Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n.

Størrelse: px
Begynne med side:

Download "Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n."

Transkript

1 Løsgsforslag ST20/ST , kotuasjoseksame. a Rmelghetsfuksjoe blr Logartme Derverer Løser lgge Løsge er SME: L = 2 e l L = 2 l X X. X + l X. l L = X = 2. ˆ = 2 X. X. b Her ka ma beytte trasformasjosformele, elle ma ka observere at fordelge tl X er e gammafordelg med parametre α = 2 og. Derfor kjeer ma mometgeererede fuksjoe tl X : M X t = 2 t for t < /. Regeregler for mometgeererede fuksjoer gr at M Z t = 2 2t som er mometgeererede fuksjo for e χ 2 -fordelt stokastsk varabel med fre frhetsgrader. Vdere har ma at 4 ˆ = 4 X = 2 2 X = 2X som er e sum av uavhegge χ 2 -fordelte stokastske varabler med fre frhetsgrader hver. Derfor, har v at 4 ˆ/ χ 2 4.

2 c V skal teste H 0 : = 0 mot H : > 0 Sde 4 ˆ/ χ 2 4 år H 0 er sa, beytter v 4 ˆ/ som testobservator og beslutge blr: Forkast H 0 hvs 4 ˆ/ > χ 2 α,4 Med de gtte tallee blr 4 ˆ/ = og χ 2 α,4 = H 0 forkastes kke. d Beteg styrkefuksjoe π. Da π = P 4 ˆ/ 0 > χ 2 α,4 = π = P 4 ˆ/ > χ 2 α,4 0 / = F 4 χ 2 α,4 0 / der F 4 x er kumulatv fordelgsfuksjo foe e χ 2 -fordelg med 4 frhetsgrader. Med de gtte tallee blr styrkefuksjoe lk π = F /, og fra tabellee fer v at teststyrke blr 0.99 hvs 53.08/ = χ 2 0.0,40 = 22.64, og må bl Hvs = 5.03 er sasylghete for å kokludere med at H 0 skal forkastes lk a Dette er e ANOVA-tabell for k-utvalg med k = 4 og j = 6 for j =, 2, 3, 4. De fullstedge ANOVA-tabelle blr Klde df SS MS F Betog k = Error = Total 6 4 = og der SSTR = MSTR 3 = , MSE = SSE/20 = 086.5/20 = , SSTOT = SSTR + SSE = = F = MST R/MSE = / = 2.9. b Testobservatore F relaterer seg tl hypotesee H 0 : µ = µ 2 = µ 3 = µ 4 mot H : kke alle er lke, der µ, for =, 2, 3, 4, er forvetet opptatt fuktghet for betog av type ummer. Når H 0 er rktg er F Fsher fordelt med 3 og 20 frhetsgrader. Fer krtsk verd for α = 0.05 fra tabell tl a være f 0.05,3,20 = 3.0. Beslutgsregele blr 2

3 dermed at v skal forkaste H 0 år F > 3.0. Betogdataee gav F = 2.90 < 3.0 slk at koklusjoe blr at v skal kke forkaste H 0. c E to-utvalg t-test baserer seg på at ma har observasjoer av stokastske varabler X,..., X og Y,..., Y m der alle X-ee og Y -ee er uavhegge av hveradre, X Nµ X, σ 2, Y Nµ Y, σ 2. Ma beytter da testobservatore T = X Ȳ S p + m som har t-fordelg med + m 2 frhtsgrader uder H 0. Varasestmatore S 2 p er gtt ved formale S 2 p = S2 x + m S 2 Y + m 2 V lar X-ee og Y -ee være heholdvs data for betog av type 3 og 4. Ved å beytte oppgtte verder SX 2 og S2 Y tabelle over får ma s2 p = , t = Ma må her beytte e tosdg test slk at krtsk verd blr t α/2,+m 2 = t 0.025,0 = Beslutgsregele blr dermed at ma skal forkaste H 0 dersom T < eller T > V observerte t = 3.53 > 2.228, slk at koklusjoe blr at v forkaster H 0. Det er kke urmelg at v pukt b kokluderer med at det kke er sgfkat foskjell mellom forvetgsverdee tl de fre utvalgee, mes v her pukt c kokluderer med at det er sgfkat forskjell mellom forvetgsverdee tl utvalg 3 og 4. V ka speselt legge merke tl at v her pukt c sammelger de to av de fre utgavee som har størst avvk gjeosttsverd. V ka også legge merke tl at emprsk varas for utvalg ummer er betydelg større e for de adre tre utgavee. ANOVA-aalyse baserer seg som kjet på atagelse om lk varas for alle utvalg. De store emprske varase for utvalg ummer vl dermed føre tl at estmatert pooled varas ANOVA-aalyse blr betydelg større e tlsvarede størrelse t-teste. 3. a Rmelghetsfuksjoe blr Lα, = exp Y α 2 2πσ 2 0 2σ0 2x = = 2π /2 σ0 exp Y α 2 x 2σ

