Oppsummering av STK2120. Geir Storvik
|
|
|
- Hilde Våge
- 9 år siden
- Visninger:
Transkript
1 Oppsummering av STK2120 Geir Storvik Vår 2011
2 Hovedtemaer Generelle inferensmetoder Spesielle modeller/metoder Bruk av R Vil ikke bli testet på kommandoer, men må forstå generelle utskrifter
3 Generelle inferensmetoder Estimering Maksimum likelihood Konfidensintervaller Normaltilnærming Bootstrapping Hypotesetesting Likelihood ratio test Grunnlag: Sannsynlighetsregning
4 Spesielle modeller/metoder Variansanalyse Regresjon Lineær Ikke-lineær Logistisk Kategoriske data/føyningstest Sjekk av modell-antagelser Transformasjoner
5 Maksimum likelihood/sannsynlighetsmaksimering y 1,..., y n uif f (y; θ) L(θ; y) = f (y 1,..., y n ; θ) = i f (y i; θ) log L(θ; y) = i log f (y i; θ) ˆθ = argmaxθ L(θ; y) Konsistent, asymptotisk effisient Analyttiske løsninger for lineære/gaussiske modeller Ett-/to- utvalgs modeller, variansanalyse, lineær regresjon Generelt: Numerisk optimering For stor n: ˆθ N(θ, I (ˆθ) 1 ) N(θ, J(ˆθ; y) 1 ) 2 J(θ; y) = log L(θ; y) θ θt I (θ) =E[J(θ; y)] Alltid pos. (semi)definit
6 Konfidensintervaller Normaltilnærming: ˆθ j ± z α/2 SE(ˆθ j ). SE(ˆθ j ): Normaltilnærming ( p I (θ) jj ) eller bootstrapping Bootstrap intervaller: ˆθ j,1,..., ˆθ j,b bootstrap simuleringer P Normaltilnærming: SE(ˆθj ) = B b=1 (ˆθ j,b ˆθ ) 2 q 1 B Standard bootstrap intervaller: (ˆθj δ U, ˆθ j δ L ) ˆδ L =ˆθ j,(k 1 ) = k 1 minste ˆθ j,b ˆδ U =ˆθ j,(k 2 ) = k 2 minste ˆθ j,b k 1 = B α/2, k 2 = B (1 α/2)
7 Numerisk optimering Sentrale begreper Likelihood L(θ; y) = f (y; θ) Skår funksjonen s(θ; y) = log L(θ; y) θ Observert informasjon J(θ; y) = log L(θ; y) θθ T Forventet (Fisher) informasjon I (θ) = E[J(θ; y)] Newton-Raphson θ s+1 = θ s + J(θ s ; x) 1 s(θ; x) Scoring: J(θ s ; x) I (θ s ). Mindre hopp Reparametrisering Dimensjonsreduksjon
8 Bootstrapping Av interesse: Egenskaper til ˆθ = ˆθ(y) ved gjentatt bruk av denne Bootstrap idé: Simuler ˆθ = ˆθ(y ) der y = (y 1,..., y n ) er bootstrap simuleringer av y. Ikke-parametrisk bootstrapping: Trekk y 1,..., y n med tilbakelegging fra {y 1,..., y n }. Parametrisk bootstrapping: Anta y i f (y; θ). Simuler yi Semi-parametrisk bootstrapping: Mellomting Eksempel: Regresjon ε i y i =g(x i ; β) + ε i y i =g(x i ; ˆβ) + ε i trelles med tilbakelegging fra {ˆε 1,..., ˆε n }, ˆε i = y i g(x i ; ˆβ). Forventningsskjevhet, usikkerhet, konfidensintervaller Egenskaper: STK4170 f (y; ˆθ)
9 Hypotesetesting Antar data y 1,..., y n uif f (y; θ) Ønsker å teste H 0 : θ Ω 0 mot H a : θ Ω a Prosedyre Spesifiser en test-observator Bestem et forkastningsområde for gitt signifikansnivå Beregn test-observator og forkastningsområde numerisk og konkluder Hvis test-observator i forkastningsområde, forkast H0 på det gitte signifikansnivå Ellers, konkluder med at det ikke er grunnlag i data for å forkaste H0 på det gitte signifikansnivå. Merk: Dette er ikke det samme som å påstå at H 0 er riktig! Ofte vanlig å rapportere P-verdi som angir hvor mye bevis det ligger i data. Merk: Bør skille mellom statistisk signifikant og praktisk signifikant Ved mye data kan en ende opp med å forkaste H 0 : θ = θ 0 selv om ˆθ er svært lik θ 0.
