Seminaroppgave 10. (a) Definisjon: En estimator θ. = θ, der n er et endelig antall. observasjoner. Forventningsretthet for β: Xi X ) Z i.

Størrelse: px
Begynne med side:

Download "Seminaroppgave 10. (a) Definisjon: En estimator θ. = θ, der n er et endelig antall. observasjoner. Forventningsretthet for β: Xi X ) Z i."

Transkript

1 Seminaroppgave 0 a Definisjon: En estimator θ n er forventningsrett hvis E θn observasjoner. Forventningsretthet for β: θ, der n er et endelig antall β Xi X Y i Xi X Xi X α 0 + βx i + n Xi X Xi X β + Xi X, der jeg i siste likhet har brukt at Xi X X i X. Da blir Xi X E β E β + Xi X β + Xi X 0 samt at Xi X X i Xi X E Xi X β, der de to siste likhetene hhv. E 0, i. Estimatoren β er forventingsskjev når α 0 0: følger av antagelsene om at X i er ikke-stokastisk og at β Y X Y i nx α 0 + βx i + α 0 nx X + β + nx α0 E β E X + β + ε i α 0 nx X + β + E α 0 nx X + β. Forventningsretthet for β: β Zi Z Y i Xi X Zi Z α 0 + βx i + Xi X Zi Z α 0 + βx i + Xi X Zi Z β + Xi X, der jeg i siste likhet har brukt at Zi Z 0, samt at Zi Z X i

2 Zi Z X i X. Da får vi β E E β + Zi Z Xi X β + Zi Z E Xi X β. b Variansen til β: β E β E β E n n Xi X Xi X n Xi X E Xi X n ε i + n Xi X Xj X ε j n Xi X Xi X n E ε i + σ Xi X, n Xi X X j X E ε j der siste likhet følger av antagelsene E ε i σ samt at E ε j 0, i j. Variansen til β er β E β E β E n n X E n ε i + n ε i nx n E ε j n n X E ε i + nσ n X σ nx. n n ε j Variansen til β er β E β E β E Zi Z Xi X Xi X E n Zi Z n ε i + n Zi Z Zj Z ε j

3 n Xi X Zi Z Xi X σ. Zi Z n E ε i + n Zi Z Z j Z E ε j c Definisjon: En estimator θ n er konsistent hvis lim n Pr θ n θ < δ, for en vilkårlig liten δ > 0, dvs estimatoren vil konvergere i sannsynlighet mot den sanne verdien når antall observasjoner n går mot uendelig. plim n θn θ eller ˆθ n p θ. Med en forenklet notasjon kan vi skrive En asypmtotisk forventningsrett estimator er alltid konsistent hvis iansen går mot null når antall observasjoner går mot uendelig. Det vil si at lim n E θn θ og lim n θn 0 er en tilstrekkelig betingelse for konsistens. Konsistens for β : Estimatoren β er forventningsrett. Da er den også asymptotisk forventingsrett. Videre σ ser vi av lim n 0 siden lim n X i X n Xi X, så β må være konsistent. Inkonsistens for β : Vi vet at E β α 0 + β, samt at lim X n σ 0. Estimatoren β er derfor en nx konsistent estimator for α 0 + β, og kan derfor ikke være en konsisitent estimator for β. X Konsistens for β : β Vi vet at E β, så det holder å vise at iansen går mot null når null når antall observasjoner går mot uendelig. Her er kan det være en fordel å skrive om iansen litt: β Zi Z Xi X σ r xz ˆβ σ Xi X, r xz Zi Z Xi X Xi X Xi X σ der r xz er korrelasjonskoeffisienten mellom x og z. Når n øker, øker nevneren mens telleren er konstant og iansen går derfor mot null. 3