4 Logartme l L = 2 l2π l σ 0 2 l 2σ 2 0 Partellderverer med hesy på hver av α og og får V setter de derverte lk ull l L α = σ 2 0 l L = σ 2 0 Y α, Y α. Y α = 0 Y α 2. løser lggee og får Y α = 0, b = ˆ = E ˆ = E Ȳ Y x, ˆα = Ȳ ˆ x. Ȳ Y x EȲ x = EY = ford EY = α + og EȲ = α + x. c ˆ er e leærkombasjo av uavhegge ormalfordelte stokastske varabler dvs Y -ee, derfor er ˆ ormalfordelt: ˆ N, Var ˆ. Da ˆ Var ˆ N0, 4

5 og eller P z δ/2 ˆ Var ˆ z δ/2 = δ P ˆ z δ/2 Var ˆ ˆ + z δ/2 Var ˆ = δ. Ved å sette uttrket for Var ˆ får v at kofdestervallet blr σ 0 ˆ x zδ/2, ˆ σ 0 x + z δ/2 x x. 5

TMA4245 Statistikk Eksamen august 2014

TMA4245 Statistikk Eksamen august 2014 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Y 5 PY > 53) PY 53) P ) 53 5 Φ5) 933 668 Vekte av e fylt flaske, X + Y, er e leærkombasjo av uavhegge ormalfordelte

Detaljer

TMA4245 Statistikk Eksamen mai 2016

TMA4245 Statistikk Eksamen mai 2016 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Lar X være kvadratprse. Har da at X N(µ, σ 2 ), med µ 30 og σ 2 2, 5 2. P (X < 30) P (X < µ) 0.5 ( X 30 P (X > 25)

Detaljer

ST1201 Statistiske metoder

ST1201 Statistiske metoder ST Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember Oppgave a) Dette er e ANOVA-tabell for k-utvalg med k 4 og j 6 for j,,3,4.

Detaljer

TMA4245 Statistikk Eksamen 21. mai 2013

TMA4245 Statistikk Eksamen 21. mai 2013 TMA445 Statstkk Eksame ma 03 Korrgert 0 ju 03 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave Et plott av sasylghetstetthee er gtt fgur Vdere har v og PX = Φ = 08849

Detaljer

Oppgave 1 Det er oppgitt i oppgaveteksten at estimatoren er forventningsrett, så vi vet allerede at E(ˆµ) = µ. Variansen til ˆµ er 2 2 ( )

Oppgave 1 Det er oppgitt i oppgaveteksten at estimatoren er forventningsrett, så vi vet allerede at E(ˆµ) = µ. Variansen til ˆµ er 2 2 ( ) Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg Løsgssksse Oppgave Det er oppgtt oppgavetekste at estmatore er forvetgsrett, så v vet allerede at Eˆµ µ. Varase tl ˆµ er τ Varˆµ

Detaljer

Forelesning Enveis ANOVA

Forelesning Enveis ANOVA STAT111 Statstkk Metoder ushu.l@ub.o Forelesg 14 + 15 Eves ANOVA 1. troduksjo a. Z-, t- test Uka 1: tester for forvetgsdfferase to populasjoer (grupper) b. ANOVA (aalyss of varace): tester om det er forskjeller

Detaljer

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall.

