Econ 2130 uke 16 (HG)
|
|
|
- Merete Rød
- 9 år siden
- Visninger:
Transkript
1 Econ 213 uke 16 (HG) Hypotesetesting I Løvås: ,
2 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling (B) for en litt mindre lidelse gir gjennomsnittlig helbredelsestid 15 dager (regner man med). La Y være helbredelsestid (behandling B) for en vilkårlig pasient. Antakelse basert på erfaring: E( Y ) = 15 og SD( Y ) = var( Y ) = 3. Ny behandling (BNY) foreligger. Legen ønsker å teste BNY. La X være helbredelsestid (BNY) for en vilkårlig pasient. Legen antar: E( X) = µ ( ukjent) SD( X ) = σ = 3 (kjent) DATA: BNY brukt på n = 71 pasienter: x1, x2,, xn x = 14.5 PROBLEM: Tyder dette på at vi kan påstå " µ < 15" med sterk evidens? 2
3 MODELL: X1, X2,, Xn uavhengige og identisk normalfordelte ( N ( µσ, ) ) med E X = ukjent X = = = k t i = 2,, n 2 2 ( i) µ ( ) og var( i) σ 9 3 ( jen ), 1, σ Estimator: ˆ µ = X ˆ µ forventningsrett ( E( ˆ µ ) = µ ) og normalfordelt ( X ~ N( µ, )) n Estimat: ˆ µ = X = x = 14.5 obs obs To hypoteser om den ukjente er aktuelle: H µ H 1 : µ 15 ("null-hypotesen") : µ < 15 ("alternativ hypotese") Vi vet at x µ, men vi vet ikke hvor langt vekk fra µ x er! Merk at µ = 15 er en kjent hypotetisk verdi bestemt av problemstillingen. 3
4 Sett fra et vitenskapelig ståsted: Hypotesene H og H inngår ikke symmetrisk i problemstillingen. 1 Hensiktsmessig valg av mulige konklusjoner: i) Det er sterk evidens i data for å påstå at H : µ < 15 1 er sann. ii) Det er ikke nok informasjon i data til å kunne skille mellom H1 og H med sterk evidens. For å uttrykke dette brukes ofte formuleringer som, Si ingen ting eller Uavklart problem e.l. Eksempel på en beslutningsregel (forkastningsregel): Forkast H, dvs. påstå H1 : µ < 15 dersom X k, der k er kritisk verdi. Ikke si noe hvis X k. Bestem den kritiske verdien k hensiktsmessig. Hvis x faller her, "Ikke si noe" påstå µ < 15 med sterk evidens. PROBLEM: Hvordan bestemme k? 4
5 Bestemme kritisk verdi k Forkastningsregel (= testkriterium): Forkast H hvis X k Ikke si noe hvis X > k X kalles testobservator k kalles kritisk verdi Feiloversikt: Konklusjon Ikke forkast ikke si noe Forkast (påstå ) H 1 H H Den ukjente sannheten H : 15 H : 15 1 feil Feil av type II (ikke så alvorlig) Feil av type I (anses alvorlig) feil Velg k slik at i) og ii) er oppfylt: i) Velg k slik at P(feil I) α der α er liten og subjektivt valgt. Vanlige valg er.5,.1,.1. α kalles signifikansnivå. ii) Velg k slik at P(feil II) blir minst mulig. 5