10 Likelihood ratio test Antar data y 1,..., y n uif f (y; θ) Ønsker å teste H 0 : θ Ω 0 mot H a : θ Ω a Neyman-Pearson: H 0 : θ = θ 0 mot H a ; θ = θ a LR = L(θ 0; y) L(θ a ; y) optimal testobservator Generell likelihood ratio LR = max θ Ω 0 L(θ; y) max θ Ω L(θ; y), Ω = Ω 0 Ω a 2 log LR H0 χ 2 df, df = Ω Ω 0 P-verdi: Pr(χ 2 df > 2 log LR) Ofte: LR må beregnes numerisk.
11 Variansanalyse Enveis variansanalyse Y ij = µ + α i + ε ij α i = 0 i SSTr/(I 1) SSE/I (J 1) H0 : α i = 0, F = Testing av mange hypoteser Tukey s metode Toveis variansanalyse H 0 : α i = α j, ȳ i ȳ j > Q α,i,i (J 1) p MSE/J Y ijk = µ + α i + β j + δ ij + ε ijk H 0 : α i = 0 SSA/(I 1) F = SSE/IJ(K 1) H 0 : β j = 0 SSB/(J 1) F = SSE/IJ(K 1) H 0 : δ ij = 0 SSAB/(I 1)(J 1) F = SSE/IJ(K 1)
12 Lineær regresjon Modell Y i = β 0 + k j=1 β jx ij + ε i Antagelser E[εi ] = 0 Var[εi ] = σ 2 Uavhengighet Normalfordelte Estimering β b = (X T X) 1 X T Y Forventningsrett COV( β) b = σ 2 [X T X] 1 ˆσ 2 = 1 n k 1 Pi (y i ŷ i ) 2 ŷ = Hy, H = X[X T X] 1 X T Projeksjon ned i plan spent ut av x-ene. Konfidensintervaller β j ± t α/2;n k 1 s bβj
13 Ikke-lineær regresjon Y i = g(x i ; β) + ε i Vanlige antagelser på {ε i }. Numerisk optimering for å finne ML-estimater Egenskaper/konfidensintervall ved normaltilnærming eller bootstrapping
14 Logistisk regresjon Respons Y i {0, 1}. Y i Binom(1, p(x i )) p(x) = eβ0+β1x 1 + e β0+β1x Numerisk optimering for å finne ML-estimater Egenskaper/konfidensintervall ved normaltilnærming (eller bootstrapping) Eksempel på Generaliserte lineære modeller, tema i STK3100.
15 Analyse av kategoriske data Gruppering av data i kategorier, data er antall innen hver kategori Sentral fordeling: Multinomisk fordeling Enveis gruppering Toveis gruppering Test av homogenitet Test av uavhengighet
16 En-veis gruppering En populasjon, utvalg på n, N i antall i kategori i Antar (N 1,..., N k ) Multinom(n, p 1,..., p k ) H 0 : p i = p i0, i = 1,..., k χ 2 = k i=1 (n i np i0 ) 2 np i0 H 0 χ 2 k 1 H 0 : p i = π i (θ), i = 1,..., k χ 2 = k (n i nπ i (ˆθ)) 2 i=1 ˆθ er ML-estimat. nπ i (ˆθ) H 0 χ 2 k 1 m Kan brukes til testing av fordelingsantagelser
17 To-veis gruppering Testing av homogenitet I populasjoner, utvalg ni fra populasjon i, n ij fra kateg. j (Ni1,..., N ij ) Multinom(n i ; p i1,..., p ij ), i = 1,..., I. H0 : p ij = p j Pearson s χ 2 test, df = (I 1) (J 1) Testing av uavhengighet 1 populasjon, utvalg n, nij fra kateg. (i, j) (N11,..., N ij,..., N IJ ) Multinom(n; p 11,..., p ij,..., p IJ ). H0 : p ij = p i p j Pearson s χ 2 test, df = (I 1) (J 1)
18 Veien videre STK2120 dekker de generelle prinsipper. Kan takle mange ulike situasjoner (også mange vi ikke har diskutert!) Mange aspekter som krever mer. Illustrasjon relasjon lengde fisk og alder