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall. Løsgsforslag Eksame Statstkk Nov 00 Oppgave a) Det fs 8 mulge kombasjoer. Dsse fes ved å utelate ett og ett tall. Atall utvalg av størrelse 7 blat m er ( m 7 ). b) Prs Atall Rekker 3 kr. ( 7 ) 3 kr....

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA440 Statstkk Høst 06 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg 0 Løsgssksse Oppgave a Estmatore for avstade a er gjeomsttet av uavhegge detsk fordelte målger, x; a,

Detaljer

Econ 2130 uke 19 (HG) Inferens i enkel regresjon og diskrete modeller

Econ 2130 uke 19 (HG) Inferens i enkel regresjon og diskrete modeller Eco 3 uke 9 (HG) Iferes ekel regresjo og dskrete modeller De ekle regresjosmodelle. Resultater fra 5m og 5m for me fra EM på skøyter Heerevee 4. ( er 5m-tde og y 5m-tde sekuder for løper.) Spredgdagram

Detaljer

Løsningskisse seminaroppgaver uke 17 ( april)

Løsningskisse seminaroppgaver uke 17 ( april) HG Aprl 14 Løsgsksse semaroppgaver uke 17 (.-5. aprl) Oppg. 5.6 (begge utgaver) La X = atall bar utvalget som har lærevasker. Adel bar med lærevasker populasjoe av bar atas å være p.15. Utvalgsstørrelse

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG Revdert mars 013 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG mars 2009 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen HG mars 0 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset.

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II ECON 3 HG, aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel som v kaller resposvarabele

Detaljer

STK1100 våren Konfidensintevaller

STK1100 våren Konfidensintevaller STK00 våre 07 Kofdestevaller Svarer tl avstt 8. læreboka Ørulf Borga Matematsk sttutt Uverstetet Oslo Eksempel E kjemker er teressert å bestemme kosetrasjoe µ av et stoff e løsg Hu måler kosetrasjoe fem

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 HG Revdert aprl 2 Overskt over tester Eco 23 La θ være e ukjet parameter (populasjos-størrelse e statstsk modell. Uttrykket ukjet parameter betyr at de sae verde av θ populasjoe er ukjet. Når v setter

Detaljer

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON 3 EKSAMEN VÅR TALLSVAR Det abefales at de 9 deloppgavee merket med A, B, teller lkt uasett varasjo vaskelghetsgrad. Svaree er gtt

Detaljer

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005 OBLIGATORISK OPPGAVE INF 0/0/90 HØSTEN 005 Levergsfrst: 0. september 005 Arbedsform: Løses dvduelt Ileverg tl: Aja Bråthe Krstofferse (ajab@f.uo.o Levergskrav: Det forutsettes at du er kjet med holdet

Detaljer

ST1201 Statistiske metoder

ST1201 Statistiske metoder ST20 Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember 2005 Oppgave a Ma beyttet radomisert blokkdesig. I situasjoe har ma k =

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II 1 ECON 13 HG, revdert aprl 17 Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II ECON 3 HG, revdert aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som v kaller

Detaljer

STK1110 høsten Lineær regresjon. Svarer til avsnittene i læreboka (med unntak av stoffet om logistisk regresjon)

STK1110 høsten Lineær regresjon. Svarer til avsnittene i læreboka (med unntak av stoffet om logistisk regresjon) TK høste 9 Eksempel.5 (CO og vekst av furutrær Leær regreso varer tl avsttee..4 læreboka (med utak av stoffet om logstsk regreso Ørulf Borga Matematsk sttutt Uverstetet Oslo V vl bestemme sammehege mellom