4 d Definisjon: Med BLUE menes beste lineære forventningsrette estimator. I følge Gauss Markovteoremet er MKM-estimatoren BLUE under forutsetningene i oppgaveteksten. Estimatorene β, β, β er alle lineære estimatorer, men bare β og β er forventningsrette når α 0 0. Fra likningen som gir iansen til β ser vi at denne er minst når korrelasjonskoeffisienten r xz. Da må vi imidlertid ha z a+bx, som ved innsetting gir en estimator identisk med OLS estimatoren β. a Det er mange eksempler fra økonomisk teori som kan gi at en forklaringsiabel x er korrelert med restleddet u, for eksempel at en iabel som er korrelert med både x og y er utelatt fra regresjonen, at x og y bestemmes simultant i et system av likninger, eller at forklaringsiabelen x måles med en feilkomponent. Eksempel; x måles med stokastisk feilkomponent: La Y i α + βxi + u i Eu i 0 alle i E u i u j σ for ij, 0 ellers. E u i Xi 0 alle i Sett at iabelen X i er ukjent, men at vi kan observere iabelen X i X i + e i, der E e i 0 alle i E e i e j σ e for ij, 0 ellers E e i X i 0 alle i. 4

5 Ved innsetting: Y i α + βx i + u i α + β X i e i + u i α + βx i βe i + u i Hvis vi estimerer modellen Y i α+βx i +v i, der v i βe i +u i, vil forkaringsiabelen være korrelert med restleddet. Finner at cov X i, v i cov X i + e i, βe i + u i βσ e, som bare er lik null hvis σ e 0, dvs. når det ikke er målefeil i iabelen X i. b Er β en inkonsistent estimator for β? For å svre på dette spørsmålet renger vi Slutskys setning, som sier at for enhver kontinuerlig funksjon h θ gjelder plim h θ h plim θ. Har funnet at: Da blir plim β β + plim plim β β + Xi X Xi X n n Xi X Xi X covx, ε β + x β Estimatoren β konvergerer i sannsynlighet mot β + covx,ε x konsistent estimator for β når cov x, ε 0. og kan derfor ikke være en c Estimatoren er en β konsistent estimator for β : Har funnet at: β β + Zi Z Xi X plimβ β + plim n n Zi Z plim n n Xi X β + covz, ε x β. 5

6 3 a Nødvendige og tilstrekkelige forutsetninger for at OLS gir forventningsrette estimatorer for α 0, β og γ er gitt ved E v i E v i X i E v i 0 Hvis OLS estimatorene skal være BLUE må vi i tillegg anta at E u i u j σ for ij, og 0 ellers, men dette er ikke nødvendig hvis vi bare er opptatt av forventningsretthet for punktestimatene α 0, β og γ. b Hvis vi estimerer Y i α + βx i + u i når den sanne modellen er gitt ved Y i α + βx i + γ + v i, der E v i E v i X i E v i 0, og dessuten cov X i, 0 blir OLS-estimatet for β generelt inkonsistent: γ 0. Får u i γ + v i, slik at covx i, u i covx i, γ + v i γ cov X i, 0 for 4 a s RSS T 9 R RSS T SS b Tolkning av regresjonskoeffisientene: w α + βu Koeffisienten β gir lønnsvekstens forventede endring i prosentpoeng når ledigheten øker prosentpoeng: w U β 6

7 c Jeg vil ikke slutte meg til utsagnet om at vi ut i fra denne regresjonsanalysen på ett statistisk grunnlag kan avvise en hypotese om at ledigheten ikke betyr noe for reallønnsveksten. For å foreta statistisk inferens i denne modellen følgende forutsetninger gjelde for restleddet heretter u t : Eu i 0, i E u i u j σ for ij, 0 ellers. E u i Xi 0, i u i er normalfordelt i Under disse forutsetningene forkastes hypotesen om null effekt av ledighet på lønnsvekst ved konvensjonelle valg av signifikansnivå. Dette fremgår av signifikanssansynligheten oppgitt i regresjonsutskriften. Denne testen forutsetter imidlertid restleddene er ukorrelerte. Durbin Watson observatoren oppgitt i regresjonsutskriften indikerer at dette ikke er tilfelle. Durbin Watson testen kan brukes til å teste hypotesen om null autokorrelasjon i denne modellen hvis vi antar at restleddet alternativt følger en førsteordens autoregresiv prosess og at ledighetsprosenten er ikke-stokastisk. Jeg finner at kritiske verdier for DW er d L.363 og d U.496. Testobservatoren på.7 er i forkastelsessonen og nullhypotesen om fravær av. ordens positiv autokorrelasjon kan forkastes. t og F tester med utgangspunkt i regresjonsutsrift har derfor ikke gyldighet og hypotesen kan ikke avvises på et statistisk grunnlag. 5 a w α + β ln U w U β/u Forventet marginaleffekt av ledighet på lønnsvekst er invers proposrsjonal med nivået på ledigheten. Forventet endring i lønnsvekst ved en relativ endring i ledighetsnivået er 7

