TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.
|
|
- Christine Liv Tønnessen
- 7 år siden
- Visninger:
Transkript
1 ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt <<<. Oppgave V har 4 spar-kort, hentet fra en vanlg kortstokk, med tallverder, 5,,7,8. To av dsse, og 8, er partall (dvs. er delelg med ), og to, 5 og 7, er oddetall. A. V trekker to kort uten tlbakeleggng fra dsse fre slk at alle utvalg på to kort er lke sannsynlge. La A være begvenheten at det første kortet trukket ut har et oddetall som verd, og A begvenheten at det andre kortet som blr trukket ut har et oddetall som verd. ) Fnn sannsynlghetene P( A ), P( A A ) og P( A ) ) Anta v vet at det andre kortet som ble trukket ut vste et oddetall (dvs. at A nntraff), men kke hva som skjedde første treknng (dvs. av det første kortet). Hva er sannsynlgheten for at det ble trukket et oddetall også første treknng? << Svar: ) Unform sannsynlghets modell: PA ( ), 4 P( A A ) P( A ) P( A A ) 3 P( A ) P( A A ) P( A A ) P( A ) P( A A ) 3 P( A A) ) P( A A) PA ( ) 3 B. To skoleelever, Kar og Per, spller et spll de kaller «oddetall og partall» basert på de fre kortene beskrevet nnlednngen. Et spll består å trekke to kort uten tlbakeleggng fra de fre kortene. Dersom summen av de to uttrukne kortverdene er et oddetall, vnner Kar, og hvs summen er et partall, vnner Per. De to elevene tror nemlg det er samme sjanse for at summen blr et oddetall som at den blr et partall, slk at begge har samme sjanse for å vnne. De tar mdlertd fel. Vs at P(Kar vnner). 3 [Hnt. Det kan lønne seg å lage en tabell over aktuelle summer, x y, for alle kombnasjoner av x og y, der x er verden på det første kortet som trekkes ut og y
2 verden på det andre. Du kan anta at alle kombnasjoner som er mulge, er lke sannsynlge. ] <<< Svar: Tabell over summer: Verden på det første kortet Verden på det andre kortet V ser at alle summene på hoveddagonalen er partall. Dsse kombnasjonene er kke mulge ved treknng uten tlbakeleggng. Det gjenstår kombnasjoner hvorav 8 er oddetall. Sannsynlgheten for at Kar vnner er derfor 8 3. Alternatv løsnng: Hvs V er antall oddetall et rent tlfeldg utvalg på fra de 4 kortene, er V hypergeometrsk fordelt. Det er klart at Kar vnner hvs og bare hvs V =. Dermed 4 P(Kar vnner) P( V ) 4 3 C. La ( et spll) X være verden på det første kortet som trekkes ut og Y verden på det andre kortet som trekkes ut. ) Vs at P( X 5 Y ) ) Sett opp en tabell over smultanfordelngen for X og Y, bestemt ved f ( x, y) P( X x Y y) for alle kombnasjoner av x og y. Du kan, som før, anta at alle kombnasjoner som er mulge, er lke sannsynlge. ) Er X og Y stokastsk uavhengge? Begrunn svaret dtt. <<< Svar: ) P( X 5 Y ) P( X 5) P( Y X 5) 4 3
3 3 ) Tabell over f ( x, y ) : X Y Sum 5 0 / / / /4 / 0 / / /4 7 / / 0 / /4 8 / / / 0 /4 Sum /4 /4 /4 /4 ) X og Y er uavhengge hvs P( X x Y y) P( X x) P( Y y) for alle kombnasjoner av x og y. I tabellen er de margnale fordelngene gtt margene. For eksempel har v P( X 5 Y ) og P( X 5) P( Y ), som er 4 4 forskjellge. X og Y er altså kke uavhengge. D. Kar og Per spller spllet beskrevet punkt B 4 ganger. Det er klart at Kar vl ha en tendens tl å vnne oftere enn Per sden hun har større sannsynlghet for å vnne hvert spll. La U være antall ganger Kar vnner løpet av 4 spll. ) Beregn sannsynlgheten tlnærmet for at Kar vnner oftere enn Per løpet av 4 spll. Bruk heltallskorreksjon. [Hnt. Forklar at U er bnomsk fordelt. Beregn deretter PU ( ) tlnærmet. ] ) ) La D være forskjellen mellom antall ganger de to vnner (dvs. D er antall ganger Kar vnner mnus antall ganger Per vnner løpet av 4 spll). Beregn forventnngen og varansen tl D. Begrunn at D er tlnærmet normalfordelt. I så fall, hvlken normalfordelng? <<< Svar: ) U er bnomsk fordelt, U ~ bn(4, 3), sden enkeltspllene er uavhengg av hverandre og sannsynlgheten for at Kar vnner er konstant alle spll. V har da E( U) 4 og var( U) 4 5. Dermed er betngelsen ( regel Løvås) oppfylt for en akseptabel tlnærmng med normalfordelng. La Gz ( ) være den kumulatve fordelngsfunksjonen N (0,). haltallskorreksjon.5 P( U ) P( U ) P( X.5) G G(.5) tabell Løvås
4 4 (Uten heltallskorreksjon vlle svaret bltt: P( U ) G(.73) ) ) V har D U (4 U) U 4, hvorav E( U) E(U 4) E( U) og 4 var( D) 4var( U) ) Sden U er tlnærmet normalfordelt følge regel 5.0 Løvås, og DU 4 er en lneær transformasjon av U, følger at også D er tlnærmet normalfordelt, tlnærmet D ~ N (8, 8 3). Dette er en regel v har gjennomgått på forelesnngene (som er publsert på nettet). Oppgave Det er en vanlg erfarng at man må stå kø foran kassen for å få betalt supermarkeder. I tabell er det gtt observasjoner fra forskjellge tlfeldge tlfeller man kom for å betale, målt lørdag ettermddag ved en bestemt kasse, der x angr antall personer som sto foran køen, og y tden ( mnutter) man måtte vente tl man ble betjent for betalng (for tlfelle,,, ). Tabell Data Antall personer foran køen ( x ) Ventetd (*) tl betjenng ved kassen (mnutter) ( y ) Sum (*) Desmaltallene betyr t-deler slk at, for eksempel, 5.5 mnutter betyr 5 mnutter og 30 sekunder. A. Ventetden køen tl betjenng for betalng, Y, antas generelt å være en stokastsk varabel som er normalfordelt med forventnng, x, og varans, x, der x er antall personer foran køen når man kommer tl kassen for betalng. For enkelthets skyld antas
5 5 denne oppgaven at antall personer køen, x, alltd er et gtt tall (dvs. kke-stokastsk). og er (ukjente) parametre modellen. ) Forklar hvorfor denne modellen ser det samme som å s at ventetden pr. person køen, Y x er normalfordelt med forventnng og varans x (der altså x er kke-stokastsk). ) Den samlete tden en kunde tlbrnger ved kassen består av to deler, tden kø pluss betjenngstden ved selve kassen. Forklar kort hvorfor parameteren kan tolkes som gjennomsnttlg betjenngstd pr. kunde ved kassen (dvs. den gjennomsnttlge tden det tar å betjene en kunde). <<< Svar: ) Sden x er kke-stokastsk, følger av regler for forventnng og varans at Y E( Y ) x E E( Y ) x og x x x Y var( Y ) x var var( Y ) x x x x x I tllegg, regelen om at lneære transformasjoner av normalfordelte varable også er normalfordelte, gr Y normalfordelt Y x er normalfordelt sden x er kke-stokastsk. ) Når det er akkurat en kunde køen foran, blr forventet (som betyr gjennomsntt det lange løp) ventetd tl betjenng EY ( ). Denne tden, Y, er dentsk med tden det tar å betjene kunden foran. (Det er vel akseptabelt om kanddaten stedet vser tl E Y x.) B. I tråd med modellen punkt A, antar v at ventetdene tabell er observasjoner av stokastske varable, Y, Y,, Y, som antas å være uavhengge og normalfordelte slk at Y ~ N x, x, der x angr antall personer køen foran for tlfelle (,,,). x -ene antas, som før, gtte tall (dvs. kke-stokastske). Det blr foreslått to estmatorer for : Y Y Y Y ˆ og x x x x ) Vs at både ˆ og er forventnngsrette estmatorer for. ) Beregn estmatene ˆ og. obs obs [Hnt. Tl hjelp under regnngen oppgs y x.97 ] ) Beregn varansene, var( ˆ ) og var( ), uttrykt ved. Hvlket av de to estmatene ) mener du er mest troverdg? G en kort begrunnelse for svaret.