Detaljer

Forelesning Ordnings observatorer

Forelesning Ordnings observatorer Yushu.L@ub.o Forelesg 6 + 7 Ordgs observatorer. Oppsummerg tl Forelesg 4 og 5.) Fuksjoer (trasformasjoer) av flere S.V...) Smultafordelg tl to ye S.V. Ata at v har to S.V., med smultafordelg f ( x, x )

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 1 HG Revdert aprl 217 Overskt over tester Eco 213 La være e ukjet parameter (populasjos-størrelse) e statstsk modell. Uttrykket ukjet parameter betyr at de sae verde av populasjoe er ukjet. Når v setter

Detaljer

Forelesning 19 og 20 Regresjon og korrelasjons (II)

Forelesning 19 og 20 Regresjon og korrelasjons (II) STAT111 Statstkk Metoder Yushu.L@ub.o Forelesg 19 og 0 Regresjo og korrelasjos (II) 1. Kofdestervall (CI) og predksjostervall (PI) I uka 14, brukte v leær regresjo for å fage leær sammehege mellom Y og

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON: EKAMEN TALLVAR. et abefales at de 9 deloppgavee merket med A, B, teller lkt uasett varasjo vaskelghetsgrad. varee er gtt

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 9. ma 7 EKSAMEN I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

STK desember 2007

STK desember 2007 Løsnngsfrslag tl eksamen STK0 5. desember 2007 Oppgave a V antar at slaktevektene tl kalkunene fra Vrgna er bserverte verder av stkastske varabler X, X 2, X, X 4 sm er uavhengge g Nµ, σ 2 -frdelte, g at

Detaljer

1. Konfidens intervall for

1. Konfidens intervall for Forelesg 0 + Yushu.@ub.o Kofdes tervall og Bootstrap. Kofdes tervall for ) Kofdes tervall [ ˆ, ˆ ] dekker de ukjete parametere med høy grad av skkerhet (kofdesvå): P( ˆ ˆ ), er f.eks 0.0 eller 0.05, eller

Detaljer

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk Yushu.@hh.o Forelesg 5 og 6 Itroduksjo tl Bayesask statstkk 1. Itroduksjo Fortsatt atar v har stokastsk varabel X (X ka være stokastsk varabel vektor) kommer fra e fordelg med parametere ( ka være parameter

Detaljer

Forelesning 21 og 22 Goodness of fit test and contingency table ( 2 test og krysstabell)

Forelesning 21 og 22 Goodness of fit test and contingency table ( 2 test og krysstabell) STAT111 Statstkk Metoder Yushu.L@ub.o Forelesg 1 Goodess of ft test ad cotgecy table ( test krysstabell 1.Goodess of ft test ( test Ata at v har et utvalg med observasjoee fra e stokastsk varabel X. Goodess-of-ft

Detaljer

Eksempel 1 - Er gjennomsnittshøyden for kvinner i Norge økende?

Eksempel 1 - Er gjennomsnittshøyden for kvinner i Norge økende? ECON 3 HG a 3 Supplemet tl sste forelesg 3 vår 4 eksempler på test-dskusjoer klusve ltt om p-verder Eksempel - Er gjeomsttshøyde for kver Norge økede? et er velkjet at gjeomsttshøyde for meesker Europa

Detaljer

som vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,,

som vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,, HG Eco30 07 9/3-07 Supplemet tl forelesg uke 0 (6 mars) (Det jeg kke rakk å ta på forelesg) Termolog (estmerg) Data (kokrete tall), x, x, er ervasjoer av stokastske varable, X, X, De statstske modelle

Detaljer

Mer om Hypotesetesting (kap 5) Student t-fordelingen. Eksamen. Fordelingene blir like ved stor n:

Mer om Hypotesetesting (kap 5) Student t-fordelingen. Eksamen. Fordelingene blir like ved stor n: Mer om Hypotesetestg kap 5 Overskt: Små utvalg og Studet s t-fordelg Hypotesetestg for populasjosgjeomsttet, μ Med tlfeldg og stort utvalg er fordelge tl testobservatore motvert av SGT Hva skjer dersom

