Forelesning Enveis ANOVA
|
|
|
- Pål Nordli
- 8 år siden
- Visninger:
Transkript
1 STAT111 Statstkk Metoder Forelesg Eves ANOVA 1. troduksjo a. Z-, t- test Uka 1: tester for forvetgsdfferase to populasjoer (grupper) b. ANOVA (aalyss of varace): tester om det er forskjeller mellom forvetgee flere e to populasjoer (grupper), speselt år gruppee er utsatt tl oe behadlger (treatmets). begge tlfeller, sammelger v gjeomstt av stkkprøver fra hver populasjo. Sasylghete for at det er sgfkate forskjeller mellom populasjosforvetger øker år forskjeller mellom gjeomsttee av stkkprøver øker. Ata at v har uavhegge grupper fra populasjoer og forvetge tl de te populasjoe er, 1,,...,. Hver gruppe har observasjoer fra uavhegge og ormalfordelte S. V. med samme varas. V skal å teste H : 1... H : det er forskjell på mst ett par av s Dersom H forkastes, blr det este å fe ut hva avvket fra H består av (uka 13, Multple sammelkger) La j betege de j te S.V. de te gruppe ( y j er tlsvarede observasjo) 1,,..., ; j 1,,...,. Da har v: te gruppe gjeomstt j1 j : gjeomstt av S.V. gruppe, =1,,, Totall gjeomstt j 1 j1 1 : gjeomstt av alle S.V Hvs H er sa, da har v E1j E j... Ej ; j 1,,..., og observerte gruppe gjeomsttee y1, y,..., y vl ærmer hveradre. V ka derfor sammelge varasjoer mellom dsse gjeomsttee (betwee-group varato) med varasjoer e hver gruppe (wth-group varato), og gjeomføre vdere aalyse. Varasjoer dataee ka måles ved bruk av kvadratsummer.
2 STAT111 Statstkk Metoder ANOVA tabell og F test.1) ANOVA tabell ANOVA er e type av varas aalyse eller varasjo aalyse. Resultatet av e varas aalyse oppsummeres ANOVA tabell (Tabelle 11. på boke) *Treatmets betyder populasjoer eller grupper a. Kvadratsummee (sum of squares) (1) SSTr = ( ) (treatmet sum of squares): kvadratsum mellom grupper, 1 de måler varasjoer mellom gruppe gjeomsttee (betwee-group varato) Z1... Z (*V ka teke på å sette Z, da blr Z, og ( ) ( Z Z ) 1 1 ) () SSE = ( j ) (error sum of squares): kvadratsum e grupper, de 1 j1 måler varasjoe e grupper (wth-group varato). () V har allerede at: hvs X 1, X, X 3, N(, ). X ( ) 1 1 X X X 1..., da er X er uavhegge stokastske varabler fra X X X X 1... (sample mea) og 1 S X X (sample varace) uavhegge. Dessute ( 1) S / ( 1) Eks 1. Bevs a) b) hvs H er sa SSTr/ ( 1) uasett om H er sa eller fel SSE/ ( ( 1))
3 STAT111 Statstkk Metoder V har å at: SSTr c) E(SSTr/ ) 1 E( ) 1 d) SSE E(SSE/ ) ( -1) E( ) ( 1) hvs H er sa uasett om H er sa eller fel (3) SST = 1 j1 ( ) j : total kvadratsum, alla dataes varasjo rudt det store gjeomsttet. V bruker SST for å måle de totale varasjoe dataee Eks. Bevs SST = SSTr + SSE og hvs H er sa SST/ ( 1) V har å at: SST E(SST/ ) 1 E( ) 1 hvs H er sa b. Frhetsgrader df (degree of freedom) Tallet v dvderer kvadratsummee med for å få varasestmatee kalles frhetsgrader dfg = -1: frhetsgrader mellom grupper, atall grupper mus 1 dfe = (-1): frhetsgrader tl e grupper, atall observasjoer totalt mus atall grupper dft = 1: totalt atall frhetsgrader, atall observasjoer totalt mus 1 V ka se med egag at dft = dfg + dfe c. Mea square for treatmets (MSTr) og Mea square for error () MSTr = SSTr 1 : e forvetgsrett estmator for, hvs H er sa (fra a, c)). Samme som SSTr, måler MSTr varasjo mellom grupper = SSE ( 1) : e forvetgsrett estmator for, uasett om H er sa eller fel (fra a, d)). Samme som SSE, måler varasjo e gruppe d. Varasjos rato f f = MSTr : varasjo mellom grupper / varasjo e gruppe
4 STAT111 Statstkk Metoder Fra c, har v at hvs H er sa, 1. E() Eks 3. Bevs hvs H kke er sa Ht: V har allerede j1 j, j 1 j1 1 1 V har også: SSTr ( ) ( ) 1 1 ( ) ( ) La 1 ( ) ( ) ( ) , Eks 3. betyr også at hvs MSTr/ er stor, er det stor varasjo mellom gruppee, og v forkaster H : jo mer ett eller flere av gruppegjeomsttee j1 j avvker 1 fra det totale gjeomstt, desto større blr adele av behadlgers (treatmets) varasjo forhold tl totalvarasjo, oe som atyder på at H må forkastes.. F test Fra Uka 6, har v at hvs U ( m), V ( ) og U, V er uavhegge. Da er varabele U / m F V / Fsher-fordelt med m og frhetsgrader: F F ( m, ). Eks 4. Bevs F = MSTr F( 1, ( 1)) hvs H er sa Hvs H er sa, har v 1 og vl F-verd ærme 1. E()
5 STAT111 Statstkk Metoder Hvs H er fel, vl varasjo mellom gruppee være stor forhold tl de varasjoe e gruppe, og F-verde blr større e 1. Hvs F-verde er større e krtsk verd (gtt et sgfkasvå og frhetsgrader), vl e forkaste H, og kokluderer at mst ett par av s er forskjellge Eks 5. De følgede data kommer fra et ekspermet som sammelger grade av tlsmussg (Degree of Solg) for stoff kopolymersert med tre forskjellge bladger (Mxture) av metakrylsyre. Test om de grade av tlsmussger er detsk for de tre bladger, ved sgfkasvå.1. *Abefalt hjemlesg: pp. 56 Testg for the assumpto of equal varaces 3. Mer om eves ANOVA 3.1) Fast effekt modell (fxed effects model) seksjoee 1 og, er j S.V. og Ej 1,,..., ; j 1,,...,. V ka faktsk omskrve j som j j, j N(, ), j s uavhegge med hveradre: La 1, j j, j N(, ) og 1, da bl test: 1 H 1 :... H : mst ett av, 1,,..., V ka betrakte som «felles forvetg» tl alle gruppee, og er avvket te gruppes forvetg fra. Hvs et eller flere er betydelg større e, skal H forkastes. Eks 6. Bevs 1 1
6 STAT111 Statstkk Metoder 3.) Tlfeldg effekt modell (radom effect model) Seksjo 3.1) betrakter som determstsk avvk te gruppes forvetg fra. mage tlfeller, ka det skje at de gruppee teste er tlfeldge valgt fra N grupper og N er betydelg større e, med er «felles forvetg» tl alle N gruppee. dsse tlfellee, ka ka å omskrve j som betraktes være tlfeldg og v betege de som j j, j (, ) A, A N, 1,,..., ; j 1,,...,, j s og Og å H : 1... blr A s uavhegge med hveradre varabltet avvkee mellom ulke grupper. Eks 7. Bevs 1 A : A A N. V (, A) H, som betyr at det fes ge Både Eks 6. og Eks 7. vser at hvs H er sa, har v 1 og vl F= E() MSTr MSTr ærme 1, ellers vl F= samme F - teste seksjo. sgfkat større e 1. V ka bruke de 3.3) Eves ANOVA med forskjellg utvalgsstørrelser V atar å at v har uavhegge grupper fra behadlger, og forvetge tl de te gruppe er, 1,,...,. De te gruppe har observasjoer fra uavhegge og ormalfordelte S.V. med samme varas, 1... ANOVA dee sammehege. 3.4) Flere kommetarer tl ANOVA: a. Som valg, foretrekker v flere observasjoer test, for å øke stykke teste b. ANOVA er fleksbelt tl ær-ormal fordelger, me hvs dataee er tydelg skjevfordelte, eller det er stor forskjell på varaser mellom gruppee, skal v prøve å ugå ANOVA. (V ka bruke kke-parametrsk metoder seere forelesgee).
7 STAT111 Statstkk Metoder c. Når =, ANOVA F test og terpolert t-test (pooled t-test) er samme. Me v foretrekker t test (ot pooled) år v kke ka skker på varaser begge gruppe er samme. tllegg, t test har flere alteratve hypoteser, H :, H :, H : `, mes ANOVA F test har bare e alteratv hypotese: H : 1 *Abefalt hjemlesg: pp. 574 for the F test
Forelesning 19 og 20 Regresjon og korrelasjons (II)
STAT111 Statstkk Metoder [email protected] Forelesg 19 og 0 Regresjo og korrelasjos (II) 1. Kofdestervall (CI) og predksjostervall (PI) I uka 14, brukte v leær regresjo for å fage leær sammehege mellom Y og
Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n.
Løsgsforslag ST20/ST620 205, kotuasjoseksame. a Rmelghetsfuksjoe blr Logartme Derverer Løser lgge Løsge er SME: L = 2 e l L = 2 l X X. X + l X. l L = 2 + 2 X = 2. ˆ = 2 X. X. b Her ka ma beytte trasformasjosformele,
Løsningskisse seminaroppgaver uke 17 ( april)
HG Aprl 14 Løsgsksse semaroppgaver uke 17 (.-5. aprl) Oppg. 5.6 (begge utgaver) La X = atall bar utvalget som har lærevasker. Adel bar med lærevasker populasjoe av bar atas å være p.15. Utvalgsstørrelse
Forelesning 21 og 22 Goodness of fit test and contingency table ( 2 test og krysstabell)
STAT111 Statstkk Metoder [email protected] Forelesg 1 Goodess of ft test ad cotgecy table ( test krysstabell 1.Goodess of ft test ( test Ata at v har et utvalg med observasjoee fra e stokastsk varabel X. Goodess-of-ft
OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005
OBLIGATORISK OPPGAVE INF 0/0/90 HØSTEN 005 Levergsfrst: 0. september 005 Arbedsform: Løses dvduelt Ileverg tl: Aja Bråthe Krstofferse ([email protected] Levergskrav: Det forutsettes at du er kjet med holdet
Forelesning Ordnings observatorer
[email protected] Forelesg 6 + 7 Ordgs observatorer. Oppsummerg tl Forelesg 4 og 5.) Fuksjoer (trasformasjoer) av flere S.V...) Smultafordelg tl to ye S.V. Ata at v har to S.V., med smultafordelg f ( x, x )
TMA4245 Statistikk Eksamen mai 2016
Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Lar X være kvadratprse. Har da at X N(µ, σ 2 ), med µ 30 og σ 2 2, 5 2. P (X < 30) P (X < µ) 0.5 ( X 30 P (X > 25)
TMA4245 Statistikk Eksamen august 2014
Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Y 5 PY > 53) PY 53) P ) 53 5 Φ5) 933 668 Vekte av e fylt flaske, X + Y, er e leærkombasjo av uavhegge ormalfordelte
Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011
Forelesg 3 MET359 Økoometr ved Davd Kreberg Vår 0 Dverse oppgaver Oppgave. E vestor samler følgede formasjo om markedsavkastge og avkastge på det som ser ut tl å være et attraktvt aksjefod År Aksjefodets
Forelesning Punktestimering
STAT Statst Metoder [email protected] Forelesg 8 + 9 Putestmerg. Fra sasylghetsteor tl statst feres ) Sasylghetsberegg sasylghetsteor: v jeer parametere som besrver modellee, f.es. p boms modell, ormal fordelg,
Analyse av sammenhenger
Kapttel 7.-7.3: Aalyse av sammeheger Korrelasjo og regresjo E vktg avedelse av statstkk er å studere sammeheger mellom varabler: Avgjøre om det er sammeheger. Beskrve hvorda evetuelle sammeheger er. Eksempler:
STK1110 høsten Lineær regresjon. Svarer til avsnittene i læreboka (med unntak av stoffet om logistisk regresjon)
TK høste 9 Eksempel.5 (CO og vekst av furutrær Leær regreso varer tl avsttee..4 læreboka (med utak av stoffet om logstsk regreso Ørulf Borga Matematsk sttutt Uverstetet Oslo V vl bestemme sammehege mellom
TMA4240 Statistikk Høst 2016
TMA440 Statstkk Høst 06 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg 0 Løsgssksse Oppgave a Estmatore for avstade a er gjeomsttet av uavhegge detsk fordelte målger, x; a,
Regler om normalfordelingen
1 HG mars 2009 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette
Om enkel lineær regresjon II
1 ECON 13 HG, revdert aprl 17 Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som
Enveis variansanalyse (One-way ANOVA, fixed effects model) (Notat til Kap. 12 i Rosner)
Eves varasaalyse (Oe-way ANOVA, fxed effects model) (Notat tl Kap. Roser) V reaptulerer først t-teste for to uavhegge utvalg. Stuasjoe var at v hadde to grupper, f.es. G og G og et sett uavhegge og dets
Regler om normalfordelingen
HG mars 0 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset.
Seminaroppgaver for uke 13
1 ECON 2130 2016 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver) La X og Y være to uavhegge
STK1100 våren Estimering. Politisk meningsmåling. Svarer til sidene i læreboka. The German tank problem. Måling av lungefunksjon
STK00 våre 07 Estmerg Svarer tl sdee 33-339 læreboka Poltsk megsmålg Sør et tlfeldg utvalg å 000 ersoer hva de vlle ha stemt hvs det hadde vært valg 305 vlle ha stemt A A's oslutg er Ørulf Borga Matematsk
Notat 1: Grunnleggende statistikk og introduksjon til økonometri
Notat : Gruleggede statstkk og troduksjo tl økoometr Gruleggede statstkk Populasjo vs. utvalg Statstsk feres gjør bruk av formasjoe et utvalg tl å trekke koklusjoer (el. slutger) om populasjoe som utvalget
Regler om normalfordelingen
1 HG Revdert mars 013 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg
Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007
Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).
Statistikk med anvendelse i økonomi
A-6 og A-6-G, 6. ma 08 Emekode: Emeav: A-6 og A-6-G tatstkk med avedelse økoom Dato: 6. ma 08 Varghet: 0900-300 Atall sder kl. forsde 0 Tllatte hjelpemdler: erkader: Kalkulator med tømt me og ute kommukasjosmulgheter.
Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3))
1 ECON 2130 2017 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 (Oppgave (1), (2), og (3)) (1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver)
STK1100 våren Konfidensintevaller
STK00 våre 07 Kofdestevaller Svarer tl avstt 8. læreboka Ørulf Borga Matematsk sttutt Uverstetet Oslo Eksempel E kjemker er teressert å bestemme kosetrasjoe µ av et stoff e løsg Hu måler kosetrasjoe fem
Om enkel lineær regresjon II
ECON 3 HG, aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel som v kaller resposvarabele
Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler
Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:
Econ 2130 uke 15 (HG)
Eco 130 uke 15 (HG) Kofdestervall Løvås: 6.1., 6.3.1 3. (Avstt 6.3.4 6 leses på ege håd. Se også overskt over kofdestercvall ekstra otat på ettet.) 1 Defsjo av kofdestervall La θ være e ukjet parameter
Forelesning Z-, t-test, test for forventningsdifferanser
STAT Sttstkk Metoder [email protected] Forelesg + 3 Z-, t-test, test for forvetgsdfferser. Sttstsk hypotesetestg ullhypotese): ypotese so først ttt å være st *Forålet ed e test er å udersøke o dtterlet gr grulg
Notasjoner, gjennomsnitt og kvadratsummer. Enveis ANOVA, modell. Flere enn to grupper. Enveis variansanalyse (One-way ANOVA, fixed effects model)
Enves varansanalyse (One-way ANOVA, fxed effects model Reaptulerng av t-testen for uavhengge utvalg fra to grupper, G og G : Observasjoner fra G : Y N(, σ j, j=,,...,n Observasjoner fra G : Y N(, σ, j=,,...,n
Introduksjon til økonometri, kap 8, 9.1 og 9.2. Hva er formålet med økonometri? Utvalgskorrelasjoner To-variabel regresjoner
Itroduksjo tl økoometr, kap 8, 9.1 og 9. Hva er formålet med økoometr? Utvalgskorrelasjoer To-varabel regresjoer Iformasjo fra data Målet med økoometr er å lære oe fra data Øke vår kuskap ved å oppdage
EKSAMEN løsningsforslag
5. aprl 017 EKSAMEN løsgsforslag Emekode: ITD0106 Emeav: Statstkk og økoom Dato:. ma 016 Eksamestd: 09.00 13.00 Hjelpemdler: - Alle trykte og skreve. - Kalkulator. Faglærer: Chrsta F Hede Om eksamesoppgave
Oversikt over tester i Econ 2130
1 HG Revdert aprl 213 Overskt ver tester Ec 213 La θ være e ukjet parameter (ppulasjs-størrelse) e statstsk mdell. Uttrykket ukjet parameter betyr at de sae verde av θ ppulasje er ukjet. Når v setter pp
Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011
Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:
Seleksjon og uttak av alderspensjon fra Folketrygden
ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : STK1000 Innførng anvendt statstkk Eksamensdag: Trsdag 12. desember 2017 Td for eksamen: 14.30 18.30 Oppgavesettet er på 5 sder Tllatte
Medisinsk statistikk, del II, vår 2009 KLMED 8005
Medssk statstkk, del II, vår 009 KLMED 8005 Erk Skogvoll Førsteamauess dr. med. Ehet for Avedt klsk forskg Det medsske fakultet Leær regresjo, Roser..6 Bakgru (.) Modell (.) Estmerg av parametre modelle
Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians
Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i
(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:
A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:
Alle deloppgaver teller likt i vurderingen av besvarelsen.
STK H-26 Løsnngsforslag Alle deloppgaver teller lkt vurderngen av besvarelsen. Oppgave a) De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Medan og kvartler for
Positive rekker. Forelest: 3. Sept, 2004
Postve rekker Forelest: 3. Sept, 004 V skal tde utover fokusere på å teste om e rekke kovergerer, og skyve formler for summerg bakgrue. Dette er gje ford det første målet vårt er å lære hvorda v ka fe
Oppgave 1 ECON 2130 EKSAMEN 2011 VÅR
ECON 30 EKSAMEN 0 VÅR Oppgave E bedrf øsker å fordele koraker e vesergsprosjek hel lfeldg på 3 frmaer, A, B og C. Uvelgelse skjer ved loddrekg. Loddrekge er slk a hver av frmaee A, B og C, har e mulghe
ARBEIDSNOTAT ARBEIDSNOTAT
A r b e d s o t a t e r f r a H øg s k o l e B u s k e r u d r. 67 ARBEIDSNOTAT ARBEIDSNOTAT Avedt statstkk Jo Reertse Arbedsotater fra Høgskole Buskerud Nr. 67 Avedt statstkk Av Jo Reertse Høefoss 8
ST1201 Statistiske metoder
ST Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember Oppgave a) Dette er e ANOVA-tabell for k-utvalg med k 4 og j 6 for j,,3,4.
ØVINGER 2017 Løsninger til oppgaver
ØVINGER 017 Løsnnger tl oppgaver Øvng 1 7.1. Med utgangspunkt de n 5 observasjonsparene (x 1, y 1 ), (x, y ),..., (x 5, y 5 ) beregner v først mddelverdene x 1 5 Estmert kovarans blr x 3. ȳ 1 5 s XY 1
TMA4240/4245 Statistikk Eksamen august 2016
Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA44/445 Statstkk Eksamen august 6 Løsnngssksse Oppgave a) Ved kast av to ternnger er det 36 mulge utfall: (, ),..., (6, 6). La Y
Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering
Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor
Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011
Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp
Tors eminente Statistikk notater Revisjon 6
Tors emete Statstkk otater Revsjo 6 Tor Pederse V03 [email protected] Kattel : Hvorda forstå og beskrve tall Setralmål Gjeomstt: x x Påvrkes stor grad av ekstreme verder Meda: Order observasjoee
Løsningsforslag ST2301 øving 3
Løsigsforslag ST2301 øvig 3 Kapittel 1 Exercise 11 Et utvalg på 100 idivider trekkes fra e populasjo med tilfeldig parrig. Det ble observert AA 63 idivider av geotype AA, Aa 27, og aa 10. Lag et 95 % kofidesitervall
Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende:
B. Makroøkoom Oppgave: Forklar påstades hold og drøft hvlke alteratv v står overfor: Fast valutakurs, selvstedg retepoltkk og fre kaptalbevegelser er kke forelg på samme td. Makroøkoom Iledg Mudells trlemma
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksame : ECON Statstkk Exam: ECON Statstcs UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: Fredag. ma 8 Sesur kugjøres: Torsdag. ju Date of exam: Frday, May, 8 Grades wll be gve: Thursday Jue Td for
Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?
ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt
Om enkel lineær regresjon I
1 ECON 130 HG, revdert 017 Notat tl kapttel 7.1 7.3.3 Løvås (Jfr. forelesg uke 11) Om ekel leær regresjo I (deskrptv aalse og ltt om regresjosmodelle tl slutt) 1 Iledg Ekel regresjosaalse dreer seg om
Om enkel lineær regresjon I
ECON 30 HG, revdert 0 Notat tl kapttel 4 Løvås Om ekel leær regresjo I Iledg Ekel regresjosaalse dreer seg om å studere sammehege mellom e resposvarabel,, og e forklargsvarabel,, basert på et datamaterale
Statistikk og økonomi, våren 2017
Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9
«Uncertainty of the Uncertainty» Del 5 av 6
«Ucertaity of the Ucertaity» Del 5 av 6 v/rue Øverlad, Traior Elsikkerhet AS Dette er femte del i artikkelserie om «Ucertaity of the Ucertaity». Jeg skal vise deg utledig av «Ucertaity of the Ucertaity»-formele:
ECON240 Statistikk og økonometri
ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi
Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering
Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng
H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2
TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4
TMA4265 Stokastiske prosesser
Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA65 Stokastske prosesser Våren Løsnngsforslag - Øvng Oppgaver fra læreboka.6 P er dobbelt stokastsk P j j La en slk kjede være rredusbel,
