 17
Eksamen 31.05.2016 NOR1211-NOR1231 Norsk hovudmål/hovedmål NOR1218-NOR1238 Norsk elev samsk som andrespråk Elevar og prvatstar / Elev og prvatst Nynorsk sde 2 4. Bokmål sde 5 7. Felles vedlegg sde 9 17
NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL
NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL Norman & Orvedal, kap. 1-5 Bævre & Vsle Generell lkevekt En lten, åpen økonom Nærngsstruktur Skjermet versus konkurranseutsatt vrksomhet Handel og komparatve fortrnn
IN1 Audio Module. Innføring og hurtigreferanse
IN Audo Module Innførng og hurtgreferanse Les heftet med skkerhetsnstruksjoner før du tar bruk lydmodulen. Pakk ut av esken Innhold: A/V-kabler følger kke med. Dsse kan kjøpes fra www.nfocus.com/store
Om enkel lineær regresjon II
ECON 3 HG, aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel som v kaller resposvarabele
HI-FI KOMPONENTSYSTEM
VENNLIGST MERK: Dne høyttalere (følger kke med) kan være forskjellge fra de som er llustrert dette nstruksjonsheftet. modell RNV70 HI-FI KOMPONENTSYSTEM Vedlkehold og spesfkasjoner Du MÅ lese bruksanvsnngen
TMA4240 Statistikk Høst 2016
TMA440 Statstkk Høst 06 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg 0 Løsgssksse Oppgave a Estmatore for avstade a er gjeomsttet av uavhegge detsk fordelte målger, x; a,
Løsningsskisse til eksamen i TFY112 Elektromagnetisme,
Løsnngssksse tl eksamen TFY11 Elektromagnetsme, høst 003 (med forbehold om fel) Oppgave 1 a) Ved elektrostatsk lkevekt har v E = 0 nne metall. Ellers bruker v Gauss lov med gaussflate konsentrsk om lederkulen.
Masteroppgave i statistikk. GAMLSS-modeller i bilforsikring. Hallvard Røyrane-Løtvedt Kandidatnr. 160657
Masteroppgave statstkk GAMLSS-modeller blforskrng Hallvard Røyrane-Løtvedt Kanddatnr. 160657 UNIVERSITETET I BERGEN MATEMATISK INSTITUTT Veleder: Hans Julus Skaug 1. Jun 2012 1 GAMLSS-modeller blforskrng
Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015
Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 2015 Prvate gjøremål på jobben Spørsmål: Omtrent hvor mye td bruker du per dag på å utføre prvate gjøremål arbedstden (n=623) Mer
Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet
Investerng under uskkerhet Rsko og avkastnng Høy rsko Lav rsko Presserng av rskobegreet Realnvesterng Fnansnvesterng Rsko for enkeltaksjer og ortefølje-sammenheng Fnansnvesterng Realnvesterng John-Erk
Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler
Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:
betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2
ECON30: EKSAMEN 06v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25
1 ECON21: ESAEN 215v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i > Grensen til bestått bør ligge på ca