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

TMA4240/4245 Statistikk Eksamen august 2016

TMA4240/4245 Statistikk Eksamen august 2016 Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA44/445 Statstkk Eksamen august 6 Løsnngssksse Oppgave a) Ved kast av to ternnger er det 36 mulge utfall: (, ),..., (6, 6). La Y

Detaljer

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:

Detaljer

TMA4245 Statistikk Eksamen mai 2017

TMA4245 Statistikk Eksamen mai 2017 TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee

Detaljer

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette

Detaljer

STK1100 våren Estimering. Politisk meningsmåling. Svarer til sidene i læreboka. The German tank problem. Måling av lungefunksjon

STK1100 våren Estimering. Politisk meningsmåling. Svarer til sidene i læreboka. The German tank problem. Måling av lungefunksjon STK00 våre 07 Estmerg Svarer tl sdee 33-339 læreboka Poltsk megsmålg Sør et tlfeldg utvalg å 000 ersoer hva de vlle ha stemt hvs det hadde vært valg 305 vlle ha stemt A A's oslutg er Ørulf Borga Matematsk

Detaljer

Statistikk med anvendelse i økonomi

Statistikk med anvendelse i økonomi A-6 og A-6-G, 6. ma 08 Emekode: Emeav: A-6 og A-6-G tatstkk med avedelse økoom Dato: 6. ma 08 Varghet: 0900-300 Atall sder kl. forsde 0 Tllatte hjelpemdler: erkader: Kalkulator med tømt me og ute kommukasjosmulgheter.

Detaljer

EKSAMEN løsningsforslag

EKSAMEN løsningsforslag 5. aprl 017 EKSAMEN løsgsforslag Emekode: ITD0106 Emeav: Statstkk og økoom Dato:. ma 016 Eksamestd: 09.00 13.00 Hjelpemdler: - Alle trykte og skreve. - Kalkulator. Faglærer: Chrsta F Hede Om eksamesoppgave

Detaljer

Econ 2130 uke 15 (HG)

Econ 2130 uke 15 (HG) Eco 130 uke 15 (HG) Kofdestervall Løvås: 6.1., 6.3.1 3. (Avstt 6.3.4 6 leses på ege håd. Se også overskt over kofdestercvall ekstra otat på ettet.) 1 Defsjo av kofdestervall La θ være e ukjet parameter

Detaljer

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2 TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4

Detaljer

Det ble orientert i plenum under eksamensdagen om følgende endringer i forhold til oppgaven:

Det ble orientert i plenum under eksamensdagen om følgende endringer i forhold til oppgaven: LØSNINGSFORSLAG EKSAMEN 4 MAI 007 MET00 STATISTIKK GRUNNKURS Det ble oretert pleum uder eksamesdage om følgede edrger forhold tl oppgave: Oppgave b går ut. Det vl da bl 9 oppgaver og alle oppgaver teller

Detaljer

Analyse av sammenhenger

Analyse av sammenhenger Kapttel 7.-7.3: Aalyse av sammeheger Korrelasjo og regresjo E vktg avedelse av statstkk er å studere sammeheger mellom varabler: Avgjøre om det er sammeheger. Beskrve hvorda evetuelle sammeheger er. Eksempler:

Detaljer

ECON240 Statistikk og økonometri

ECON240 Statistikk og økonometri ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi

Detaljer

Seminaroppgaver for uke 13

Seminaroppgaver for uke 13 1 ECON 2130 2016 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver) La X og Y være to uavhegge

Detaljer

Oppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE =

Oppgave 1 a) Minste kvadraters metode tilpasser en linje til punktene ved å velge den linja som minimerer kvadratsummen. x i (y i α βx i ) = 0, SSE = Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 2, blokk II Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som

Detaljer

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3))

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3)) 1 ECON 2130 2017 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 (Oppgave (1), (2), og (3)) (1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver)