6 [Hnt. Tl hjelp under regnngen oppgs x.58 ] <<< Svar: ) ( ˆ) ( ) x x x x ) E E Y E Y x x Y E( ) E x 58 Tabell gr ˆ y obs.07, x 8 y obs.97. x ) var( ˆ ) var Y var( Y ) x x x 8 x x x x Y Y var( ) var var var( ) (.3) 8 ˆ x 3 x 3 x som vser at var( ) var( ˆ ), hvorav estmatet ˆobs er mest troverdg (sden begge estmatorer er forventnngsrette). C. Det kan vses (som du kke trenger å gjøre) at W ˆ ˆ x ~ t(5) fordelt ( Y ˆ x ) fordelt med 5 frhetsgrader), der ˆ ˆ og ˆ. 5 x (dvs. t- ) Bruk dette tl å fnne et 95% konfdensntervall for. ) Beregn konfdensntervallet ut fra data. [Hnt. For å lette regnngen, oppgs den observerte verden, ˆ ] obs <<< Svar: ).5% kvantlen t(5)-fordelngen er t Av 0.95 P(.57 W.57), følger konfdensntervallet ˆ.57 ˆ x.
7 7 ) Observert 95% konfdensntervall: ˆ ˆ [.8,.33] 8 x obs D. I dette og neste punkt skal v benytte modellen punkt B, men der v, for enkelthets skyld, antar at parameteren er kjent, ) Forklar hvorfor estmatoren ˆ 0.35 er normalfordelt, med ˆ ~ N,. 8 ) Tdlgere har man regnet med en gjennomsnttlg betjenngstd på.9 mnutter pr. kunde ved kassen lørdag ettermddag. Tyder data på at gjennomsnttlg betjenngstd har økt (basert på sgnfkansnvå 5%)? Med andre ord, gjennomfør en 5% test for H0:.9 mot H:.9, og formuler en konklusjon. ) Beregn p-verden (basert på data tabell ) for testen dn ). <<< Svar: ) En regel Løvås ser at hvs X, X,, X n er uavhengge og normalfordelte, er en lneærkombnasjon Y a X ax anx n normalfordelt med Y ~ N( E( Y ), SD( Y )). (Det sste poenget står kke Løvås, men er gjennomgått på forelesnngene.) Sden, x -ene er kke-stokastske, er ˆ en slk lneærkombnasjon og derfor 0.35 ~ ( ), var( ) N,. 8 ˆ.9 Testobservator: Z som er N(0,)-fordelt hvs.9. Krtsk verd blr da normalfordelt, ˆ N ˆ ˆ E ) 5%-kvantlen N(0,), som.45. 5%-testen: «Forkast H 0 hvs Z >.45» Observert verd: Z obs Konklusjon: Det er kke tlstrekkelg evdens data for å påstå at.9. ) P-verden er ˆ P.9( Z Zobs ) P.9( Z.53) G(.53) E. ) Sett opp et uttrykk for styrkefunksjonen for testen dn punkt D). ) Beregn sannsynlgheten for å forkaste H 0 hvs den sanne verden av er.
8 8 <<< Svar: ) For vlkårlg, er W ˆ ~ N(0,), og styrkefunksjonen blr ˆ.9 ˆ.9.9 ( ) P(forkast H0) P.45 P.45 P W slk at ( ) G.45 ) Hvs, får v P(forkast H0) () G.45 G(0.75)
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.
ECON: EKSAMEN 6 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt
DetaljerIllustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).
Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen : ECON13 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 11.8.16 Sensur kunngjøres senest: 6.8.16 Td for eksamen: kl. 9: 1: Oppgavesettet er på 4 sder Tllatte hjelpemdler:
DetaljerOppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1
ECON 213 EKSAMEN 26 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å vee lke mye, Kommentarer og tallsvar er skrevet nn mellom , Oppgave 1 I en by med 1 stemmeberettgete nnbyggere
Detaljer(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:
A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:
DetaljerStatistikk og økonomi, våren 2017
Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9
DetaljerTMA4240/4245 Statistikk Eksamen august 2016
Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA44/445 Statstkk Eksamen august 6 Løsnngssksse Oppgave a) Ved kast av to ternnger er det 36 mulge utfall: (, ),..., (6, 6). La Y
DetaljerX ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0.
UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : Eksamensdag: 7. jun 2013. Td for eksamen: 14.30 18.30. Oppgavesettet er på 8 sder. Vedlegg: Tllatte hjelpemdler: STK2120 LØSNINGSFORSLAG
DetaljerLøsningskisse for oppgaver til uke 15 ( april)
HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene
DetaljerØVINGER 2017 Løsninger til oppgaver
ØVINGER 017 Løsnnger tl oppgaver Øvng 1 7.1. Med utgangspunkt de n 5 observasjonsparene (x 1, y 1 ), (x, y ),..., (x 5, y 5 ) beregner v først mddelverdene x 1 5 Estmert kovarans blr x 3. ȳ 1 5 s XY 1
DetaljerOppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011
Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt
DetaljerAlle deloppgaver teller likt i vurderingen av besvarelsen.
STK H-26 Løsnngsforslag Alle deloppgaver teller lkt vurderngen av besvarelsen. Oppgave a) De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Medan og kvartler for
DetaljerSTK desember 2007
Løsnngsfrslag tl eksamen STK0 5. desember 2007 Oppgave a V antar at slaktevektene tl kalkunene fra Vrgna er bserverte verder av stkastske varabler X, X 2, X, X 4 sm er uavhengge g Nµ, σ 2 -frdelte, g at
DetaljerDe normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Median og kvartiler for hver gruppe.
STK H-26 Løsnngsforslag Alle deloppgaver teller lkt vurderngen av besvarelsen. Oppgave I et tlfeldg utvalg på normalvektge personer, og overvektge personer, måles konsentrasjonen av 2 ulke protener blodet.
DetaljerMASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00
MASTER I IDRETTSVITESKAP 0/04 Indvduell skrftlg eksamen MAS 40- Statstkk Trsdag 9. oktober 0 kl. 0.00-.00 Hjelpemdler: kalkulator Eksamensoppgaven består av 9 sder nkludert forsden Sensurfrst: 30. oktober
DetaljerForelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011
Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp
DetaljerAnvendelser. Kapittel 12. Minste kvadraters metode
Kapttel Anvendelser I dette kaptlet skal v se på forskjellge anvendelser av teknkke v har utvklet løpet av de sste ukene Avsnttene og eksemplene v skal se på er derfor forholdsvs uavhengge Mnste kvadraters
DetaljerTMA4240 Statistikk H2010
TMA440 Statstkk H00 Statstsk nferens: 9.6: Predksjonsntervall 9.8: To utvalg, dfferanse µ µ Mette Langaas Foreleses mandag 8.oktober, 00 Predksjonsntervall for fremtdg observasjon, normalfordelng For en
DetaljerSTK1000 Innføring i anvendt statistikk Eksamensdag: Tirsdag 12. desember 2017
Eksamen : STK000 Innførng anvendt statstkk Eksamensdag: Trsdag 2. desember 207 Alle deloppgaver teller lkt vurderngen av besvarelsen. Lkke tl! Dette er et løsnngsforslag. Studenter som har kommet frem
DetaljerAppendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:
Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : STK1000 Innførng anvendt statstkk Eksamensdag: Trsdag 12. desember 2017 Td for eksamen: 14.30 18.30 Oppgavesettet er på 5 sder Tllatte
DetaljerA. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25
1 ECON21: ESAEN 215v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i > Grensen til bestått bør ligge på ca
DetaljerEksamensoppgave i SØK Statistikk for økonomer
Insttutt for samfunnsøkonom Eksamensoppgave SØK004 - Statstkk for økonomer Faglg kontakt under eksamen: Hldegunn E. Stokke, tlf 7359665 Bjarne Strøm, tlf 7359933 Eksamensdato: 0..04 Eksamenstd (fra-tl):
DetaljerOversikt over tester i Econ 2130
HG Revdert aprl 2 Overskt over tester Eco 23 La θ være e ukjet parameter (populasjos-størrelse e statstsk modell. Uttrykket ukjet parameter betyr at de sae verde av θ populasjoe er ukjet. Når v setter
DetaljerLøsningskisse seminaroppgaver uke 17 ( april)
HG Aprl 14 Løsgsksse semaroppgaver uke 17 (.-5. aprl) Oppg. 5.6 (begge utgaver) La X = atall bar utvalget som har lærevasker. Adel bar med lærevasker populasjoe av bar atas å være p.15. Utvalgsstørrelse
DetaljerOversikt 1. forelesning. ECON240 Statistikk og økonometri. Utdanning og lønn. Forskning. Datainnsamling; utdanning og inntekt
Overskt. forelesnng ECON40 Statstkk og økonometr Arld Aakvk, professor Insttutt for økonom Hva er statstkk og økonometr? Hvorfor studerer v fagområdet? Statstkk Metoder, teknkker og verktøy tl å produsere
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.
1 ECON213: EKSAMEN 217 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
DetaljerEksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS
Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksamen : ECON0 Statstkk Exam: ECON0 Statstcs UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: Onsdag. ma 007 Sensur kunngjøres: Onsdag. jun Date of exam: Wednesday, May, 007 Grades wll be gven: Wednesday,
DetaljerEcon 2130 uke 19 (HG) Inferens i enkel regresjon og diskrete modeller
Eco 3 uke 9 (HG) Iferes ekel regresjo og dskrete modeller De ekle regresjosmodelle. Resultater fra 5m og 5m for me fra EM på skøyter Heerevee 4. ( er 5m-tde og y 5m-tde sekuder for løper.) Spredgdagram
DetaljerHvordan får man data og modell til å passe sammen?
Hvordan får man data og modell tl å passe sammen? Ekstremverd-analyse Målet er å estmere T-års-ekstremen (flommen). T-års-ekstremen er slk at etter T år vl det forventnng være én overskrdelse av T-års-ekstremen.
DetaljerTMA4300 Mod. stat. metoder
TMA4300 Mod stat metoder Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag Løsnngsforslag - Eksamen jun 2007 Oppgave Pseudokode for å evaluere θ: Generer uavhengge realsasjoner x,,x
DetaljerDet anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
ECON 3 EKSAMEN VÅR TALLSVAR Det abefales at de 9 deloppgavee merket med A, B, teller lkt uasett varasjo vaskelghetsgrad. Svaree er gtt
DetaljerVeiledning til obligatorisk oppgave i ECON 3610/4610 høsten N. Vi skal bestemme den fordeling av denne gitte arbeidsstyrken som
Jon sle; oktober 07 Ogave a. elednng tl oblgatorsk ogave ECO 60/60 høsten 07 har nå at samlet arbedskraftmengde er gtt lk, slk at ressurskravet er. skal bestemme den fordelng av denne gtte arbedsstyrken
DetaljerLøsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n.
Løsgsforslag ST20/ST620 205, kotuasjoseksame. a Rmelghetsfuksjoe blr Logartme Derverer Løser lgge Løsge er SME: L = 2 e l L = 2 l X X. X + l X. l L = 2 + 2 X = 2. ˆ = 2 X. X. b Her ka ma beytte trasformasjosformele,
DetaljerTMA4265 Stokastiske prosesser
orges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA4265 Stokastske prosesser Våren 2004 Løsnngsforslag - Øvng 6 Oppgaver fra læreboka 4.56 X n Antallet hvte baller urna Trekk tlf.
DetaljerEksamensoppgave i SØK2900 Empirisk metode
Insttutt for samfunnsøkonom Eksamensoppgave SØK900 Emprsk metode Faglg kontakt under eksamen: Bjarne Strøm Tlf.: 73 59 9 33 Eksamensdato: 3. jun 05 Eksamenstd (fra-tl): 4 tmer (09.00 3.00) Sensurdato:
DetaljerTMA4265 Stokastiske prosesser
Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA65 Stokastske prosesser Våren Løsnngsforslag - Øvng Oppgaver fra læreboka.6 P er dobbelt stokastsk P j j La en slk kjede være rredusbel,
DetaljerSeleksjon og uttak av alderspensjon fra Folketrygden
ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.
DetaljerSeminaroppgaver for uke 13
1 ECON 2130 2016 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver) La X og Y være to uavhegge
DetaljerSimpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering
Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng
DetaljerSIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper
Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 6 Faglg kontakt under eksamen: Bo Lndqvst 73 59 35 20 EKSAMEN I FAG SIF5072 STOKASTISKE PROSESSER Mandag 13. august 2001 Td:
DetaljerRegler om normalfordelingen
HG mars 0 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset.
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
ECON: EKAMEN TALLVAR. et abefales at de 9 deloppgavee merket med A, B, teller lkt uasett varasjo vaskelghetsgrad. varee er gtt
DetaljerSTK1100 våren 2015 P A B P B A. Betinget sannsynlighet. Vi trenger en definisjon av betinget sannsynlighet! Eksemplet motiverer definisjonen:
STK00 våren 05 etnget sannsynlghet Svarer tl avsntt.4 læreboa Esempel V vl først ved help av et esempel se ntutvt på hva betnget sannsynlghet betyr V legger fre røde ort og to svarte ort en bune Ørnulf
DetaljerNotasjoner, gjennomsnitt og kvadratsummer. Enveis ANOVA, modell. Flere enn to grupper. Enveis variansanalyse (One-way ANOVA, fixed effects model)
Enves varansanalyse (One-way ANOVA, fxed effects model Reaptulerng av t-testen for uavhengge utvalg fra to grupper, G og G : Observasjoner fra G : Y N(, σ j, j=,,...,n Observasjoner fra G : Y N(, σ, j=,,...,n
DetaljerRegler om normalfordelingen
1 HG mars 2009 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette
DetaljerNOEN SANNSYNLIGHETER I BRIDGE Av Hans-Wilhelm Mørch.