19 Fiske data Oblig: {(l i, a i ), i = 1,..., n} I praksis {(l b,i, a b,i, x b ), b = 1,..,, B, i = 1,..., n b }, b båt. Av interesse: E[l b,i a b,i, x b ], Pr(A b,i = a x b ). Regresjonsmodeller for multinomiske data, tema i STK3100 Pr(A b,i = a) = exp(α a,0 + α a,1 x b ) a exp(α a,0 + α a,1x b ) Fisk fra samme båt likere enn fisk fra forskjellige båter. Mulig modell: l b,i = β 0 + η b + β 1 log(a b,i ) + ε b,i der η b N(0, σ 2 η). η b er en tilfeldig effekt som modellerer korrelasjoner innen båter Tema i STK3100 Også aktuelt å modellere korrelasjoner i fordeling for alder Tema i STK3100 Tidsstrukturer når data er samlet inn over flere år: STK3100/4060/4110
20 Fiske data l b,i = β 0 + η b + β 1 log(a b,i ) + ε b,i Ofte: Alder mangler, men lengde kan gi informasjon om alder Missing data: Simuleringstilnærming STK4050, andre tilnærminger i andre kurs. Romlig struktur: Båter som fisker i nærheten av hverandre vil ha likere lengde/alder Bygger inn korrelasjoner mellom η b -ene. Romlig statistikk: STK4150 Mange mulige modeller, hvordan velge mellom disse? STK4160 Bootstrapping i kompliserte situasjoner: STK4170 Vet mye om hvordan fisk vokser fra tidligere studier, dvs har gode gjett på β 0, β 1. Apriori informasjon: Bayesiansk statistikk, STK4020 Kompliserte beregninger: Monte Carlo metoder STK4050
STK Oppsummering
STK1110 - Oppsummering Geir Storvik 11. November 2015 STK1110 To hovedtemaer Introduksjon til inferensmetoder Punktestimering Konfidensintervall Hypotesetesting Inferens innen spesifikke modeller/problemer
j=1 (Y ij Ȳ ) 2 kan skrives som SST = i=1 (J i 1) frihetsgrader.
FORMELSAMLING TIL STK2120 (Versjon av 30. mai 2012) 1 Enveis variansanalyse Anta at Y ij = µ + α i + ɛ ij ; j = 1, 2,..., J i ; i = 1, 2,..., I ; der ɛ ij -ene er uavhengige og N(0, σ 2 )-fordelte. Da
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1100 Statistiske metoder og dataanalyse 1 - Løsningsforslag Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30
(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].
FORMELSAMLING TIL STK2100 (Versjon Mai 2017) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)
Ekstraoppgaver for STK2120
Ekstraoppgaver for STK2120 Geir Storvik Vår 2011 Ekstraoppgave 1 Anta X 1 og X 2 er uavhengige med X 1 N(1.0, 1.0) og X 2 N(2.0, 1.5). La X = (X 1, X 2 ) T. Definer c = ( ) 2.0 3.0, A = ( ) 1.0 0.5 0.0
STK Oppsummering
STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet
(a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x].
FORMELSAMLING TIL STK2100 (Versjon Mai 2018) 1 Tapsfunksjoner (a) For regresjon brukes vanligvis kvadratisk tap: L(y, ŷ) = (y ŷ) 2. Den optimale prediktor basert på input variable x er da Ŷ = E[Y x]. (b)
Tilleggsoppgaver for STK1110 Høst 2015
Tilleggsoppgaver for STK0 Høst 205 Geir Storvik 22. november 205 Tilleggsoppgave Anta X,..., X n N(µ, σ) der σ er kjent. Vi ønsker å teste H 0 : µ = µ 0 mot H a : µ µ 0 (a) Formuler hypotesene som H 0
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er
Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"
Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.
Hypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som:
Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.