6 Et viktig hjelpemiddel: Styrkefunksjonen. Definisjon. En (statistisk) test består av et (observerbart) forkastningskriterium som (i prinsippet) formuleres før (a priori) data er kjent. Styrkefunksjonen for en gitt test er definert som P(forkast H) - tolket som en funksjon av de ukjente parameterene i modellen. I eksemplet. Test: Forkast H hvis X k. Styrkefunksjon: P(forkast H) = PX ( k) Utledning: σ X µ X ~ N µ, Z = ~ N(,1) n σ n La som før tabell E.3(D.3) Gx ( ) = PZ ( x) X µ k µ k µ k µ P(forkast H) = PX ( k) = P = P Z = G σ n σ n σ n σ n som er en funksjon av µ ( σ kjent), som vi skriver γ ( µ ) ( γ er "gamma" - gresk g) k µ Styrkefunksjonen i eksemplet: γ ( µ ) = PX ( k) = G σ n 6
7 Det er styrkefunksjonen vi bruker til å vurdere egenskapene til en test. Sammenhengen mellom styrkefunksjonen og feil av type I og II. hvis µ < 15 ( H1) P(feil I) = P(forkast H) = γ ( µ ) hvis µ 15 ( H) P(ikke forkast H) = P(feil II) = 1 γ ( µ ) hvis µ < 15 ( H1) hvis µ 15 ( H) Konklusjon Ikke forkast ikke si noe Forkast H (påstå ) H 1 H Den ukjente sannheten H : µ 15 H : µ < 15 1 feil Feil av type I (anses alvorlig) Feil av type II (ikke så alvorlig) feil Kravene i) og ii) uttrykt ved styrkefunksjonen. i) Velg k slik at P(feil I ) α Velg k slik at γ ( µ ) α hvis µ 15 ( H ) ii) Velg k slik at P(feil II) blir minst mulig Velg k slik at 1 γ ( µ ) blir minst mulig når µ < 15 ( H ) Velg k slik at γ ( µ ) blir størst mulig når µ < 15 ( H ) 1 1 Løsning: Kravene i) og ii) Velg k som løsningen av ligningen γ( 15) = α 7
8 Vi trenger å vite: k µ Styrkefunksjonen i eksemplet γ ( µ ) = G er en avtagende funksjon av µ σ n Fordi: Gz ( ) = PZ ( z) er en stigende funksjon av z. Så, hvis µ øker, vil k σ µ n avta ( ) k µ γ µ = G avtar når µ øker. σ n 8
9 γ ( µ ) To tester med kritisk verdi k = 14.2 og k=14.6 h.h.v. γ ( µ ) for k = 14.2 γ ( µ ) for k = 14.6 γ ( µ ) = P (forkast H ) µ Krav: γ ( µ ) størst mulig her for µ < 15 α α Krav: γ ( µ ) α her µ H 1 H 9
10 Optimal løsning m.h.p. i) og ii) (15) k γ ( µ ) γ = α = γ ( µ ) for k = γ ( µ ) = P (forkast H ) µ γ ( µ ) størst mulig her for µ < α γ (15) H 1 α γ ( µ ) α her H µ 1
11 Kritisk verdi for testen som best oppfyller kravene i) og ii) Bestem k slik at γ (15) = α k 15 k 15 G = P Z = α σ n σ n k 15 = zα σ n k = 15 z α σ n Signifikansnivå 5%.5 tabell E.4(D.4) α =.5 og z = z = α Siden σ = 3 er forutsatt kjent, får vi kritisk verdi 3 k = 15 (1.645) = Styrkefunksjonen for denne testen er γ ( µ ) µ = G
12 Gjennomføring. Skal teste H: µ 15 ( µ ) mot H1: µ < 15 ( µ ) En test med signifikansnivå 5% er Forkast H hvis (forkastningskriterium) X (formulert før data) µ Styrkefunksjon: γ ( µ ) = Pµ (forkast H) = G 3 71 Gjennomføring: Data: n = 71 og X obs = 14.5 Konklusjon: Ikke forkast H dvs. Ikke si noe dvs. Det er ikke nok informasjon i data til å forkaste H. 12
13 Noen egenskaper ved testen. ( kan bestemmes før data er kjent) hvis µ < 15 ( H1) P(feil I) = γ ( µ ) hvis µ 15 ( H) Styrkefunksjonen: γ ( µ ) µ = G γ ( µ ) hvis µ < 15 ( H1) P(feil II) = hvis µ 15 ( H) Sann µ γ ( µ ) P (feil I) P(feil II) H H
14 Reformulering av testen (mest brukt i praksis). Problemet er å teste H: µ µ mot H1: µ < µ ( µ = 15 i eksemplet) Modell (situasjon I): X, X,, X er uid og X ~ N( µσ, ), der E( X ) = µ er ukjent og SD( X ) = σer kjent. 1 2 n i i i Test A med signifikansnivå : σ α " Forkast H hvis X µ zα " n σ testobservator X, kritisk verdi k = µ zα n Har: σ X µ zα X µ zα zα Test B med signifikansnivå : α testobservator n n σ n X µ ˆ µ µ σ n SE( ˆ µ ) σ X µ " Forkast H hvis Z = zα " X σ µ Z = =, kritisk verdi k = zα n Merk. (i) Test A og B er samme test (!), men med forskjellig testobservator og kritisk verdi. (ii) Det er test B som brukes i praksis ( B-kriteriet er mer generaliserbart) 14
15 Gjennomføring med test B i eksemplet: n = 71, α =.5 z = z = α.5 Testkriterium: 15 " Forkast hvis X µ X H Z = = " σ n 3 71 Observert: X obs Konklusjon: Ikke forkast H = 14.5 Zobs = = Typiske konsekvenser (tolkninger) av ikke-forkastning: (Kalles et ikke-signifikant resultat.) (1) Legen vil antakelig fortsette å bruke standardbehandlingen (B). Legen opprettholder antakelsen µ = 15 som arbeidshypotese. (2) Produsenten av BNY tror kanskje fortsatt på H : µ < 15 1, men mener (kanskje) at det ikke var mange nok observasjoner til å avsløre det. Disse to tolkningene motsier hverandre og er avhengig av interessene til ulike aktører. M.a.o., tolkningene er avhengige av konteksten for undersøkelsen som ligger utenfor data. Hva som velges som null-hypotese i en undersøkelse er derfor ikke 15 likegyldig.
16 Egenskaper ved test B (Z-test i situasjon I): X µ Fra før: W = ~ N(,1) uansett µ. σ n Dette brukte vi for å utlede et konfidensintervall for µ. W er ingen observator! Testobservatoren Z X µ X µ + µ µ = = = W σ n σ n µ µ + σ n ~ N µ = µ! (,1) bare hvis Kritisk verdi k = z α bestemt som løsningen av ligningen P (forkast H ) = P ( Z k) = α k = z µ = µ µ = µ α Fordeling for hvis µ < µ Z N (,1) : Fordeling for Z hvis µ = µ 16
17 Vanlige problemstillinger (uid modellen situasjon I). Problem (i): Testobservator H : µ µ mot H : µ < µ 1 Z µ X µ ˆ µ µ = =. α-nivå : Forkast H hvis σ Ensidig problem n SE( ˆ µ ) Problem (ii) H: µ µ mot H1: µ > µ Ensidig problem α-nivå test: " Forkast H hvis Z z " Problem (iii) H: µ = µ mot H1: µ µ α H 1 H test " Z z " H H 1 µ α µ µ `Tosidig problem µ α-nivå test : " Forkast s Z z eller Z z " H hvi α 2 α 2 α = P (forkast H ) = P ( Z z ) + P ( Z z ) = α 2 + α 2 µ = µ µ α 2 µ α 2 Ford. for Z hvis µ = µ H 1 H µ H 1 Ford. for Z hvis µ < µ N (,1) Ford. for Z hvis µ > µ 17
18 Z-testen for µ i uid modellen kan også brukes i den mer generelle situasjonen der σ er ukjent (situasjon II) hvis n er stor ( n 3 ca.) MODELL: X1, X2,, Xn uavhengige og identisk fordelte (vilkårlig fordeling) med E X = ukjent X = ukjent i = 1,2,, n der n 3. 2 ( i) µ ( ) og var( i) σ ( ), Vi kan fremdeles bruke Z- testen for alle tre problemene side 18 der den eneste 2 forskjellen er å bytte ut σ med estimatoren S = Σ( X X) ( n 1) PÅ grunn av sentralgrenseteoremet (bl.a.) har vi som for konfidensintervall (se forelesn. uke 12), at X µ tilnærmet W = ~ N(,1) uansett µ. S n X µ tilnærmet Testobservatoren Z = ~ N(,1) hvis og bare hvis µ = µ, S n som er det eneste vi trenger for å bestemme den kritiske verdien ved i Pµ = µ (forkast H ) = α Dermed kan vi bruke de samme Z testene side 17 med σ erstattet med S. Signifikansnivået er tilnærmet α med disse Z-testene. 18
19 Eksempel. Er feltet drivverdig for utvinning av kadmium? Data stammer fra n = 3 steinprøver. La X være % kadmium i prøve i, i = 1,2,,3 i 2 MODELL: X1, X2,, Xn er uid med E( Xi) = µ ( ukjent), var( Xi) = σ ( ukjent), der µ er gjennomsnittlig % kadmium i feltet. Feltet regnes drivverdig hvis µ > 8. Vi ønsker å teste H : µ 8( µ ) mot H : µ > 8( µ ) 1 X µ = µ = S n tilnærmet Testobservator Z ~ N(,1) hvis 8..1 tabell E4(D4) Velg nivå α =.1 z = %-nivå test: " Forkast H hvis Z z = 2.326"..1 DATA: n = 3, X = 9.6, S = 3.1 obs obs Z obs X obs = = = S obs Konklusjon: Forkast H. (dvs. feltet drivverdig). 19
20 T-test for µ i uid-modellen (situasjon III) Hvis vi i tillegg til forutsetningene under situasjon II, kan forutsette at enkeltobservasjonene kommer fra en normalfordeling, kan vi bruke T-test, som gjelder eksakt for alle n. MODELL: X uavhengige og identisk normalfordelte ( ) der 1, X2,, Xn Xi ~ N ( µσ, ) både µ og σ er ukjente. n er vilkårlig. X µ Som før (for konfidensintervall), W= ~ tn ( 1) fordelt uansett µ. S n X µ Testobservator: T =, som er lik W hvis µ = µ S n T~ tn ( 1) hvis µ = µ (som er nok til å bestemme kritisk verdi). Hvis, f.eks. problemet er H: µ µ mot H1: µ > µ, skal vi forkaste for store verdier av T, dvs. for T k der den kritiske verdien k bestemmes av ligningen P ( T k) k t = = α = µ µ α Eksakt α-nivå test: "Forkast hvis " H T t α (Tilsvarende for de andre problemene side 17 - se regel 6.19 (6.16)). Les eksempel 6.28 ( 6.26) - (uten setningen om p-verdi ) 2
Econ 2130 uke 18 (HG) Hypotesetesting II P-verdi
Ecn 213 uke 18 (HG) Hyptesetesting II P-verdi Testing av µ i uid- mdellen (Z-test) MODELL (Situasjn I) : X1, X2,, Xn uavhengige g identisk nrmalfrdelte ( N ( µσ, ) ) E X X i n n MODELL (Situasjn II): 2
A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25
1 ECON21: ESAEN 215v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i > Grensen til bestått bør ligge på ca
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende
Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger
TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.
1 ECON213: EKSAMEN 217 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
Fasit for tilleggsoppgaver
Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x
Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1
ECON 0 EKSAMEN 004 VÅR SENSORVEILEDNING Oppgaven består av 0 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom
betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2
ECON30: EKSAMEN 06v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
Introduksjon til inferens
Introduksjon til inferens Hittil: Populasjon der verdien til et individ/enhet beskrives med en fordeling. Her inngår vanligvis ukjente parametre, μ, p,... Enkelt tilfeldig utvalg (SRS), observator p =
Hypotesetesting. mot. mot. mot. ˆ x
Kapittel 6.4-6.5: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker
Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1
ECON 0 EKSMEN 007 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom >. Oppgave. La begivenhetene BC,, være slik at og
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting
ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. 12 (s. 34)
ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. s. 34 Oppgave.1 Situasjon betraktes som 7 Bernoulliforsøk; Suksess: dyr velger belønning 1, motsatt fiasko. P suksess = p;
TMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b5 Løsningsskisse Oppgave 1 Vi ønsker å finne ut om et nytt serum kan stanse leukemi.
α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6)
TMA4245 Statistikk Vår 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 4 blokk II Løsningsskisse Oppgave 1 4 personer spurt. Hvis mellom 22 og 26 personer svarer
Hypotesetesting av λ og p. p verdi.
Forelesning 7, kapittel 6 Hypotesetesting av λ og p. p verdi. Det som gjøres i denne forelesningen er nær opptil det vi gjorde da vi konstruerte z test for µ, og styrkefunksjon for denne. I tillegg til
Kapittel 9 og 10: Hypotesetesting
Kapittel 9 og 1: Hypotesetesting Hypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker
Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister.
ECON230: EKSAMEN 20 VÅR - UTSATT PRØVE 2 TALLSVAR. Oppgave Da Anne var på besøk i Roma, fikk hun raskt problemer med språket. Anne snakker engelsk, men ikke italiensk, og kun av 5 italienere behersker
TMA4240 Statistikk H2010 (22)
TMA4240 Statistikk H2010 (22) 10.11-10.12: Testing av andelser 10.13: Testing av varians i ett N utvalg Mette Langaas Foreleses onsdag 3.november, 2010 2 Laban strakk seg ikke lenger, men smaker den bedre?
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Det er to populasjoner som vi ønsker å sammenligne. Vi trekker da et utvalg
6.2 Signifikanstester
6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis
i x i
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale
TMA4240 Statistikk Høst 2016
TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksamen i: ECON30 Statistikk UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 03.06.06 Sensur kunngjøres: 4.06.06 Tid for eksamen: kl. 09:00 :00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:
ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ...
ÅMA Sannsynlighetsregning med statistikk, våren 6 Kp. 6 (kp. 6)... Begrep: nullhypotese alternativhypotese ensidig, tosidig teststørrelse (testobservator) nullfordeling kritisk verdi, forkastningsområde
Fra i går Signifikanssannsynlighet (p verdi) vs. signifikansnivå Utgangspunkt for begge: Signifikansnivå α. evt.
Fra i går Signifikanssannsynlighet (p verdi) vs. signifikansnivå Utgangspunkt for begge: H 0 : µ = µ 0 H 1 : µ < µ 0 eller µ > µ 0 Signifikanssannsynlighet p Angir sannsynligheten for å få en X som er
Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen
Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:
Hypotesetest: generell fremgangsmåte
TMA4240 Statistikk H2010 (21) 10.8, 10.10: To normalfordelte utvalg 10.9: Teststyrke og antall observasjoner Mette Langaas Foreleses mandag 1.november, 2010 2 Hypotesetest: generell fremgangsmåte Generell
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren
ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.
ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35
ÅMA110 Sannsynlighetsregning med statistikk, våren
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren
ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper
ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker
Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir
TMA4240 Statistikk Høst 2007
TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,
ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.
ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk
STK Oppsummering
STK1110 - Oppsummering Geir Storvik 11. November 2015 STK1110 To hovedtemaer Introduksjon til inferensmetoder Punktestimering Konfidensintervall Hypotesetesting Inferens innen spesifikke modeller/problemer
Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf:
Hypotesetesting Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400 www.aschehoug.no 1 Oversikt Sannsynlighetsregning og statistikk
STK Oppsummering
STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter
Kapittel 9 og 10: Hypotesetesting
Kapittel 9 og 1: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker
Løsning eksamen desember 2017
Løsning eksamen desember 017 Oppgave 1 Innfører hendelsene D: enheten er defekt K: enheten blir kassert a i Disse sannsynlighetene kan leses ut av oppgaveteksten: P D = 0, 10 P K D = 0, 07 P K D = 0, 95
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 1306017 Sensur kunngjøres senest: 3006017 Tid for eksamen: kl 09:00 1:00 Oppgavesettet er på 5 sider Tillatte
Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling
Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling 1 Geometrisk fordeling Binomisk forsøks-serie En serie likeartete forsøk med to mulige utfall, S og F, i hvert. (Modell) forutsetninger
SFB LØSNING PÅ EKSAMEN HØSTEN 2018
SFB107111 - LØSNING PÅ EKSAMEN HØSTEN 018 Eksamen høsten 018 Oppgave 1 Anta at 70% av studentene spiller fotball og at 0% ikke spiller fotball. Anta at av de som spiller fotball så er det 40% som spiller
Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/
Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator
Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk
ÅMA Sannsynlighetsregning med statistikk, våren 2 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk 2. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk
Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1
ECON 130 EKSAMEN 005 VÅR SENSORVEILEDNING Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom , Oppgave 1 I denne oppgaven kan du anta at
ECON240 VÅR / 2016 BOKMÅL
ECON240 VÅR / 2016 BOKMÅL UNIVERSITETET I BERGEN EKSAMEN UNDER SAMFUNNSVITENSKAPELIG GRAD [ DATO og KLOKKESLETT FOR EKSAMEN (START OG SLUTT) ] Tillatte hjelpemidler: Matematisk formelsamling av K. Sydsæter,
Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
ECON 0 EKSAMEN 0 VÅR TALLSVAR Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"
Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.
TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
1 ECON130: EKSAMEN 014 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variason i vanskelighetsgrad. Svarene er gitt i >. Oppgave 1 Fra en eldre
TMA4240 Statistikk 2014
TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten
Forelesing 27 Oppsummering. Torstein Fjeldstad Institutt for matematiske fag, NTNU
Forelesing 27 Oppsummering Torstein Fjeldstad Institutt for matematiske fag, NTNU 18.04.2018 I dag Lineær regresjon (sjekk av modellantagelser) Praktisk informasjon Andre statistikk-kurs Oversikt over
TMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 0, blokk II Løsningsskisse Oppgave Surhetsgrad i ferskvann Eksamen august 00, oppgave av 3 a) En god estimator
Kapittel 10: Hypotesetesting
Kapittel 10: Hypotesetesting TMA445 Statistikk 10.1, 10., 10.3: Introduksjon, 10.5, 10.6, 10.7: Test for µ i normalfordeling, 10.4: p-verdi [email protected] p.1/19 Estimering og hypotesetesting
Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y
Statistiske metoder 1 høsten 004. Løsningsforslag Oppgave 1: a) Begge normalplottene gir punkter som ligger omtrent på ei rett linje så antagelsen om normalfordeling ser ut til å holde. Konfidensintervall
Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)
MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.