NOEN SANNSYNLIGHETER I BRIGE A Hans-Wlhelm Mørch. SANNSYNLIGHETER FOR HVORAN TRUMFEN(ELLER ANRE SORTER) ER FORELT Anta at du mangler n kort trumffargen. Ha er sannsynlgheten for at est har a a dem? La
DetaljerLøsningsforslag øving 10 TMA4110 høsten 2018
Løsnngsforslag øvng TMA4 høsten 8 [ + + Projeksjonen av u på v er: u v v u v v v + ( 5) [ + u v v u [ 8/5 6/5 For å fnne ut om en matrse P representerer en projeksjon, må v sjekke om P P a) b) c) [ d)
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Bokmål Eksamen : ECON130 Statstkk 1 Exam: ECON130 Statstcs 1 Eksamensdag: 3.05.014 Sensur kunngjøres: 13.06.014 Date of exam: 3.05.014 Grades wll be gven:13.06.014
DetaljerEcon 2130 uke 16 (HG)
Econ 213 uke 16 (HG) Hypotesetesting I Løvås: 6.4.1 6, 6.5.1-2 1 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling
DetaljerSeminaroppgaver for uke 13 (Oppgave (1), (2), og (3))
1 ECON 2130 2017 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 (Oppgave (1), (2), og (3)) (1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver)
DetaljerLøsningsforslag ST2301 Øving 8
Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de
DetaljerEKSAMENSOPPGAVE I SØK1004 STATISTIKK FOR ØKONOMER STATISTICS FOR ECONOMISTS
NTNU Norges teknsk-naturvtenskapelge unverstet Insttutt for samfunnsøkonom EKSAMENSOPPGAVE I SØK004 STATISTIKK FOR ØKONOMER STATISTICS FOR ECONOMISTS Faglg kontakt under eksamen: Hldegunn E Stokke Tlf:
DetaljerOBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005
OBLIGATORISK OPPGAVE INF 0/0/90 HØSTEN 005 Levergsfrst: 0. september 005 Arbedsform: Løses dvduelt Ileverg tl: Aja Bråthe Krstofferse (ajab@f.uo.o Levergskrav: Det forutsettes at du er kjet med holdet
DetaljerMA1301 Tallteori Høsten 2014
MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................
DetaljerIT1105 Algoritmer og datastrukturer
Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle
DetaljerForelesning nr.3 INF 1411 Elektroniske systemer
Forelesnng nr.3 INF 4 Elektronske systemer 009 04 Parallelle og parallell-serelle kretser Krchhoffs strømlov 30.0.04 INF 4 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt
DetaljerInvestering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet
Investerng under uskkerhet Rsko og avkastnng Høy rsko Lav rsko Presserng av rskobegreet Realnvesterng Fnansnvesterng Rsko for enkeltaksjer og ortefølje-sammenheng Fnansnvesterng Realnvesterng John-Erk
DetaljerOppgave 1 Det er oppgitt i oppgaveteksten at estimatoren er forventningsrett, så vi vet allerede at E(ˆµ) = µ. Variansen til ˆµ er 2 2 ( )
Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg Løsgssksse Oppgave Det er oppgtt oppgavetekste at estmatore er forvetgsrett, så v vet allerede at Eˆµ µ. Varase tl ˆµ er τ Varˆµ
DetaljerAvdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007
Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 9. ma 7 EKSAMEN I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).
DetaljerRegler om normalfordelingen
1 HG Revdert mars 013 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg
DetaljerOm enkel lineær regresjon II
ECON 3 HG, aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel som v kaller resposvarabele
DetaljerNotater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir)
2009/48 Notater Bjørn Gabrelsen, Magnar Lllegård, Bert Otnes, Brth Sundby, Dag Abrahamsen, Pål Strand (Hdr) Notater Indvdbasert statstkk for pleeog omsorgstjenesten kommunene (IPLOS) Foreløpge resultater
Detaljerbetyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2
ECON30: EKSAMEN 06v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
DetaljerEcon 2130 uke 15 (HG)
Eco 130 uke 15 (HG) Kofdestervall Løvås: 6.1., 6.3.1 3. (Avstt 6.3.4 6 leses på ege håd. Se også overskt over kofdestercvall ekstra otat på ettet.) 1 Defsjo av kofdestervall La θ være e ukjet parameter
Detaljersom vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,,
HG Eco30 07 9/3-07 Supplemet tl forelesg uke 0 (6 mars) (Det jeg kke rakk å ta på forelesg) Termolog (estmerg) Data (kokrete tall), x, x, er ervasjoer av stokastske varable, X, X, De statstske modelle
DetaljerTMA4245 Statistikk Eksamen mai 2016
Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Lar X være kvadratprse. Har da at X N(µ, σ 2 ), med µ 30 og σ 2 2, 5 2. P (X < 30) P (X < µ) 0.5 ( X 30 P (X > 25)
DetaljerNotater. Anna-Karin Mevik. Estimering av månedlig omsetning innenfor bergverksdrift og industri 2008/57. Notater
008/57 Notater Anna-Karn Mevk Notater Estmerng av månedlg omsetnng nnenfor bergverksdrft og ndustr Stabsavdelngen/Seksjon for statstske metoder og standarder 1. Innlednng.... Omsetnngsstatstkken for ndustren...
DetaljerINF 2310 Digital bildebehandling
INF 30 Dgtal bldebehandlng FORELESNING 4 GRÅONE-RANSFORMASJONER Frtz Albregtsen emaer dag Hstogrammer Lneære gråtonetransformer t Standardserng av blder med lneær transform Ikke-lneære, parametrske transformer
DetaljerNotater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater
009/30 Notater Mare Lllehammer Notater Uskkerhetsanalyse or utslpp av arlge stoer vdelng or IT og metode/seksjon or statstske metoder og standarder Innhold 1. Bakgrunn og ormål.... Metode....1 Fastsettelse
DetaljerForelesning nr.3 INF 1410
Forelesnng nr. INF 40 009 Node og mesh-analyse 6.0.009 INF 40 Oerskt dagens temaer Bakgrunn Nodeanalyse og motasjon Meshanalyse 009 Supernode Bruksområder og supermesh for node- og meshanalyse 6.0.009
DetaljerEksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f).
Eksamen ECON 00, Sensorvelednng Våren 0 Oppgave (8 poeng ) Derver følgende funksjoner. Derver med hensyn på begge argumenter e) og f). (Ett poeng per dervasjon, dvs, poeng e og f) a) f( x) = 3x x + ln
DetaljerOm enkel lineær regresjon II
1 ECON 13 HG, revdert aprl 17 Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksamen : ECON20 Statstkk Exam: ECON20 Statstcs UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: Onsdag 20. ma 200 Sensur kunngjøres: Torsdag 2. jun Date of exam: Wednesday, May 20, 2009 Grades wll
DetaljerEKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00
Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:
DetaljerOm enkel lineær regresjon II
ECON 3 HG, revdert aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som v kaller
DetaljerOversikt over tester i Econ 2130
1 HG Revdert aprl 217 Overskt over tester Eco 213 La være e ukjet parameter (populasjos-størrelse) e statstsk modell. Uttrykket ukjet parameter betyr at de sae verde av populasjoe er ukjet. Når v setter
DetaljerEn introduksjon i statistiske metoder for offisiell statistikk
Notater Documents 06/3 Jan F. Bjørnstad En ntroduksjon statstske metoder for offsell statstkk Notater 3/06 Jan F. Bjørnstad En ntroduksjon statstske metoder for offsell statstkk Statstsk sentralbyrå Statstcs
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
1 ECON130: EKSAMEN 014 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variason i vanskelighetsgrad. Svarene er gitt i >. Oppgave 1 Fra en eldre
DetaljerFormler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler
Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:
DetaljerTidspunkt for 10eksamen: 15. mai ,5 timer
EKSAMENSOPPGAVE Inttutt: IKBM Ekamen : STAT 00 Stattkk Tdpunkt for 0ekamen:. ma 0 09.00-.30. 3, tmer Kuranvarlg: Trygve Almøy Tllatte hjelpemdler: C3. Alle typer kalkulatorer, alle andre hjelpemdler Oppgavetekten
DetaljerTMA4240 Statistikk Høst 2016
TMA440 Statstkk Høst 06 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg 0 Løsgssksse Oppgave a Estmatore for avstade a er gjeomsttet av uavhegge detsk fordelte målger, x; a,
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksamen : ECON230 Statstkk Exam: ECON230 Statstcs UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: Onsdag 20. ma 200 Sensur kunngjøres: Torsdag 2. jun Date of exam: Wednesday, May 20, 2009 Grades
DetaljerAlternerende rekker og absolutt konvergens
Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne
DetaljerOppgave 3, SØK400 våren 2002, v/d. Lund
Oppgave 3, SØK400 våren 00, v/d. Lnd En bonde bonde dyrker poteter. Hvs det blr mldvær, blr avlngen 0. Hvs det blr frost, blr avlngen. Naboen bonde, som vl være tsatt for samme vær, dyrker også poteter,
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen : ECON0 Statstkk, våren 004 Exam: ECON0 Statstcs, sprng 004 Eksamensdag: Fredag 8. ma 004 Date of exam: Frday, May 8, 004 Td for eksamen: kl. 09:00 :00
DetaljerDet anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
ECON 0 EKSAMEN 0 VÅR TALLSVAR Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
DetaljerSNF-rapport nr. 23/05
Sykefravær offentlg og prvat sektor av Margt Auestad SNF-prosjekt nr. 4370 Endrng arbedsforhold Norge Prosjektet er fnansert av Norges forsknngsråd SAMFUNNS- OG NÆRINGSLIVSFORSKNING AS BERGEN, OKTOBER
DetaljerForelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov
Forelesnng nr.3 INF 4 Elektronske systemer Parallelle og parallell-serelle kretser Krchhoffs strømlov Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt parallelle kretser Krchhoffs
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Deleksamen MAT-INF Modellerng og beregnnger. Eksamensdag: Onsdag 7. oktober 29. Td for eksamen: 5: 7:. Oppgavesettet er på 6 sder. Vedlegg:
DetaljerForelesning 17 torsdag den 16. oktober
Forelesnng 17 torsdag den 16. oktober 4.12 Orden modulo et prmtall Defnsjon 4.12.1. La p være et prmtall. La x være et heltall slk at det kke er sant at x 0 Et naturlg tall t er ordenen tl a modulo p dersom
DetaljerNA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer
Sde: av 7 orsk akkredterng Dok.d.: VII..5 A Dok. 5: Angvelse av måleuskkerhet ved kalbrernger Utarbedet av: Saeed Behdad Godkjent av: ICL Versjon:.00 Mandatory/Krav Gjelder fra: 09.05.008 Sdenr: av 7 A
DetaljerNÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL
NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL Norman & Orvedal, kap. 1-5 Bævre & Vsle Generell lkevekt En lten, åpen økonom Nærngsstruktur Skjermet versus konkurranseutsatt vrksomhet Handel og komparatve fortrnn
DetaljerMasteroppgave i statistikk. GAMLSS-modeller i bilforsikring. Hallvard Røyrane-Løtvedt Kandidatnr. 160657
Masteroppgave statstkk GAMLSS-modeller blforskrng Hallvard Røyrane-Løtvedt Kanddatnr. 160657 UNIVERSITETET I BERGEN MATEMATISK INSTITUTT Veleder: Hans Julus Skaug 1. Jun 2012 1 GAMLSS-modeller blforskrng
DetaljerEksamensoppgave i TMA4240 Statistikk
Insu for maemaske fag Eksamensoppgave TMA44 Saskk Faglg konak under eksamen: John Tyssedal, aakon akka. Tlf.: John Tyssedal: 4645376. Tlf: aakon akka: 97955667. Eksamensdao: 7..4 Eksamensd (fra-l): 9.-3.
DetaljerEKSAMEN Løsningsforslag
. desember 6 EKSAMEN Løsnngsorslag Emnekode: ITD Emnenavn: Matematkk ørste deleksamen Dato:. desember 6 Hjelpemdler: - To A-ark med valgrtt nnold på begge sder. - Formelete. - Kalkulator som deles ut samtdg
DetaljerSannsynlighet seier noko om kor truleg det er at ei hending får eit bestemt utfall. Ein matematisk definisjon på sannsynlighet er:
Dette notatet bygger på Append C I Dngamn, og er et forsøk på å gje en kort og enkel nnførng vktge statskske begrep me vl få bruk for GF-GG4. Sannsynlghet seer noko om kor truleg det er at e hendng får
Detaljer