Detaljer

Notat 1: Grunnleggende statistikk og introduksjon til økonometri

Notat 1: Grunnleggende statistikk og introduksjon til økonometri Notat : Gruleggede statstkk og troduksjo tl økoometr Gruleggede statstkk Populasjo vs. utvalg Statstsk feres gjør bruk av formasjoe et utvalg tl å trekke koklusjoer (el. slutger) om populasjoe som utvalget

Detaljer

Oppgave 1 ECON 2130 EKSAMEN 2011 VÅR

Oppgave 1 ECON 2130 EKSAMEN 2011 VÅR ECON 30 EKSAMEN 0 VÅR Oppgave E bedrf øsker å fordele koraker e vesergsprosjek hel lfeldg på 3 frmaer, A, B og C. Uvelgelse skjer ved loddrekg. Loddrekge er slk a hver av frmaee A, B og C, har e mulghe

Detaljer

Forelesning Punktestimering

Forelesning Punktestimering STAT Statst Metoder Yushu.L@ub.o Forelesg 8 + 9 Putestmerg. Fra sasylghetsteor tl statst feres ) Sasylghetsberegg sasylghetsteor: v jeer parametere som besrver modellee, f.es. p boms modell, ormal fordelg,

Detaljer

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013 TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >

Detaljer

ØVINGER 2017 Løsninger til oppgaver

ØVINGER 2017 Løsninger til oppgaver ØVINGER 017 Løsnnger tl oppgaver Øvng 1 7.1. Med utgangspunkt de n 5 observasjonsparene (x 1, y 1 ), (x, y ),..., (x 5, y 5 ) beregner v først mddelverdene x 1 5 Estmert kovarans blr x 3. ȳ 1 5 s XY 1

Detaljer

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44,

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44, Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 9, blokk II Løsigsskisse Oppgave a) Vi lar her Y være atall fugler som kolliderer med vidmølla i løpet av de gitte

Detaljer

Oppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1)

Oppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1) MOT30 Statistiske metoder, høste00 Løsiger til regeøvig r. 5 (s. ) Oppgaver fra boka: Oppgave 0.36 (0.0:8) Dekkslitasje X,..., X u.i.f. N(µ, σ ) og X,..., X u.i.f. N(µ, σ ) og alle variable er uavhegige.

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Tlf: Eksamensdato: august 2015 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Estimering. Målemodellen. Kp. 5 Estimering. Målemodellen.

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Estimering. Målemodellen. Kp. 5 Estimering. Målemodellen. ÅMA0 Sasylghetsregg med statstkk, våre 006 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.). (kp. 5.) 4. Estmere, estmat, estmator

Detaljer

Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesg 3 MET359 Økoometr ved Davd Kreberg Vår 0 Dverse oppgaver Oppgave. E vestor samler følgede formasjo om markedsavkastge og avkastge på det som ser ut tl å være et attraktvt aksjefod År Aksjefodets

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt

Detaljer

Forelesning 3 mandag den 25. august

Forelesning 3 mandag den 25. august Forelesg adag de 5 august Merkad 171 For å bevse e propossjo o heltall so volverer to eller flere varabler, er det typsk ye lettere å beytte duksjo på e av varablee e duksjo på oe av de adre Det er for

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 2, blokk II Løsigsskisse Oppgave a µ populasjosgjeomsitt, dvs. eit gjeomsitt for alle bilae som køyrer på vegstrekige

Detaljer

(ii) Anta vi vet om en observasjon av X at den ikke er større enn 5. Hva er da sannsynligheten for at den er lik 5? (Hint: Finn PX ( = 5 X 5) ).

(ii) Anta vi vet om en observasjon av X at den ikke er større enn 5. Hva er da sannsynligheten for at den er lik 5? (Hint: Finn PX ( = 5 X 5) ). ECON3: EKSAMEN VÅR - UTSATT PRØVE Oppgave Ata er possofordelt med parameter λ = 5 (skrevet kort, ~ pos(5), jfr. defsjo 5.8 Løvås med t = ). A. () F P= ( 5) og P ( 5), for eksempel basert på tabell D. Løvås.

Detaljer

TMA4245 Statistikk Eksamen august 2015

TMA4245 Statistikk Eksamen august 2015 Eksame august 15 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave 1 a asylighetee blir og X > Z > 1 1 Z 1 Φ.3,.5 W > 5 X + Y > 5 b Forvetet samfuskostad blir

Detaljer

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram 2 Kort reetisjo fra kaittel 4 Betiget sasylighet og trediagram Eksemel: Fra e oulasjo av idrettsfolk trekkes e erso tilfeldig og testes for doig. De iteressate hedelsee er D=ersoe er doet, A=teste er ositiv.

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk ÅMA0 Sasylghetsregg med statstkk, våre 00 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estmerg målemodelle (kp. 5.3)

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del

Detaljer

Løsningsforslag Oppgave 1

Løsningsforslag Oppgave 1 Løsigsforslag Oppgave 1 a X i µ 0 σ X i µ 0 2 σ 2, i 1,..., er uavhegige og stadard N0, 1 fordelte. Da er, i 1,..., uavhegige og χ 2 -fordelte med e frihetsgrad. Da er summe χ 2 -fordelt med atall frihetsgrader

Detaljer

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011 Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 1 HG Revdert aprl 213 Overskt ver tester Ec 213 La θ være e ukjet parameter (ppulasjs-størrelse) e statstsk mdell. Uttrykket ukjet parameter betyr at de sae verde av θ ppulasje er ukjet. Når v setter pp

Detaljer

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0.

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0. UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : Eksamensdag: 7. jun 2013. Td for eksamen: 14.30 18.30. Oppgavesettet er på 8 sder. Vedlegg: Tllatte hjelpemdler: STK2120 LØSNINGSFORSLAG

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Innleveringssted: Ekspedisjonen i 12. etasje (mellom ) OG Fronter (innen klokken 15).

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Innleveringssted: Ekspedisjonen i 12. etasje (mellom ) OG Fronter (innen klokken 15). Øvelsesoppgave : ECON3 Statstkk Dato for utleverg: 4.3.7 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Dato for leverg: 3.3.7 e kl. 5. Ilevergssted: Ekspedsjoe. etasje (mellom.5-5.) OG Froter (e klokke 5).

Detaljer

Oppgave 1. Kilde SS df M S F Legering Feil Total

Oppgave 1. Kilde SS df M S F Legering Feil Total MOT30 Statistiske metoder, høste0 Løsninger til regneøving nr. 0 (s. ) Oppgave Y ij = µ i + ε ij, der ε ij uavh. N(0, σ ) der µ i er forventa kopperinnhold for legering i og ε ij er feilleddet (tilfeldig

Detaljer

Introduksjon til økonometri, kap 8, 9.1 og 9.2. Hva er formålet med økonometri? Utvalgskorrelasjoner To-variabel regresjoner

Introduksjon til økonometri, kap 8, 9.1 og 9.2. Hva er formålet med økonometri? Utvalgskorrelasjoner To-variabel regresjoner Itroduksjo tl økoometr, kap 8, 9.1 og 9. Hva er formålet med økoometr? Utvalgskorrelasjoer To-varabel regresjoer Iformasjo fra data Målet med økoometr er å lære oe fra data Øke vår kuskap ved å oppdage

Detaljer

Forelesning 2 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 2 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesg MET359 Økoomer ved Davd Kreberg Vår 0 Dverse oppgaver Oppgave. Aa følgede o varabler: gpa: (Grade Po Average) Gjeomsskaraker for amerkaske sudeer. gpa fes ervalle [0;4], hvor 0 er lavese gjeomsskaraker

Detaljer

Forelesning Z-, t-test, test for forventningsdifferanser

Forelesning Z-, t-test, test for forventningsdifferanser STAT Sttstkk Metoder ushu.l@ub.o Forelesg + 3 Z-, t-test, test for forvetgsdfferser. Sttstsk hypotesetestg ullhypotese): ypotese so først ttt å være st *Forålet ed e test er å udersøke o dtterlet gr grulg