8 konstant lik β : w U U β b Vi vil finne ut når w/ U Vi løser /U u De to regresjonene gir samme helning ved en arbeidsledighet på 3.7%. c Ja, feilspesifisert funksjonsform fører ofte til autokorrelerte restledd når forklaringsiabelen er korrelert over tid, noe vi kan anta for ledighetsraten. Kan ikke forkaste at restleddene er ukorrelerte mot alternativet føste ordens autokorrelasjon for regresjon. Dette gir isolert sett støtte til spesifikasjon fremfor spesifikasjonen i regresjon. 6 a Av regresjonsutskrift 3 går det frem at iabelen U ikke er signifikant ved en t-test når lnu er inkludert i modellen, noe som gir støtte for at funksjonsformen i spesifikajson er mest korrekt. Vi kan ikke forkaste nullhypotesen om ukorrelerte restledd mot alternativet førsteordens autokorrelasjon, noe som gir støtte for at vi kan benytte t og F testene. b Ja, Kan teste om henholdsvis U og lnu kan eklsuderes fra modellen ved F tester. Kritisk verdi for F-fordelingen for 5% nivå, med frihetsgrad i telleren og 9 i nevneren er.69. Test for eksklusjon av lnu fra reg. 3: F / Forkaster modell mot modell 3. 8

9 Test for eksklusjon av U fra reg. 3 F / Kan ikke forkaste modell mot modell 3. 9

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon

Detaljer

Økonometri videregående (SOØ456), seminaroppgaver vår 2001.

Økonometri videregående (SOØ456), seminaroppgaver vår 2001. Økonometri videregående (SOØ456), seminaroppgaver vår 2001. Erik Biørn, Øyvind Eitrheim og Ragnar Nymoen Mars 2001 Innhold Eksamensoppgave V93. 2 Oppgave 1.................................... 2 Oppgave

Detaljer

Fasit for tilleggsoppgaver

Fasit for tilleggsoppgaver Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

Løsningsforslag: STK2120-v15.

Løsningsforslag: STK2120-v15. Løsningsforslag: STK2120-v15 Oppgave 1 a) Den statistiske modellen er: X ij = µ i + ϵ ij, j = 1,, J, i = 1,, I Her indekserer i = 1,, I gruppene og j = 1,, J observasjone innen hver gruppe Feilleddene

Detaljer

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den

Detaljer

1 + γ 2 X i + V i (2)

1 + γ 2 X i + V i (2) Seminaroppgave 8 8.1 I en studie av sammenhengen mellom gjennomsnittlig inntekt og utgifter til offentlig skoledrift for ulike amerikanske stater i 1979 estimeres modellen; Y i = β 0 + β 1 X i + β 2 Xi

Detaljer

Kapittel 2: Hendelser

Kapittel 2: Hendelser Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Oppgave 1 Oljeleting a) Siden P(A

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00

Detaljer

Tilleggsoppgaver for STK1110 Høst 2015

Tilleggsoppgaver for STK1110 Høst 2015 Tilleggsoppgaver for STK0 Høst 205 Geir Storvik 22. november 205 Tilleggsoppgave Anta X,..., X n N(µ, σ) der σ er kjent. Vi ønsker å teste H 0 : µ = µ 0 mot H a : µ µ 0 (a) Formuler hypotesene som H 0

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010

Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

Løsningsforslag, eksamen statistikk, juni 2015

Løsningsforslag, eksamen statistikk, juni 2015 Løsningsforslag, eksamen statistikk, juni 0 Oppgave 1 Siden det spørres om tall fra et intervall, som oppgaven viser kan være et reelle, er det tydelig at tallene er tatt fra en kontinuerlig fordeling.

Detaljer

Econ 2130 uke 16 (HG)

Econ 2130 uke 16 (HG) Econ 213 uke 16 (HG) Hypotesetesting I Løvås: 6.4.1 6, 6.5.1-2 1 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling

Detaljer

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y

Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y Statistiske metoder 1 høsten 004. Løsningsforslag Oppgave 1: a) Begge normalplottene gir punkter som ligger omtrent på ei rett linje så antagelsen om normalfordeling ser ut til å holde. Konfidensintervall

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1100 Statistiske metoder og dataanalyse 1 - Løsningsforslag Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA440 Statistikk Høst 009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Løsningsskisse Oppgave a) n 8, i x i 675, x 37.5, i y i 488, i x i 375, i x iy i

Detaljer

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"

Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - Fornuftig verdi Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.

Detaljer

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)

Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47) MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.

Detaljer

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:

MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka: MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Oppgave 1 Oppgave 11.5 fra læreboka. Oppgave 2 Oppgave 11.21 fra læreboka. Oppgave

Detaljer

Løsningsforslag eksamen 25. november 2003

Løsningsforslag eksamen 25. november 2003 MOT310 Statistiske metoder 1 Løsningsforslag eksamen 25. november 2003 Oppgave 1 a) Vi har µ D = µ X µ Y. Sangere bruker generelt trapesius-muskelen mindre etter biofeedback dersom forventet bruk av trapesius

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Tlf: Eksamensdato: august 2015 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Løsningsforslag: Statistiske metoder og dataanalys Eksamensdag: Fredag 9. desember 2011 Tid for eksamen: 14.30 18.30

Detaljer

j=1 (Y ij Ȳ ) 2 kan skrives som SST = i=1 (J i 1) frihetsgrader.

j=1 (Y ij Ȳ ) 2 kan skrives som SST = i=1 (J i 1) frihetsgrader. FORMELSAMLING TIL STK2120 (Versjon av 30. mai 2012) 1 Enveis variansanalyse Anta at Y ij = µ + α i + ɛ ij ; j = 1, 2,..., J i ; i = 1, 2,..., I ; der ɛ ij -ene er uavhengige og N(0, σ 2 )-fordelte. Da

Detaljer

Eksamensoppgave i ST0103 Brukerkurs i statistikk

Eksamensoppgave i ST0103 Brukerkurs i statistikk Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Jarle Tufto Tlf: 99 70 55 19 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00-13:00

Detaljer

vekt. vol bruk

vekt. vol bruk UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: 10. desember 2010. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister.

Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister. ECON230: EKSAMEN 20 VÅR - UTSATT PRØVE 2 TALLSVAR. Oppgave Da Anne var på besøk i Roma, fikk hun raskt problemer med språket. Anne snakker engelsk, men ikke italiensk, og kun av 5 italienere behersker

Detaljer

10.1 Enkel lineær regresjon Multippel regresjon

10.1 Enkel lineær regresjon Multippel regresjon Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Sara Martino a, Torstein Fjeldstad b Tlf: a 994 03 330, b 962 09 710 Eksamensdato: 28. november 2018 Eksamenstid

Detaljer

Om eksamen. Never, never, never give up!

Om eksamen. Never, never, never give up! I dag I dag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve 3 a og b (inkl SME) Om eksamen (Truleg) 10 punkt.

Detaljer

TMA4240 Statistikk H2010 (20)

TMA4240 Statistikk H2010 (20) TMA4240 Statistikk H2010 (20) 10.5: Ett normalfordelt utvalg, kjent varians (repetisjon) 10.4: P-verdi 10.6: Konfidensintervall vs. hypotesetest 10.7: Ett normalfordelt utvalg, ukjent varians Mette Langaas

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK2120 Skisse til løsning/fasit. Eksamensdag: Torsdag 5. juni 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider.

Detaljer

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. FORMELSAMLING TIL STK2100 (Versjon Mai 2017) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2 Eksamensdag: Mandag 4. juni 2007. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for

Detaljer

Eksamensoppgave i Løsningsskisse TMA4240 Statistikk

Eksamensoppgave i Løsningsskisse TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i Løsningsskisse TMA440 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 18 96, b 99 40 33 30 Eksamensdato: 30. november

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis

Detaljer

LØSNINGSFORSLAG ) = Dvs

LØSNINGSFORSLAG ) = Dvs LØSNINGSFORSLAG 12 OPPGAVE 1 D j er differansen mellom måling j med metode A og metode B. D j N(µ D, 0.1 2 ). H 0 : µ D = 0 mot alternativet H 1 : µ D > 0. Vi forkaster om ˆµ D > k Under H 0 er ˆµ D =

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

Om eksamen. Never, never, never give up!

Om eksamen. Never, never, never give up! Plan vidare Onsdag Gjere ferdig kap 11 + repetisjon Fredag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve

Detaljer

ECON240 VÅR / 2016 BOKMÅL

ECON240 VÅR / 2016 BOKMÅL ECON240 VÅR / 2016 BOKMÅL UNIVERSITETET I BERGEN EKSAMEN UNDER SAMFUNNSVITENSKAPELIG GRAD [ DATO og KLOKKESLETT FOR EKSAMEN (START OG SLUTT) ] Tillatte hjelpemidler: Matematisk formelsamling av K. Sydsæter,

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 12 Denne øvingen består av oppgaver om enkel lineær regresjon. De handler blant

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende

Detaljer

Forelesing 27 Oppsummering. Torstein Fjeldstad Institutt for matematiske fag, NTNU

Forelesing 27 Oppsummering. Torstein Fjeldstad Institutt for matematiske fag, NTNU Forelesing 27 Oppsummering Torstein Fjeldstad Institutt for matematiske fag, NTNU 18.04.2018 I dag Lineær regresjon (sjekk av modellantagelser) Praktisk informasjon Andre statistikk-kurs Oversikt over

Detaljer

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN

Detaljer

Ref.: Fall SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 05

Ref.:  Fall SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 05 SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 05 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Fall 2004 Erling Berge 2004 1 Forelesing V Kritikk av regresjon

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten

Detaljer

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Oppgave 1 a) En god estimator er forventningsrett og har liten varians. Vi tester forventningsretthet: E[ˆµ] E[Y ] µ E[ µ] E[ 1 2 X + 1 2 Y ] 1 2 E[X]

Detaljer

ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. 12 (s. 34)

ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. 12 (s. 34) ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. s. 34 Oppgave.1 Situasjon betraktes som 7 Bernoulliforsøk; Suksess: dyr velger belønning 1, motsatt fiasko. P suksess = p;

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b5 Løsningsskisse Oppgave 1 Vi ønsker å finne ut om et nytt serum kan stanse leukemi.

Detaljer

STK Oppsummering

STK Oppsummering STK1110 - Oppsummering Geir Storvik 11. November 2015 STK1110 To hovedtemaer Introduksjon til inferensmetoder Punktestimering Konfidensintervall Hypotesetesting Inferens innen spesifikke modeller/problemer

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

Fasit og løsningsforslag STK 1110

Fasit og løsningsforslag STK 1110 Fasit og løsningsforslag STK 1110 Uke 36: Eercise 8.4: a) (57.1, 59.5), b) (57.7, 58, 9), c) (57.5, 59.1), d) (57.9, 58.7) og e) n 239. (Hint: l(n) = 1 = 2z 1 α/2 σ/n 1/2 ). Eercise 8.10: a) (2.7, 7.5),

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår 2003 Erling Berge Institutt for sosiologi og statsvitenskap NTNU Vår 2004 Erling Berge 2004 1 Kritikk av regresjon I Forelesing

Detaljer

Oppsummering av STK2120. Geir Storvik

Oppsummering av STK2120. Geir Storvik Oppsummering av STK2120 Geir Storvik Vår 2011 Hovedtemaer Generelle inferensmetoder Spesielle modeller/metoder Bruk av R Vil ikke bli testet på kommandoer, men må forstå generelle utskrifter Generelle

Detaljer

Ferdig før tiden 4 7 Ferdig til avtalt tid 12 7 Forsinket 1 måned 2 6 Forsinket 2 måneder 4 4 Forsinket 3 måneder 6 2 Forsinket 4 måneder 0 2

Ferdig før tiden 4 7 Ferdig til avtalt tid 12 7 Forsinket 1 måned 2 6 Forsinket 2 måneder 4 4 Forsinket 3 måneder 6 2 Forsinket 4 måneder 0 2 Besvar alle oppgavene. Hver deloppgave har lik vekt. Oppgave I En kommune skal bygge ny idrettshall og vurderer to entreprenører, A og B. Begge gir samme pristilbud, men kommunen er bekymret for forsinkelser.

Detaljer

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter

Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter Observatorer STK00 - Observatorer - Kap 6 Geir Storvik 4. april 206 Så langt: Sannsynlighetsteori Stokastiske modeller Nå: Data Knytte data til stokastiske modeller Utgangspunkt Eksempel høyde Oxford studenter

Detaljer

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil

Detaljer

Eksamensoppgåve i ST0103 Brukarkurs i statistikk

Eksamensoppgåve i ST0103 Brukarkurs i statistikk Institutt for matematiske fag Eksamensoppgåve i ST0103 Brukarkurs i statistikk Fagleg kontakt under eksamen: Jarle Tufto Tlf: 99 70 55 19 Eksamensdato: 3. desember 2016 Eksamenstid (frå til): 09:00-13:00

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 13: Lineær korrelasjons- og regresjonsanalyse Kap. 13.1-13.3: Lineær korrelasjonsanalyse. Disse avsnitt er ikke pensum,

Detaljer

Løsning eksamen desember 2017

Løsning eksamen desember 2017 Løsning eksamen desember 017 Oppgave 1 Innfører hendelsene D: enheten er defekt K: enheten blir kassert a i Disse sannsynlighetene kan leses ut av oppgaveteksten: P D = 0, 10 P K D = 0, 07 P K D = 0, 95

Detaljer

Løsningsforslag eksamen 27. februar 2004

Løsningsforslag eksamen 27. februar 2004 MOT30 Statistiske metoder Løsningsforslag eksamen 7 februar 004 Oppgave a) Y ij = µ i + ε ij, der ε ij uavh N(0, σ ) der µ i er forventa kopperinnhold for legering i og ε ij er feilleddet (tilfeldig variasjon)

Detaljer

Oppgave 1. a) Anlysetype: enveis variansanalyse (ANOVA). Modell for y ij = ekspedisjonstid nr. j for skrankeansatt nr. i:

Oppgave 1. a) Anlysetype: enveis variansanalyse (ANOVA). Modell for y ij = ekspedisjonstid nr. j for skrankeansatt nr. i: MOT310 tatistiske metoder 1 Løsningsforslag til eksamen høst 010, s 1 Oppgave 1 a) Anlysetype: enveis variansanalyse (ANOVA) Modell for y ij ekspedisjonstid nr j for skrankeansatt nr i: Y ij µ i + ε ij,

Detaljer

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger

Detaljer

Eksamensoppgave i TMA4295 Statistisk inferens

Eksamensoppgave i TMA4295 Statistisk inferens Institutt for matematiske fag Eksamensoppgave i TMA4295 Statistisk inferens Faglig kontakt under eksamen: Vaclav Slimacek Tlf: 942 96 313 Eksamensdato: Tirsdag 2. desember 2014 Eksamenstid (fra til): 09:00-13:00

Detaljer

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005 SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000

Detaljer

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0

Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

STK Oppsummering

STK Oppsummering STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter

Detaljer

Forelesning 4 STK3100

Forelesning 4 STK3100 ! * 2 2 2 Bevis : Anta Forelesning 4 STK3 september 27 S O Samuelsen Plan for annen forelesning: Likelihood-egenskaper 2 Konsistens for ML 3 Tilnærmet fordeling for ML 4 Likelihoodbaserte tester 5 Multivariat

Detaljer

Løsningsforslag STK1110-h11: Andre obligatoriske oppgave.

Løsningsforslag STK1110-h11: Andre obligatoriske oppgave. Løsningsforslag STK1110-h11: Andre obligatoriske oppgave. Oppgave 1 a) Legg merke til at X er gamma-fordelt med formparameter 1 og skalaparameter λ. Da er E[X] = 1/λ. Små verdier av X tyder derfor på at

Detaljer

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett

Detaljer

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som:

Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som: Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

n n i=1 x2 i n x2 n i=1 Y i og x = 1 n i=1 (x i x)y i = 5942 og n T = i=1 (x i x) 2 t n 2

n n i=1 x2 i n x2 n i=1 Y i og x = 1 n i=1 (x i x)y i = 5942 og n T = i=1 (x i x) 2 t n 2 TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 12, blokk II Denne øvingen består av oppgaver om enkel lineær regresjon. De handler

Detaljer

Gruvedrift. Institutt for matematiske fag, NTNU. Notat for TMA4240/TMA4245 Statistikk

Gruvedrift. Institutt for matematiske fag, NTNU. Notat for TMA4240/TMA4245 Statistikk Gruvedrift Notat for TMA/TMA Statistikk Institutt for matematiske fag, NTNU I forbindelse med planlegging av gruvedrift i et område er det mange hensyn som må tas når en skal vurdere om prosjektet er lønnsomt.

Detaljer

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].

(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. FORMELSAMLING TIL STK2100 (Versjon Mai 2018) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet

Detaljer

DEL 1 GRUNNLEGGENDE STATISTIKK

DEL 1 GRUNNLEGGENDE STATISTIKK INNHOLD 1 INNLEDNING 15 1.1 Parallelle verdener........................... 18 1.2 Telle gunstige.............................. 20 1.3 Regneverktøy og webstøtte....................... 22 1.4 Oppgaver................................

Detaljer

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:

Detaljer

STK juni 2016

STK juni 2016 Løsningsforslag til eksamen i STK220 3 juni 206 Oppgave a N i er binomisk fordelt og EN i np i, der n 204 Hvis H 0 er sann, er forventningen lik E i n 204/6 34 for i, 2,, 6 6 Hvis H 0 er sann er χ 2 6

Detaljer

TMA4240 Statistikk Eksamen desember 2015

TMA4240 Statistikk Eksamen desember 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlege stokastiske variabelen X ha fordelingsfunksjon (sannsynstettleik

Detaljer

Kp. 11 Enkel lineær regresjon (og korrelasjon) Kp. 11 Regresjonsanalyse; oversikt

Kp. 11 Enkel lineær regresjon (og korrelasjon) Kp. 11 Regresjonsanalyse; oversikt Bjørn H. Auestad Kp. 11: Regresjonsanalyse 1 / 57 Kp. 11 Regresjonsanalyse; oversikt 11.1 Introduction to Linear Regression 11.2 Simple Linear Regression 11.3 Least Squares and the Fitted Model 11.4 Properties

Detaljer

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s. 1. Oppgave 1

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s. 1. Oppgave 1 Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s AR2-modell: Oppgave X t φ X t φ 2 X t 2 Z t Antas å være kausal slik at X t ψ j Z t j er ukorrelert med Z t+,

Detaljer

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1

+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1 Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:

Detaljer

FORMELSAMLING TIL STK1100 OG STK1110

FORMELSAMLING TIL STK1100 OG STK1110 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 11. november 2017) 1. Sannsynlighet La A, B, A 1, A 2,..., B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål

Detaljer

Oppgave 1. Vi må forutsette at dataene kommer fra uavhengige og normalfordelte tilfeldige variable,

Oppgave 1. Vi må forutsette at dataene kommer fra uavhengige og normalfordelte tilfeldige variable, MOT30 Statistiske metoder Løsningsforslag til eksamen vår 0 s. Oppgave a Vi har x = 6. og x i x = 4.6. Herav s x = n Et 90% kondensintervall er gitt ved x i x = 4.6 = 0.89 6 SX X t 0.056 X + t S X 0.056

Detaljer

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.

Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden. Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen

Detaljer

TMA4240 Statistikk Høst 2018

TMA4240 Statistikk Høst 2018 TMA4240 Statistikk Høst 2018 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 5 Dette er andre av tre innleveringer i blokk 2. Denne øvingen skal oppsummere pensum

Detaljer

Eksamensoppgave i ST0103 Brukerkurs i statistikk

Eksamensoppgave i ST0103 Brukerkurs i statistikk Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Det er to populasjoner som vi ønsker å sammenligne. Vi trekker da et utvalg

Detaljer

Statistikk og dataanalyse

Statistikk og dataanalyse Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel

Detaljer

Oppgave 1. Kilde SS df M S F Legering Feil Total

Oppgave 1. Kilde SS df M S F Legering Feil Total MOT30 Statistiske metoder, høste0 Løsninger til regneøving nr. 0 (s. ) Oppgave Y ij = µ i + ε ij, der ε ij uavh. N(0, σ ) der µ i er forventa kopperinnhold for legering i og ε ij er feilleddet (tilfeldig

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) Mette Langaas Foreleses mandag 11.oktober,

Detaljer