ST0202 Statistikk for samfunnsvitere Kapittel 8: Introduksjon til statistisk inferens
ST0202 Statistikk for samfunnsvitere Kapittel 8: Introduksjon til statistisk inferens Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens har som mål å tolke/analysere
Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere
Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for
Estimering og hypotesetesting
Kapittel 10 Ett- og toutvalgs hypotesetesting TMA4240 H2006: Eirik Mo 2 Estimering og hypotesetesting Fenomen Bilkjøring Høyden til studenter Spørsmål Hvor stor andel av studentene synes de er flinkere
Forkaste H 0 "Stikkprøven er unormal" Akseptere H 0 "Stikkprøven er innafor normalen" k kritisk verdi. Utgangspunkt for H 0
* 6.2. Hypotesetest i normalfordeling med kjent σ v.h.a. kritisk verdi (fra i går) Overordnet mål med hypotesetest i normalfordeling: vurdere en påstand om µ ("er den påståtte verdien for µ riktig, eller
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon
LØSNINGSFORSLAG ) = Dvs
LØSNINGSFORSLAG 12 OPPGAVE 1 D j er differansen mellom måling j med metode A og metode B. D j N(µ D, 0.1 2 ). H 0 : µ D = 0 mot alternativet H 1 : µ D > 0. Vi forkaster om ˆµ D > k Under H 0 er ˆµ D =
H 0 : Null hypotese. Konservativ. H 1 : Alternativ hypotese. Endring. Kap.10 Hypotesetesting
Hypotesetesting H 0 : Null hypotese. Konservativ. H 1 : Alternativ hypotese. Endring. Rettsvesen hypotese Tiltalte er uskyldig inntil det motsatte er bevist. Hypoteser H 0 : Tiltalte er uskyldig H 1 :
Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som:
Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.
Observatorar og utvalsfordeling. Torstein Fjeldstad Institutt for matematiske fag, NTNU
Observatorar og utvalsfordeling Torstein Fjeldstad Institutt for matematiske fag, NTNU 08.10.2018 I dag Til no i emnet Observatorar Utvalsfordelingar Sentralgrenseteoremet 2 Til no i emnet definisjon av
TMA4240 Statistikk Eksamen desember 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet
STK1100 våren 2019 Mere om konfidensintevaller
STK1100 våren 2019 Mere om konfidensintevaller Svarer til avsnitt 8.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Konfidensintervall for µ i store utvalg Anta at de stokastiske
Seminaroppgave 10. (a) Definisjon: En estimator θ. = θ, der n er et endelig antall. observasjoner. Forventningsretthet for β: Xi X ) Z i.
Seminaroppgave 0 a Definisjon: En estimator θ n er forventningsrett hvis E θn observasjoner. Forventningsretthet for β: θ, der n er et endelig antall β Xi X Y i Xi X Xi X α 0 + βx i + n Xi X Xi X β + Xi
ÅMA 110 (TE 199) Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 2005, s. 1. Oppgave 1
ÅMA 0 (TE 99) Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 005, s. Oppgave a) P (X 0) 0.04 + 0.04 + 0.06 + 0.06 + 0. + 0. + 0. 0.6 P (0 X 40) 0.0 + 0.0 + 0.04 + 0.04 + 0.06 0.0 P
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon I Kapittel 8 brukte vi observatoren z = x µ σ/ n for å trekke konklusjoner om µ. Dette
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere
2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den
ECON2130 Kommentarer til oblig
ECON2130 Kommentarer til oblig Her har jeg skrevet ganske utfyllende kommentarer til en del oppgaver som mange slet med. Har noen steder gått en del utover det som det strengt tatt ble spurt om i oppgaven,
Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.
SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan
TMA4240 Statistikk Høst 2015
TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II I denne øvingen skal vi fokusere på hypotesetesting. Vi ønsker å gi dere
Estimering og hypotesetesting
Kapittel 10 Ett- og toutvalgs hypotesetesting TMA4245 V2007: Eirik Mo 2 Estimering og hypotesetesting Fenomen Bilkjøring Høyden til studenter Spørsmål Hvor stor andel av studentene synes de er flinkere
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
TMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 9.6: Prediksjonsintervall 9.8: To utvalg, differanse µ 1 µ 2 Mette Langaas Foreleses mandag 18.oktober, 2010 2 Prediksjonsintervall for fremtidig observasjon,
TMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Sara Martino a, Torstein Fjeldstad b Tlf: a 994 03 330, b 962 09 710 Eksamensdato: 28. november 2018 Eksamenstid
ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon
ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere