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 2 Løsigsskisse Oppgave a Miste kvadraters metode tilpasser e lije til puktee ved å velge de lija som miimerer kvadratsumme

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA440 Statistikk Høst 009 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave Øsker å fie 99% kofidesitervall for µ µ år vi atar ormalfordeliger

Detaljer

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2018

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2018 Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2018 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1 ECON 213 EKSAMEN 26 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å vee lke mye, Kommentarer og tallsvar er skrevet nn mellom , Oppgave 1 I en by med 1 stemmeberettgete nnbyggere

Detaljer

TMA4265 Stokastiske prosesser

TMA4265 Stokastiske prosesser Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA65 Stokastske prosesser Våren Løsnngsforslag - Øvng Oppgaver fra læreboka.6 P er dobbelt stokastsk P j j La en slk kjede være rredusbel,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i STK2120 Statistiske metoder og dataaalyse 2 Eksamesdag: Madag 6. jui 2011. Tid for eksame: 09.00 13.00. Oppgavesettet er på 5 sider.

Detaljer

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 11, blokk II Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som

Detaljer

Løsningskisse for oppgaver til uke 15 ( april)

Løsningskisse for oppgaver til uke 15 ( april) HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18). Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +

Detaljer

Econ 2130 uke 13 (HG)

Econ 2130 uke 13 (HG) Eco 30 uke 3 (HG) Iførg regresjo I deskrptv aalse (Løvås kap. 7. 7.3.3) DATA: Resultater fra 500m og 5000m for me fra EM på skøter Heerevee 004. Obs 5000m 500m Obs 5000m 500m r. Td Sekuder Td Sekuder r.

Detaljer

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren 2 Kap. 9: Iferes om é populasjo I Kapittel 8 brukte vi observatore z = x μ σ/ for å trekke koklusjoer om μ. Dette krever kjet σ (urealistisk). ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for

Detaljer

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015 Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2015 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer

Detaljer

Løsningsforslag til eksamen i STK desember 2010

Løsningsforslag til eksamen i STK desember 2010 Løsigsforslag til eksame i STK0 0. desember 200 Løsigsforslaget har med flere detaljer e det vil bli krevd til eksame. Oppgave a Det er tilpasset e multippel lieær regresjosmodell av forme β 0 + β x i

Detaljer

Oppgave 14.1 (14.4:1)

Oppgave 14.1 (14.4:1) MOT30 Statistiske metoder, høste006 Løsninger til regneøving nr. 0 (s. ) Modell: Oppgave 4. (4.4:) Y ijk = µ + α i + β j + (αβ) ij + ε ijk, der ε ijk uavh. N(0, σ ) der µ er gjennomsnittseffekten, α i

Detaljer

EKSAMEN Ny og utsatt Løsningsforslag

EKSAMEN Ny og utsatt Løsningsforslag . jun 0 EKSAMEN Ny og utsatt Løsnngsorslag Emnekode: ITD50 Dato:. jun 0 Emne: Matematkk, deleksamen Eksamenstd: 09.00.00 Hjelpemdler: To A-ark med valgrtt nnhold på begge sder. Formelhete. Kalkulator er

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

Løsningsforslag ST2301 øving 3

Løsningsforslag ST2301 øving 3 Løsigsforslag ST2301 øvig 3 Kapittel 1 Exercise 11 Et utvalg på 100 idivider trekkes fra e populasjo med tilfeldig parrig. Det ble observert AA 63 idivider av geotype AA, Aa 27, og aa 10. Lag et 95 % kofidesitervall

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

Hypotesetesting, del 4

Hypotesetesting, del 4 Oversikt, del 4 t-fordelig t-test t-itervall Del 5 Kofidesitervall vs. test p-verdi t-fordelig Rett på defiisjo: Utgagspuktet er målemodelle med ormalatakelse: X 1,...,X,u.i.f.tilf.var.derX i Nμ, σ 2 ).La

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 11 Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som vil være ormalfordelt

Detaljer