Punktestimator. STK Bootstrapping og simulering - Kap 7 og eget notat. Bootstrapping - eksempel Hovedide: Siden λ er ukjent, bruk ˆλ:
Punktestimator STK00 - Bootstrapping og simulering - Kap 7 og eget notat Geir Storvik 8. april 206 Trekke ut informasjon om parametre fra data x,..., x n Parameter av interesse: θ Punktestimator: Observator,
Forelesning 9 STK3100/4100
p. 1/3 Forelesning 9 STK3100/4100 Plan for forelesning: 18. oktober 2012 Geir Storvik 1. Lineære blandede modeller 2. Marginale modeller 3. Estimering - ML og REML 4. Modell seleksjon p. 2/3 Modell med
Forelesning 9 STK3100/4100
Forelesning 9 STK3100/4100 Plan for forelesning: 17. oktober 2011 Geir Storvik 1. Lineære blandede modeller 2. Marginale modeller 3. Estimering - ML og REML 4. Modell seleksjon p. 1 Modell med alle antagelser
Kapittel 2: Hendelser
Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en
Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)
MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.
STK juni 2016
Løsningsforslag til eksamen i STK220 3 juni 206 Oppgave a N i er binomisk fordelt og EN i np i, der n 204 Hvis H 0 er sann, er forventningen lik E i n 204/6 34 for i, 2,, 6 6 Hvis H 0 er sann er χ 2 6
FORMELSAMLING TIL STK1100 OG STK1110
FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 11. november 2017) 1. Sannsynlighet La A, B, A 1, A 2,..., B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål
Bootstrapping og simulering Tilleggslitteratur for STK1100
Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 (oppdatert April 2016) 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor
ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.
ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk
Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir
Kapittel 10: Hypotesetesting
Kapittel 10: Hypotesetesting TMA445 Statistikk 10.1, 10., 10.3: Introduksjon, 10.5, 10.6, 10.7: Test for µ i normalfordeling, 10.4: p-verdi [email protected] p.1/19 Estimering og hypotesetesting
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
Forelesing 27 Oppsummering. Torstein Fjeldstad Institutt for matematiske fag, NTNU
Forelesing 27 Oppsummering Torstein Fjeldstad Institutt for matematiske fag, NTNU 18.04.2018 I dag Lineær regresjon (sjekk av modellantagelser) Praktisk informasjon Andre statistikk-kurs Oversikt over
Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk
ÅMA Sannsynlighetsregning med statistikk, våren 2 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk 2. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk
Kapittel 3: Studieopplegg
Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere
ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ...
ÅMA Sannsynlighetsregning med statistikk, våren 6 Kp. 6 (kp. 6)... Begrep: nullhypotese alternativhypotese ensidig, tosidig teststørrelse (testobservator) nullfordeling kritisk verdi, forkastningsområde
Eksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00
Om eksamen. Never, never, never give up!
I dag I dag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve 3 a og b (inkl SME) Om eksamen (Truleg) 10 punkt.
Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger
Forelesning 8 STK3100/4100
Forelesning STK300/400 Plan for forelesning: 0. oktober 0 Geir Storvik. Lineære blandede modeller. Eksempler - data og modeller 3. lme 4. Indusert korrelasjonsstruktur. Marginale modeller. Estimering -
Bred profil på statistikk?
Bred profil på statistikk? Geir Storvik Juleseminar CSE 30. November 2012 Statistikk Statistikk involverer innsamling, organisering, analysering, tolkning og presentasjon av data Sentralt: Ta hensyn til
Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010
Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100
Bootstrapping og simulering
Bootstrapping og simulering Tilleggslitteratur for STK1100 Geir Storvik April 2014 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor statistikk, men
STK2100. Obligatorisk oppgave 1 av 2
14. februar 2018 Innleveringsfrist STK2100 Obligatorisk oppgave 1 av 2 Torsdag 1. mars 2018, klokken 14:30 gjennom Devilry (https:devilry.ifi.uio.no). Praktiske instruksjoner Første side av din innlevering
Statistikk og havressurser
Statistikk og havressurser STK2120-16. april 2012 Geir Storvik April 16, 2012 Fiskeri i Norge Norges havområder er mer enn seks ganger større enn våre landområder, og har noen av verdens rikeste fiskebanker.
Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007
Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
Fasit og løsningsforslag STK 1110
Fasit og løsningsforslag STK 1110 Uke 36: Eercise 8.4: a) (57.1, 59.5), b) (57.7, 58, 9), c) (57.5, 59.1), d) (57.9, 58.7) og e) n 239. (Hint: l(n) = 1 = 2z 1 α/2 σ/n 1/2 ). Eercise 8.10: a) (2.7, 7.5),
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
Om eksamen. Never, never, never give up!
Plan vidare Onsdag Gjere ferdig kap 11 + repetisjon Fredag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve
TMA4240 Statistikk Høst 2007
TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,
Andre sett med obligatoriske oppgaver i STK1110 høsten 2010
Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil
Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert!
MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Flott! Samlet sett leverer dere gode resultater. Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert! Totalt
Eksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Tlf: Eksamensdato: august 2015 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte hjelpemidler:
ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. 12 (s. 34)
ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. s. 34 Oppgave.1 Situasjon betraktes som 7 Bernoulliforsøk; Suksess: dyr velger belønning 1, motsatt fiasko. P suksess = p;
TMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må
Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende
Prøveeksamen STK vår 2017
Prøveeksamen STK2100 - vår 2017 Geir Storvik Vår 2017 Oppgave 1 Anta en lineær regresjonsmodell p Y i = β 0 + β j x ij + ε i, j=1 ε i uif N(0, σ 2 ) Vi kan skrive denne modellen på vektor/matrise-form:
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren
Estimering og hypotesetesting
Kapittel 10 Ett- og toutvalgs hypotesetesting TMA4245 V2007: Eirik Mo 2 Estimering og hypotesetesting Fenomen Bilkjøring Høyden til studenter Spørsmål Hvor stor andel av studentene synes de er flinkere
Oppgave 1. Kilde SS df M S F Legering Feil Total
MOT30 Statistiske metoder, høste0 Løsninger til regneøving nr. 0 (s. ) Oppgave Y ij = µ i + ε ij, der ε ij uavh. N(0, σ ) der µ i er forventa kopperinnhold for legering i og ε ij er feilleddet (tilfeldig
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk Eksamensdag: Torsdag 2. desember 2010. Tid for eksamen: 09.00 13.00. Oppgavesettet er på
Fasit for tilleggsoppgaver
Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x
Prøveeksamen STK2100 (fasit) - vår 2018
Prøveeksamen STK2100 (fasit) - vår 2018 Geir Storvik Vår 2018 Oppgave 1 (a) Vi har at E = Y Ŷ =Xβ + ε X(XT X) 1 X T (Xβ + ε) =[I X(X T X) 1 X T ]ε Dette gir direkte at E[E] = 0. Vi får at kovariansmatrisen
Estimering og hypotesetesting
Kapittel 10 Ett- og toutvalgs hypotesetesting TMA4240 H2006: Eirik Mo 2 Estimering og hypotesetesting Fenomen Bilkjøring Høyden til studenter Spørsmål Hvor stor andel av studentene synes de er flinkere
Econ 2130 uke 16 (HG)
Econ 213 uke 16 (HG) Hypotesetesting I Løvås: 6.4.1 6, 6.5.1-2 1 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling
ÅMA110 Sannsynlighetsregning med statistikk, våren
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren
TMA4240 Statistikk 2014
TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten
MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:
MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,
Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter
Observatorer STK00 - Observatorer - Kap 6 Geir Storvik 4. april 206 Så langt: Sannsynlighetsteori Stokastiske modeller Nå: Data Knytte data til stokastiske modeller Utgangspunkt Eksempel høyde Oxford studenter
Eksamensoppgave i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 16. mai 2015 Eksamenstid (fra til): 09:00-13:00
Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y
Statistiske metoder 1 høsten 004. Løsningsforslag Oppgave 1: a) Begge normalplottene gir punkter som ligger omtrent på ei rett linje så antagelsen om normalfordeling ser ut til å holde. Konfidensintervall
ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper
ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
Statistisk analyse av data fra planlagte forsøk
Statistisk analyse av data fra planlagte forsøk 19. mars 2019 9.00 10.30 Skypemøte 2 i NLR s kurs i forsøksarbeid 2019 Torfinn Torp Temaer Noen sentrale begreper, framgangsmåte etc., via et eksempel. Noen
Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100
Bootstrapping og stokatisk simulering Tilleggslitteratur for STK1100 Geir Storvik April 014 1 Introduksjon Simulering av tilfeldige variable (stokastisk simulering) er et nyttig verktøy innenfor statistikk
α =P(type I feil) = P(forkast H 0 H 0 er sann) =1 P(220 < X < 260 p = 0.6)
TMA4245 Statistikk Vår 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving 4 blokk II Løsningsskisse Oppgave 1 4 personer spurt. Hvis mellom 22 og 26 personer svarer
Oppgave 1. a) Anlysetype: enveis variansanalyse (ANOVA). Modell for y ij = ekspedisjonstid nr. j for skrankeansatt nr. i:
MOT310 tatistiske metoder 1 Løsningsforslag til eksamen høst 010, s 1 Oppgave 1 a) Anlysetype: enveis variansanalyse (ANOVA) Modell for y ij ekspedisjonstid nr j for skrankeansatt nr i: Y ij µ i + ε ij,
MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1. Oppgave 1
MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Oppgave 1 a) Normalantakelse: Målingene x 1,..., x 21 og y 1,..., y 8 betraktes som utfall av tilfeldige variable X 1,..., X 21
Løsningsforslag oblig 1 STK1110 høsten 2014
Løsningsforslag oblig STK høsten 4 Oppgave I forbindelse med en studie av antioksidanter og antocyanider, ble innholdet av antocyan i 5 beger med blåbær målt. De målte verdiene var (i mg per gram): 55
EKSAMEN I TMA4255 ANVENDT STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 11 Faglig kontakt under eksamen: Mette Langaas (988 47 649) BOKMÅL EKSAMEN I TMA4255 ANVENDT STATISTIKK Mandag 6.
LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK Mandag 12. desember 2011 Oppgave 1 Oljeleting a) Siden P(A
Ekstraoppgaver STK3100 h10
Ekstraoppgaver STK3100 h10 Oppgave 1 En-veis variansanalyse modellen kan formuleres som Y ij = µ + α i + ɛ ij (1) der α i = 0 og ɛ ij er i.i.d N(0, σ 2 ). Her representerer er Y ij j te observasjon fra
Løsningsforslag STK1110-h11: Andre obligatoriske oppgave.
Løsningsforslag STK1110-h11: Andre obligatoriske oppgave. Oppgave 1 a) Legg merke til at X er gamma-fordelt med formparameter 1 og skalaparameter λ. Da er E[X] = 1/λ. Små verdier av X tyder derfor på at
Oppgave 14.1 (14.4:1)
MOT30 Statistiske metoder, høste006 Løsninger til regneøving nr. 0 (s. ) Modell: Oppgave 4. (4.4:) Y ijk = µ + α i + β j + (αβ) ij + ε ijk, der ε ijk uavh. N(0, σ ) der µ er gjennomsnittseffekten, α i
HØGSKOLEN I STAVANGER
EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN
Forelesning 3 STK3100
Eks. Fødselsvekt mot svangerskapslengde og kjønn Forelesning 3 STK3100 8. september 2008 S. O. Samuelsen Plan for forelesning: 1. Generelt om lineære modeller 2. Variansanalyse - Kategoriske kovariater
Løsningsforslag eksamen 25. november 2003
MOT310 Statistiske metoder 1 Løsningsforslag eksamen 25. november 2003 Oppgave 1 a) Vi har µ D = µ X µ Y. Sangere bruker generelt trapesius-muskelen mindre etter biofeedback dersom forventet bruk av trapesius
Seminaroppgave 10. (a) Definisjon: En estimator θ. = θ, der n er et endelig antall. observasjoner. Forventningsretthet for β: Xi X ) Z i.
Seminaroppgave 0 a Definisjon: En estimator θ n er forventningsrett hvis E θn observasjoner. Forventningsretthet for β: θ, der n er et endelig antall β Xi X Y i Xi X Xi X α 0 + βx i + n Xi X Xi X β + Xi
Eksamensoppgave i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 30. mai 2014 Eksamenstid (fra til): 09:00-13:00
EKSAMEN I TMA4255 ANVENDT STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Mette Langaas (988 47 649) BOKMÅL EKSAMEN I TMA4255 ANVENDT STATISTIKK Fredag 25.
Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir
Statistikk og dataanalyse
Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel
