Regler om normalfordelingen
|
|
|
- Hilde Kristine Aune
- 9 år siden
- Visninger:
Transkript
1 1 HG mars 2009 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset. Reglee er stort sett gtt kapttel 5 Løvås, me ltt ufullstedg og usammehegede. Jeg vl derfor dette otatet samle og utfylle de vktgste reglee som må kues, samt g oe eksempler på bruk av dem. Defsjo: V skrver kort X ~ N( μ, ) for e modell der X er ormalfordelt med forvetg, EX ( ) = μ, og stadardavvk, = var( X ) = SD( X ). De speselle ormalfordelge N (0,1), kalles stadard ormalfordelg og Løvås bruker symbolkke Gz ( ) = PZ ( z) for de kumulatve fordelgsfuksjoe hvs Z ~ N(0,1). Eksempel: Hvs du for eksempel e oppgave får oppgtt at følger speselt at EX ( ) = 1 og var( X ) = 4. X ~ N( 1, 2), så Regel R1 (står kke Løvås, me brukes mplstt flere steder): Hvs X ~ N( μ, ) og Y = a +bx, der a og b er kostater, er også Y ormalfordelt ( ) Y ~ N E( Y), SD( Y) = N( a+ bμ, b ) (Merk at uttrykkee N tl høyre følger av regler for forvetg og varas kapttel 4.) Eksempler som følger av regel R1 (sjekk): Hvs X ~ N( 1, 2), er () Y = 1 X ~ N( E( Y), SD( Y)) = N (2,2). X 1 () ~ N, 1 og () ~ ( 997, 6) X N. X μ μ Hvs X ~ N( μ, ), er Z = ~ N(0,1) (sett a = og R1). Av dette får v regel 5.14 Løvås: 1 b =
2 2 X μ x μ x μ x μ PX ( x) = P = P Z = G Hvs X ~ N( 1, 2), er, sde PX= ( 0) = 0, PX ( < 0) = PX ( 0) = G = G = 0, Løvås. følge tabell D.3 Regel R2. Summer av ormalfordelte varable (regel 5.17 Løvås pressert) La X1, X2,, X være uavhegge og ormalfordelte varable slk at X ~ N( μ, ) for = 1, 2,,. ( X - ee behøver altså kke å være detsk fordelte). La a1, a2,, a være vlkårlge kostater. Da er Y = a X + a X + + a X også ormalfordelt: ( ) = ( μ + μ + + ) μ Y ~ N E( Y), var( Y) N a a a, a a a der uttrykkee N tl høyre følger av regler om forvetg og varas kapttel 4. Av regel R2 følger drekte e vktg regel om gjeomstt av ormalfordelte varable (brukt flere gager kurset, me kke satt opp eksplstt som e regel Løvås). Regel R3. Gjeomsttet av ormalfordelte varable er ormalfordelt. La X1, X2,, X være uavhegge og detsk ormalfordelte varable slk at X ~ N( μ, ) for = 1,2,,. Da er Y = X = ( X1+ X2 + + X) også ormalfordelt: ( ) Y ~ N E( Y), var( Y) = N μ, Bevs: R3 følger drekte av R2: La R2, μ1 = μ2 = = μ = μ, 1 = 2 = = = (sde alle fordelgee for X1, X2,, X er lke, må alle forvetger være lke og alle 1 stadardavvk være lke). La a1 = a2 = = a =. Da ser v at Y = X omfattes av regel R2, og v ka slutte at Y er ormalfordelt. Parameterverdee de aktuelle ormalfordelge er gtt ved EY ( ) og var( Y ) som er fuet før kapttel 4: EY ( ) = μ og var( Y ) =. Alteratvt, kue ma få fram dsse parameterverdee fra formlee sste uttrykk regel R2: a1μ1+ a2μ2 + + aμ = μ + μ + + μ = μ = μ
3 a11 + a a = = = = Bevs slutt. Eksempler på bruk av R1-R3: Ata X og Z er uavhegge og ormalfordelte der X ~ N( 1, 2) og Z ~ N (0,1). F PY< ( 0) der Y = X Z. Løsg: I følge regel R2 er Y ormalfordelt (sett for eksempel X1 = X, X2 = Z, a1 = 1, a2 = 1 og = 2 ). Parameterverdee fer v som EY ( ) = 1 0 = 1 og regel 4.17 var( Y) = var( X) + var( Z) = = 5 Dermed er Y ~ N( 1, 5), og det adre eksemplet etter regel R1 gr: PY ( < 0) = PY ( 0) = G = G(0,45...) = 0,6736 (altså ltt 5 mdre e sasylghete fuet ovefor (= 0,6915) for at X selv får egatv verd. Mao. å trekke fra (eller legge tl) Z på X-e er som å tlføre støy på X.). Ata X1, X2,, X er uavhegge og detsk ormalfordelte med X ~ N( 1,2) for = 1, 2,,. For e vlkårlg har v fra R3 at 2 gjeomsttet er ormalfordelt, X ~ N 1,. Sde spredge dee fordelge avtar med, er det rmelg å forvete at sasylghete for at X skal få egatve verder øker med. Dette bekreftes av tabell 1 uder. Som før bruker v det adre eksemplet etter R1 og fer: PX ( < 0) = G = G 2 2 hvorav, følge tabell D.3 Løvås (sjekk tallee!), Tabell 1 Gjelder hvs hver 2 X er N(-1, 2) fordelt PX ( < 0) 1 0,50 0, ,12 0, ,58 0, ,24 0, ,74 0, ,54 > 0,9990
4 4 Egeskape tl gjeomsttet som er beskrevet regel R3 bygger på forutsetge at ekeltobservasjoee er ormalfordelte. Dette er tlsyelatede e sterk forutsetg som bare utaksvs er realstsk prakss. Imdlertd, hvs atall observasjoer () kke er for lte (v bør ha 20 som e tommelfgerregel), vl koklusjoe at gjeomsttet er ormalfordelt fortsatt gjelde tlærmet uasett hvlke fordelg ekeltobservasjoee er trukket fra. Dette er det berømte setralgreseteoremet (kjet sde hudretallet). Løvås serverer setralgreseteoremet to versjoer, regel 5.18 og 5.19, samlet regel R4 edefor. Dette betyr eksemplet ovefor at, selv om v kke vet oe mer om fordelge tl X utover at EX ( ) = 1og var( X ) = 2, så ka v lkevel slutte at X er tlærmet N 1, 2 fordelt år PX ( < 0) G = G , slk at (merk at de første lkhete er erstattet med ) og tabell 1 ka hvert fall delvs fylles ut: Tabell 2. PX< ( 0) år hver X har e vlkårlg fordelg med forvetg 1 og stadardavvk 2. 2 PX ( < 0) 1 0, , , ,24 0, ,74 0, ,54 > 0,9990 Merk at v her kke ka ag oe verder for PX ( < 0) tlfellee = 1, 5 og 10 ute at v vet mer om fordelge tl ekeltobservasjoee. Det er også verdt å merke seg at tlærmelse tl ormalfordelge blr bedre og bedre dess større er.
5 5 Regel R4 Setralgreseteoremet La 1 2 X, X,, X være uavhegge varabler fra samme sasylghetsfordelg med forvetg, EX ( ) μ valgvs tlstrekkelg), gjelder =, og stadardavvk, var( X ) X ~ N E( X), var( X) = N μ, tlærmet (a) (regel 5.18) ( ) =. Hvs er stor ( 20 ases tlærmet (b) (regel 5.19) Y = X1 + + X ~ N( E( Y), var( Y) ) = N( μ, ) Merk at (b) (regel 5.19) stregt tatt er overflødg år v har tlgag tl (a) og regel R1. For, hvs X er tlærmet N μ, fordelt, følger av regel R1 at Y = X også er tlærmet ormalfordelt: tlærmet Y ~ N( E( X), var( X) ) = N( E( X), var( X) ) = N μ, = N( μ, ). I tllegg tl dsse reglee er regel 5.20 Løvås vktg som vser at ormalfordelge ofte (kke alltd) ka brukes som tlærmg tl bomske, hypergeometrske og posso-fordelger. Jeg skrver kke opp de regele her, me oppfordrer studetee tl å øve seg på å bruke de. Speselt vktg kapttel 6. Forhåpetlgvs vl presserge av reglee ovefor gjøre dette lettere.
Regler om normalfordelingen
HG mars 0 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset.
Regler om normalfordelingen
1 HG Revdert mars 013 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg
Løsningskisse seminaroppgaver uke 17 ( april)
HG Aprl 14 Løsgsksse semaroppgaver uke 17 (.-5. aprl) Oppg. 5.6 (begge utgaver) La X = atall bar utvalget som har lærevasker. Adel bar med lærevasker populasjoe av bar atas å være p.15. Utvalgsstørrelse
Econ 2130 uke 15 (HG)
Eco 130 uke 15 (HG) Kofdestervall Løvås: 6.1., 6.3.1 3. (Avstt 6.3.4 6 leses på ege håd. Se også overskt over kofdestercvall ekstra otat på ettet.) 1 Defsjo av kofdestervall La θ være e ukjet parameter
TMA4245 Statistikk Eksamen august 2014
Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Y 5 PY > 53) PY 53) P ) 53 5 Φ5) 933 668 Vekte av e fylt flaske, X + Y, er e leærkombasjo av uavhegge ormalfordelte
Om enkel lineær regresjon II
1 ECON 13 HG, revdert aprl 17 Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som
TMA4245 Statistikk Eksamen mai 2016
Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Lar X være kvadratprse. Har da at X N(µ, σ 2 ), med µ 30 og σ 2 2, 5 2. P (X < 30) P (X < µ) 0.5 ( X 30 P (X > 25)
Om enkel lineær regresjon II
ECON 3 HG, aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel som v kaller resposvarabele
Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3))
1 ECON 2130 2017 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 (Oppgave (1), (2), og (3)) (1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver)
TMA4240 Statistikk Høst 2016
TMA440 Statstkk Høst 06 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg 0 Løsgssksse Oppgave a Estmatore for avstade a er gjeomsttet av uavhegge detsk fordelte målger, x; a,
Seminaroppgaver for uke 13
1 ECON 2130 2016 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver) La X og Y være to uavhegge
Oversikt over tester i Econ 2130
1 HG Revdert aprl 213 Overskt ver tester Ec 213 La θ være e ukjet parameter (ppulasjs-størrelse) e statstsk mdell. Uttrykket ukjet parameter betyr at de sae verde av θ ppulasje er ukjet. Når v setter pp
Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler
Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:
Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n.
Løsgsforslag ST20/ST620 205, kotuasjoseksame. a Rmelghetsfuksjoe blr Logartme Derverer Løser lgge Løsge er SME: L = 2 e l L = 2 l X X. X + l X. l L = 2 + 2 X = 2. ˆ = 2 X. X. b Her ka ma beytte trasformasjosformele,
Statistikk med anvendelse i økonomi
A-6 og A-6-G, 6. ma 08 Emekode: Emeav: A-6 og A-6-G tatstkk med avedelse økoom Dato: 6. ma 08 Varghet: 0900-300 Atall sder kl. forsde 0 Tllatte hjelpemdler: erkader: Kalkulator med tømt me og ute kommukasjosmulgheter.
Forelesning Ordnings observatorer
[email protected] Forelesg 6 + 7 Ordgs observatorer. Oppsummerg tl Forelesg 4 og 5.) Fuksjoer (trasformasjoer) av flere S.V...) Smultafordelg tl to ye S.V. Ata at v har to S.V., med smultafordelg f ( x, x )
OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005
OBLIGATORISK OPPGAVE INF 0/0/90 HØSTEN 005 Levergsfrst: 0. september 005 Arbedsform: Løses dvduelt Ileverg tl: Aja Bråthe Krstofferse ([email protected] Levergskrav: Det forutsettes at du er kjet med holdet
EKSAMEN løsningsforslag
5. aprl 017 EKSAMEN løsgsforslag Emekode: ITD0106 Emeav: Statstkk og økoom Dato:. ma 016 Eksamestd: 09.00 13.00 Hjelpemdler: - Alle trykte og skreve. - Kalkulator. Faglærer: Chrsta F Hede Om eksamesoppgave
STK1100 våren Estimering. Politisk meningsmåling. Svarer til sidene i læreboka. The German tank problem. Måling av lungefunksjon
STK00 våre 07 Estmerg Svarer tl sdee 33-339 læreboka Poltsk megsmålg Sør et tlfeldg utvalg å 000 ersoer hva de vlle ha stemt hvs det hadde vært valg 305 vlle ha stemt A A's oslutg er Ørulf Borga Matematsk
Forelesning Enveis ANOVA
STAT111 Statstkk Metoder [email protected] Forelesg 14 + 15 Eves ANOVA 1. troduksjo a. Z-, t- test Uka 1: tester for forvetgsdfferase to populasjoer (grupper) b. ANOVA (aalyss of varace): tester om det er forskjeller
STK1100 våren Konfidensintevaller
STK00 våre 07 Kofdestevaller Svarer tl avstt 8. læreboka Ørulf Borga Matematsk sttutt Uverstetet Oslo Eksempel E kjemker er teressert å bestemme kosetrasjoe µ av et stoff e løsg Hu måler kosetrasjoe fem
Econ 2130 Forelesning uke 11 (HG)
Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig
Forelesning 19 og 20 Regresjon og korrelasjons (II)
STAT111 Statstkk Metoder [email protected] Forelesg 19 og 0 Regresjo og korrelasjos (II) 1. Kofdestervall (CI) og predksjostervall (PI) I uka 14, brukte v leær regresjo for å fage leær sammehege mellom Y og
Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).
Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +
Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007
Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).
Analyse av sammenhenger
Kapttel 7.-7.3: Aalyse av sammeheger Korrelasjo og regresjo E vktg avedelse av statstkk er å studere sammeheger mellom varabler: Avgjøre om det er sammeheger. Beskrve hvorda evetuelle sammeheger er. Eksempler:
Oppgave 1 ECON 2130 EKSAMEN 2011 VÅR
ECON 30 EKSAMEN 0 VÅR Oppgave E bedrf øsker å fordele koraker e vesergsprosjek hel lfeldg på 3 frmaer, A, B og C. Uvelgelse skjer ved loddrekg. Loddrekge er slk a hver av frmaee A, B og C, har e mulghe
Positive rekker. Forelest: 3. Sept, 2004
Postve rekker Forelest: 3. Sept, 004 V skal tde utover fokusere på å teste om e rekke kovergerer, og skyve formler for summerg bakgrue. Dette er gje ford det første målet vårt er å lære hvorda v ka fe
Løsningskisse for oppgaver til uke 15 ( april)
HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene
Notat 1: Grunnleggende statistikk og introduksjon til økonometri
Notat : Gruleggede statstkk og troduksjo tl økoometr Gruleggede statstkk Populasjo vs. utvalg Statstsk feres gjør bruk av formasjoe et utvalg tl å trekke koklusjoer (el. slutger) om populasjoe som utvalget
Forelesning 21 og 22 Goodness of fit test and contingency table ( 2 test og krysstabell)
STAT111 Statstkk Metoder [email protected] Forelesg 1 Goodess of ft test ad cotgecy table ( test krysstabell 1.Goodess of ft test ( test Ata at v har et utvalg med observasjoee fra e stokastsk varabel X. Goodess-of-ft
Forelesning Punktestimering
STAT Statst Metoder [email protected] Forelesg 8 + 9 Putestmerg. Fra sasylghetsteor tl statst feres ) Sasylghetsberegg sasylghetsteor: v jeer parametere som besrver modellee, f.es. p boms modell, ormal fordelg,
Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011
Forelesg 3 MET359 Økoometr ved Davd Kreberg Vår 0 Dverse oppgaver Oppgave. E vestor samler følgede formasjo om markedsavkastge og avkastge på det som ser ut tl å være et attraktvt aksjefod År Aksjefodets
STK1110 høsten Lineær regresjon. Svarer til avsnittene i læreboka (med unntak av stoffet om logistisk regresjon)
TK høste 9 Eksempel.5 (CO og vekst av furutrær Leær regreso varer tl avsttee..4 læreboka (med utak av stoffet om logstsk regreso Ørulf Borga Matematsk sttutt Uverstetet Oslo V vl bestemme sammehege mellom
(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:
A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:
TMA4240/4245 Statistikk Eksamen august 2016
Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA44/445 Statstkk Eksamen august 6 Løsnngssksse Oppgave a) Ved kast av to ternnger er det 36 mulge utfall: (, ),..., (6, 6). La Y
MA1301 Tallteori Høsten 2014
MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................
Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende:
B. Makroøkoom Oppgave: Forklar påstades hold og drøft hvlke alteratv v står overfor: Fast valutakurs, selvstedg retepoltkk og fre kaptalbevegelser er kke forelg på samme td. Makroøkoom Iledg Mudells trlemma
Alternerende rekker og absolutt konvergens
Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne
Om enkel lineær regresjon I
1 ECON 130 HG, revdert 017 Notat tl kapttel 7.1 7.3.3 Løvås (Jfr. forelesg uke 11) Om ekel leær regresjo I (deskrptv aalse og ltt om regresjosmodelle tl slutt) 1 Iledg Ekel regresjosaalse dreer seg om
Kapittel 1: Beskrivende statistikk
Kapttel : Bekrvede tattkk Defjoer: Populajo og utvalg Populajo: Alle mulge obervajoer v ka gjøre (,,, N ). Utvalg: Delmegde av populajoe (,,, der
Om enkel lineær regresjon I
ECON 30 HG, revdert 0 Notat tl kapttel 4 Løvås Om ekel leær regresjo I Iledg Ekel regresjosaalse dreer seg om å studere sammehege mellom e resposvarabel,, og e forklargsvarabel,, basert på et datamaterale
) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013
TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >
Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering
Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor
Statistikk og økonomi, våren 2017
Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9
Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal
EKSAMEN Emekode: SFB10711 Emeav: Metode 1, statistikk deleksame Dato: 10. oktober 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Bjørar Karlse Kivedal
Løsningsforslag Oppgave 1
Løsigsforslag Oppgave 1 a X i µ 0 σ X i µ 0 2 σ 2, i 1,..., er uavhegige og stadard N0, 1 fordelte. Da er, i 1,..., uavhegige og χ 2 -fordelte med e frihetsgrad. Da er summe χ 2 -fordelt med atall frihetsgrader
ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Konfidensintervall, innledning. Kp. 5 Estimering.
ÅMA0 Sasylighetsregig med statistikk våre 006 Kp. 5 Estimerig Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estimerig i målemodelle (kp. 5.3)
H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2
TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4
Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.
Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege
Randi Johannessen. Mikroindeksformel i konsumprisindeksen. 2001/64 Notater 2001
2/64 Notater 2 Rad Johaesse Mkrodeksformel kosumprsdekse Avdelg for økoomsk statstkk/sekso for økoomske dkatorer Emegruppe: 8.2. Ihold. Bakgru og kokluso...3 2. Levekostadsdekser...4 2.. Kosumetes tlpasg...4
Forelesning Moment og Momentgenererende funksjoner
[email protected] Forelesig + 3 Momet og Mometgeererede fuksjoer 1. Oppsummerig til Forelesig 1 1.1) Fuksjoe av S.V: hvis variabele er e fuksjo (trasformasjo) av S.V. : g( ), da er også e S.V.: til ethvert
LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette
Anvendelser. Kapittel 12. Minste kvadraters metode
Kapttel Anvendelser I dette kaptlet skal v se på forskjellge anvendelser av teknkke v har utvklet løpet av de sste ukene Avsnttene og eksemplene v skal se på er derfor forholdsvs uavhengge Mnste kvadraters
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable
ÅMA Saslighetsregig med statistikk, våre K. 3 Diskrete tilfeldige variable Noe viktige saslighetsmodeller Noe viktige saslighetsmodeller ( Sas.modell : å betr det klasse/te sas.fordelig.) Biomisk modell
KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon
Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi
TMA4240 Statistikk Høst 2015
Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del
Kapittel 9 ALGEBRA. Hva er algebra?
Kpttel 9 ALGEBRA Hv er lger? Kpttel 9 ALGEBRA Alger Ekelt k v s t lger er å rege me okstver steet for tll. Når v løser lgger, står okstve (vlgvs for et estemt tll. Når v ruker lger tl å utlee formler eller
FORELESNINGSNOTATER I SPILLTEORI Geir B. Asheim, våren 2001 (oppdatert ).
OREESNINGSNOTATER I SPITEORI Ger B. Ashem, våre 00 (odatert 000.0.03. 3. STATISKE SPI MED UUSTENDIG INORMASJON (Statske Bayesaske sll Statsk sll: Sllere trekker samtdg. Ufullstedg formasjo: Mst é sllere
Løsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018
Løsigsforslag ST/ST6 kotiuasjoseksame Oppgave a Defier hedelsee R, B, B rød kule i første trekig, blå kule i adre trekig, blå kule i tredje trekig. Vi skal fie PR B B for to ulike situasjoer. Geerelt vet
Kap. 9: Inferens om én populasjon
2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)
TMA4265 Stokastiske prosesser
Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA65 Stokastske prosesser Våren Løsnngsforslag - Øvng Oppgaver fra læreboka.6 P er dobbelt stokastsk P j j La en slk kjede være rredusbel,
LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel
Forelesning Z-, t-test, test for forventningsdifferanser
STAT Sttstkk Metoder [email protected] Forelesg + 3 Z-, t-test, test for forvetgsdfferser. Sttstsk hypotesetestg ullhypotese): ypotese so først ttt å være st *Forålet ed e test er å udersøke o dtterlet gr grulg
