Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert =
|
|
- Inger Nesse
- 9 år siden
- Visninger:
Transkript
1 Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) Oppgave 1 a) Kolesterolnivået ble målt for 9 menn før og etter diett. En bør bruke parvis måleserie (pardata) siden dataene kommer fra samme subjekt, men målt under to forskjellige betingelser. Se kapittel 9.9 Paired Observations side 294 i læreboka. Ved parvise måleserier regner en først ut alle differanser D i = X i Y i, der Y i og X i er h.h.v. kolesterolnivå før og etter diett. Vi antar at D 1,..., D 9 er uavhengige og normalfordelte med forventing µ D = µ X µ Y (Mens samhørende X- og Y -målinger her vil være avhengige). Om vi har grunnlag for å hevde at µ D er forskjellig fra 0 avgjøres ved å regne ut teststørrelsen: T = D µ D Stdv( D) = D µ D S D / t(9 1) 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: H 0 : µ D = 0 versus H 1 : µ D 0. T observert = / 9 = 2.47 Den kritiske verdi for en student-t fordeling med 8 frihetsgrader er 2.31 for et 5% signifikans nivå. Den observerte verdi er større enn den kritiske, hvilket betyr at vi forkaster nyllhypotesen på et 5% signifikansnivå og konkluderer med at kolesterolnivået har endret seg. Men noen av dere er antagelig primært interesserte i å teste om dietten gir forbedring, dvs en ønsker å utføre den ensidige testen: H 0 : µ D = 0 versus H 1 : µ D < 0. Den kritiske verdi for en student-t fordeling med 8 frihetsgrader er 1.86 for et 5% signifikans nivå ved en ensidig hypotesetest. Den observerte verdi er større enn den kritiske, hvilket betyr at vi forkaster nyllhypotesen på et 5% signifikansnivå og konkluderer med at dietten reduserer forventet kolesterolnivå. 1
2 Oppgave 2 a) En naturlig modell for dette tilfellet vil være at avlingsmengdene er normalfordelte med samme varians σ 2, men mulig ulik forventningsverdi for de tre peanøtt-typene. Y ij = µ i + E ij, der E ij N (0, σ 2 ) for alle i = 1, 2, 3 og j = 1, 2, 3, 4. SST = måler total variasjon. SSA = måler variasjonen mellom faktor A (type peanøtter). Dvs variasjonen som skyldes ulik peanøtt-type. SSE = måler variasjonen innen typer. Vi har sammenhengen: SST = SSA + SSE. Vi vil teste hypotesen: H 0 : µ 1 = µ 2 = µ 3 versus H 1 : minst en forskjellig Her er det naturlig å bruke en variansanalysetest. Testobservator F = SSA 3 1 SSE 12 3 = MSA MSE = Forkaster H 0 dersom observert F er større en kritisk verdi F 2,9 = 4.25 på 5% signifikans nivå. Dette gir forkastning av nullhypotesen. Vi konkluderer med at minst en av peanøtttypene har ulik forventet avling. b) Modellen i forrige punkt kan skrives som Y ij = µ + α i + E ij, i = 1, 2, 3 j = 1, 2, 3, 4 dersom vi lar µ være gjennomsnittlig/felles forventing for peanøtt-typene, og α i er tilleggseffekt av peanøtt-type i. Altså Disse kan estimeres fra utskriftene: Estimat for variansen σ 2 til E ij er ˆσ 2 = µ = (µ 1 + µ 2 + µ 3 ) 3 α 1 = µ 1 µ α 2 = µ 2 µ α 3 = µ 3 µ ˆµ = ˆα 1 = = 5.2 ˆα 2 = = 4.7 ˆα 3 = = 0.4 SSE n 1 (k 1) = = 20.0.
3 c) Nå må vi sette opp en modell som kan ta hensyn til effekt av både type og område. I tillegg må vi ta med muligheten for samspill. Altså en toveis ANOVA med samspillseffekt. Y ijk = µ + α i + β j + (αβ) ij + ɛ ijk, der ɛ ijk N (0, σ 2 ), og α 1 + α α a = 0, β 1 + β β b = 0, (αβ) 1j + (αβ) 2j + + (αβ) aj = 0 og (αβ) i1 + (αβ) i2 + + (αβ) ib = 0. Her er a = 3 og b = 2. [Obs.: (αβ) ij betyr ikke α i β j ] d) Vi bruker variansanalysetabellen til å teste på 5% signifikansnivå (se kapittel 14 i læreboka): 1. Om der er samspill mellom område og type Hypotesetest: H 0 : (αβ) 11 = = (αβ) ab = 0 versus H 1 : minst en forskjellig. Hypotesetesten på om der samspill mellom område og type ga en p-verdi på Siden p-verdien er større enn 0.05 kan vi ikke forkaste nullhypotesen på et 5% signifikansnivå og konkludere med samspilleffekt. 2. Om type har betydning for mengde avling Hypotesetest: H 0 : α 1 = = α a = 0 versus H 1 : minst en forskjellig. Vi forkaster nullhypotesen dersom F = SSA/(a 1) SSE/ab(n 1) = MSA MSE f α,a 1,ab(n 1). Hypotesetesten på om peanøtt-type har betydning for mengde avling ga en F-observert på 5.65 (98.06/17.37 = 5.65) hvilket er større enn kritisk verdi på 5% nivå f 0.05,2,6 = Vi kan derfor forkaste nullhypotesen på et 5% signifikansnivå og konkludere med at peanøtt-type har betydning for mengde avling. 3. Om område har betydning for mengde avling Hypotesetest: H 0 : β 1 = = β b = 0 versus H 1 : minst en forskjellig. Hypotesetesten på om område har betydning for mengde avling ga en p-verdi på Vi kan derfor ikke forkaste nullhypotesen på et 5% signifikansnivå og konkludere med at område har betydning. 3
4 a) Regresjonsmodell: Oppgave 3 P EF i = β 0 + β 1 x 1i + ɛ i, der ɛ i N (0, σ 2 ). Feilleddene antas altså å være normalfordelt med forventing null og konstant varians. I tillegg antar en at feilleddene er uavhenginge (random error). Den estimerte regresjonsmodellen: P EF = x 1 Forventet PEF for en student med høyde 180 cm: P EF = x 1 = = Tester om parameteren tilhørende høyde er forskjellig fra null H 0 : β 1 = 0 versus H 1 : β 1 0 T observert = = Vi ser av utskriften at p-verdien er mindre enn Vi forkaster dermed H 0 og konkluderer med at β 1 er signifikant forskjellig fra null på 5% signifikans nivå. b) Konfidens- og prediksjonskurven uttrykker h.h.v konfidens- og prediksjonsintervall for PEF nivået som funksjon av høyde x 0. Et 95% konfidensintervall for gjennomsnitlig respons µ Y x0 er gitt ved { 1 ŷ 0 t 0.025,n 2 S 2 n + (x 0 x) 2 } { 1 < µ Y x0 < ŷ 0 + t 0.025,n 2 S S 2 xx n + (x 0 x) 2 }, S xx mens et 95% prediksjonsintervall for en fremtidig observert respons y 0 er gitt ved { ŷ 0 t 0.025,n 2 S n + (x 0 x) 2 } < y 0 < ŷ 0 +t 0.025,n 2 S {1 S xx n + (x 0 x) 2 }. S xx Se kapittel 11.6 i læreboka. Mer generelt defineres konfidens og prediksjonsintervall slik: ( ) Konfidensintervall: P L θ U = 1 α: Intervallet (L, U) inneholder virkelig verdi til parameter θ med sannsynlighet (1 α). Prediksjonsintervall: Vi ønsker et intervall som er slik at utfallet av en (ny) tilfeldig variabel faller i intervallet med sannsynlighet (1 α). Konfidens og prediksjonsintervallet for PEF nivået når høyden er 180 cm: Vi setter inn for ŷ 0 = 554.9, x = , S xx = , n = 105 og t 0.025,n i formleme for konfidens og prediksjonsintervall ovenfor og får h.h.v. intervallene (536.59, ) og (387.27, ). 4
5 c) Multippel regresjonsmodell: der ɛ i er uavhengige og N (0, σ 2 ). Estimert regresjonsmodell: P EF i = β 0 + β 1 x 1i + β 2 x 2i + β 3 x 3i + β 4 x 4i + ɛ i, P EF = x x x x 4 Forventet PEF for en kvinnelig student med høyde 180 cm, vekt 50 kg og alder 20: P EF = x x x x 4 = = Den estimerte parameteren for alder β 3 er 2.16, hvilket betyr at en øknig i alder med ett år øker PEF med 2.16 hvis alt annet holdes konstant. Den estimerte parameteren for kjønn β 4 er Siden variabelen for kjønn (x 4 ) er definert som 1 for kvinner og 0 for menn, så tolkes parameteren som at kvinner i gjennomsnitt har et lavere PEF nivå på enn menn hvis alt annet er likt. d) Vi kan teste om forklaringsvariablene i modellen samlet sett innflytelse på PEF ved hjelp av ANOVA tabellen (Se kapittel 12.4 side 457 i læreboka). Dette testes ved om en signifikant andel av variasjonen forklares av regresjonen i forhold til hva støyleddet forklarer. Hypotesetest H 0 : β 1 = β 2 = β 3 = β 4 = 0 versus H 1 : minst en er forskjellig ANOVA involverer en F-test der nullhypotesen forkastes dersom F = SSR/k SSE/(n (k + 1)) = MSR MSE f α,k,n (k+1). Oppgitt ANOVA-tabell gir oss F observert = som tilsvarer en p-verdi < 0.001, hvilket betyr at vi forkaster nullhypotesen på et 5% signifikansnivå og konkluderer med at regresjonen er forskjellig fra en konstant og at minst en av stigningskoeffisientene (slope parameters) er av statistisk betydning. Begrepet p-verdi kan forklares på flere måter. Inspirasjon til forklaring er her gjengitt fra kompendiet Bruk statistikk riktig! av Jan Terje Kvaløy side 14: En måte å si hva en p-verdi er for noe er sannsynligheten for å oppservere noe som motsier nullhypotesen minst like mye som det vi har observert, gitt at nullhypotesen er korrekt. Eller litt mer løselig, sannsynligheten for å observere noe minst like ekstremt som det vi har observert, gitt at nullhypotesen er korrekt. Et viktig poeng her er at vi alltid regner ut p-verdien under antagelsen om at nullhypotesen er korrekt (gitt at nullhypotesen er korrekt). I hypotesetesting antar vi i utgangspunkt at nullhypotesen er korrekt, og så regner vi ut hvor sannsynlige de observerte dataene er under denne antagelsen Ű dersom de er svært lite sannsynlige (liten p-verdi) konkluderer vi med at antagelsen (nullhypotesen) er gal. Liten, versus stor p-verdi: 5
6 En liten p-verdi (typisk mindre enn 0.05) betyr at vi forkaster nullhypotesen og påstår at alternativ hypotese er korrekt. En stor p-verdi betyr bare at vi ikke forkaster nullhypotesen - både nullhypotese og alternativ hypotese er mulige. e) Residualene er definert ved ɛ i = P EF i E(P EF i ) = P EF i (β 0 + β 1 x 1i + β 2 x 2i + β 3 x 3i + β 4 x 4i ), for alle i, og estimeres ved ˆɛ i = P EF i ˆ P EF i = P EF i ( ˆβ 0 + ˆβ 1 x 1i + ˆβ 2 x 2i + ˆβ 3 x 3i + ˆβ 4 x 4i ). Residualet er altså definert som differansen mellom observert og predikert verdi. Residualet for en kvinnelig student med høyde 180 cm, vekt 50 kg, alder 20 og observert PEF nivå 410 kan estimeres ved ˆɛ = 410 ( ˆβ 0 + ˆβ ˆβ ˆβ ˆβ 4 1 = Hvilke plott en bør lage av residualene og hvilke antakelser kan en da sjekke er forklart side i kapittel i læreboka. 6
Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir
DetaljerOppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32).
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 16. november 2009 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir
DetaljerOPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.
EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET
Detaljer+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1
Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:
DetaljerLøsningsforslag eksamen 25. november 2003
MOT310 Statistiske metoder 1 Løsningsforslag eksamen 25. november 2003 Oppgave 1 a) Vi har µ D = µ X µ Y. Sangere bruker generelt trapesius-muskelen mindre etter biofeedback dersom forventet bruk av trapesius
DetaljerOppgave 13.1 (13.4:1)
MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 11 (s. 1) Modell: Oppgave 13.1 (13.4:1) Y ij = µ i + ε ij, der ε ij uavh. N(0, σ 2 ) Boka opererer her med spesialtilfellet der man
DetaljerOppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.
EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ
DetaljerKandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert!
MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Flott! Samlet sett leverer dere gode resultater. Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert! Totalt
DetaljerMOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1. Oppgave 1
MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Oppgave 1 a) Normalantakelse: Målingene x 1,..., x 21 og y 1,..., y 8 betraktes som utfall av tilfeldige variable X 1,..., X 21
DetaljerHØGSKOLEN I STAVANGER
EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN
DetaljerLøsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y
Statistiske metoder 1 høsten 004. Løsningsforslag Oppgave 1: a) Begge normalplottene gir punkter som ligger omtrent på ei rett linje så antagelsen om normalfordeling ser ut til å holde. Konfidensintervall
DetaljerOppgave 14.1 (14.4:1)
MOT30 Statistiske metoder, høste006 Løsninger til regneøving nr. 0 (s. ) Modell: Oppgave 4. (4.4:) Y ijk = µ + α i + β j + (αβ) ij + ε ijk, der ε ijk uavh. N(0, σ ) der µ er gjennomsnittseffekten, α i
DetaljerEksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Tlf: Eksamensdato: august 2015 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte hjelpemidler:
DetaljerOppgave N(0, 1) under H 0. S t n 3
MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr 9 (s 1) Oppgave 1 Modell: Y i β 0 + β 1 x i + β 2 x 2 i + ε i der ε 1,, ε n uif N(0, σ 2 ) e) Y Xβ + ε der Y Y 1 Y n, X 1 x 1 x 2 1
DetaljerHØGSKOLEN I STAVANGER
EKSAMEN I: MOT310 STATISTISKE METODER VARIGHET: 4 TIMER DATO: 27. FEBRUAR 2004 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 5
DetaljerHØGSKOLEN I STAVANGER
EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 25. NOVEMBER 2003 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ
DetaljerOppgave 1. Kilde SS df M S F Legering Feil Total
MOT30 Statistiske metoder, høste0 Løsninger til regneøving nr. 0 (s. ) Oppgave Y ij = µ i + ε ij, der ε ij uavh. N(0, σ ) der µ i er forventa kopperinnhold for legering i og ε ij er feilleddet (tilfeldig
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Løsningsforslag: Statistiske metoder og dataanalys Eksamensdag: Fredag 9. desember 2011 Tid for eksamen: 14.30 18.30
DetaljerLøsningsforslag eksamen 27. februar 2004
MOT30 Statistiske metoder Løsningsforslag eksamen 7 februar 004 Oppgave a) Y ij = µ i + ε ij, der ε ij uavh N(0, σ ) der µ i er forventa kopperinnhold for legering i og ε ij er feilleddet (tilfeldig variasjon)
DetaljerMOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) der
MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) Oppgave 13.1 Modell: Y ij = µ i + ε ij, der ε ij uavh. N(0, σ 2 ) Boka opererer her med spesialtilfellet der man har like
Detaljer6.2 Signifikanstester
6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon
DetaljerOppgave 1. Vi må forutsette at dataene kommer fra uavhengige og normalfordelte tilfeldige variable,
MOT30 Statistiske metoder Løsningsforslag til eksamen vår 0 s. Oppgave a Vi har x = 6. og x i x = 4.6. Herav s x = n Et 90% kondensintervall er gitt ved x i x = 4.6 = 0.89 6 SX X t 0.056 X + t S X 0.056
DetaljerLøsningsforslag eksamen STAT100 Høst 2010
Løsningsforslag eksamen STAT100 Høst 2010 Oppgave 1 a) To-utvalg, parvise data. La Y være tilfeldig variabel som angir antall drepte i periode 1 og tilsvarende X for periode 2. Vi antar parvise avhengigheter
DetaljerEksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 11. desember 2014 Eksamenstid (fra til): 09:00
DetaljerEksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00
DetaljerVerdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/
Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator
DetaljerMOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2
MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.27 (11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal finne konfidensintervall
DetaljerEKSAMEN I FAG TMA4255 ANVENDT STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Onsdag
DetaljerTid: Torsdag 11.desember 9:00 12:30 (3.5 timer) Emneansvarlig: Solve Sæbø, Tlf
EKSAMENSOPPGAVE Institutt: IKBM Eksamen i: STAT 100 STATISTIKK Tid: Torsdag 11.desember 9:00 12:30 (3.5 timer) Emneansvarlig: Solve Sæbø, Tlf 67232561 Tillatte hjelpemidler: C3: alle typer kalkulatorer,
DetaljerEKSAMENSOPPGAVER STAT100 Vår 2011
EKSAMENSOPPGAVER STAT100 Vår 2011 Løsningsforslag Oppgave 1 (Med referanse til Tabell 1) a) De 3 fiskene på 2 år hadde lengder på henholdsvis 48, 46 og 35 cm. Finn de manglende tallene i Tabell 1. Test
DetaljerEKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE
DetaljerKort overblikk over kurset sålangt
Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente
DetaljerKapittel 3: Studieopplegg
Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere
DetaljerMOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ
MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.25 (11.27, 11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal nne
DetaljerEksamensoppgåve i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgåve i ST1201/ST6201 Statistiske metoder Fagleg kontakt under eksamen: Tlf: Eksamensdato: august 2015 Eksamenstid (frå til): Hjelpemiddelkode/Tillatne hjelpemiddel:
DetaljerUNIVERSITETET I OSLO
Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK2120 Skisse til løsning/fasit. Eksamensdag: Torsdag 5. juni 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider.
DetaljerTid: 29. mai (3.5 timer) Ved alle hypotesetester skal både nullhypotese og alternativ hypotese skrives ned.
EKSAMENSOPPGAVE, bokmål Institutt: IKBM Eksamen i: STAT100 STATISTIKK Tid: 29. mai 2012 09.00-12.30 (3.5 timer) Emneansvarlig: Trygve Almøy (Tlf: 95141344) Tillatte hjelpemidler: C3: alle typer kalkulator,
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2 Eksamensdag: Mandag 4. juni 2007. Tid for eksamen: 14.30 17.30. Oppgavesettet er
DetaljerVerdens statistikk-dag.
Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator
DetaljerHypotesetesting. mot. mot. mot. ˆ x
Kapittel 6.4-6.5: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker
DetaljerKp. 14 Flerfaktoreksperiment. Kp. 14: Flerfaktor-eksperiment; oversikt
uten med Kp 14 Flerfaktor-eksperiment Bjørn H Auestad Kp 14: To-faktor eksperiment 1 / 20 Kp 14: Flerfaktor-eksperiment; oversikt uten med 141 Introduction 142 Interaction in the Two-Factor Experiment
Detaljervekt. vol bruk
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: 10. desember 2010. Tid for eksamen: 14.30 18.30. Oppgavesettet er
Detaljerb) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs.
Eksamen i: MET 040 Statistikk for økonomer Eksamensdag: 31 Mai 2007 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.
DetaljerTillatte hjelpemidler: C3: alle typer kalkulator, alle andre hjelpemidler
EKSAMENSOPPGAVER Institutt: Eksamen i: Tid: IKBM STAT100 Torsdag 13.des 2012 STATISTIKK 09.00-12.30 (3.5 timer) Emneansvarlig: Solve Sæbø ( 90065281) Tillatte hjelpemidler: C3: alle typer kalkulator, alle
DetaljerTMA4240 Statistikk Høst 2018
TMA4240 Statistikk Høst 2018 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 5 Dette er andre av tre innleveringer i blokk 2. Denne øvingen skal oppsummere pensum
DetaljerMultippel regresjon. Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p.
Multippel regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable x 1, x 2,, x p. Det er fortsatt en responsvariabel y. Måten dette gjøre på er nokså
DetaljerEksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
DetaljerGruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2.
Sensurveiledning Ped 3001 h12 Oppgave 1 Er det sammenheng mellom støtte fra venner og selvaktelse hos ungdom? Dette spørsmålet ønsket en forsker å undersøke. Han samlet data på 9. klassingers opplevde
DetaljerTMA4240 Statistikk Høst 2016
TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 12 Denne øvingen består av oppgaver om enkel lineær regresjon. De handler blant
DetaljerKap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere
Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for
DetaljerEksamensoppgave i ST0103 Brukerkurs i statistikk
Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
DetaljerEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: John Tyssedal 41 64 53 76 EKSAMEN I FAG TMA4240/TMA4245 STATISTIKK Lørdag 10. august
Detaljer10.1 Enkel lineær regresjon Multippel regresjon
Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel
DetaljerTMA4240 Statistikk H2010 (20)
TMA4240 Statistikk H2010 (20) 10.5: Ett normalfordelt utvalg, kjent varians (repetisjon) 10.4: P-verdi 10.6: Konfidensintervall vs. hypotesetest 10.7: Ett normalfordelt utvalg, ukjent varians Mette Langaas
DetaljerTMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Oppgave 1 Oppgave 11.5 fra læreboka. Oppgave 2 Oppgave 11.21 fra læreboka. Oppgave
DetaljerTMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
DetaljerLøsningsforslag: STK2120-v15.
Løsningsforslag: STK2120-v15 Oppgave 1 a) Den statistiske modellen er: X ij = µ i + ϵ ij, j = 1,, J, i = 1,, I Her indekserer i = 1,, I gruppene og j = 1,, J observasjone innen hver gruppe Feilleddene
DetaljerI enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x
Multiple regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable.det er fortsatt en responsvariabel. Måten dette gjøre på er nokså naturlig. Prediktoren
DetaljerOppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)
MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.
DetaljerTidspunkt: Fredag 18. mai (3.5 timer) Tillatte hjelpemidler: C3. Alle typer kalkulatorer, alle andre hjelpemidler.
Fakultet: KBM Eksamen i: STAT100 STATISTIKK Tidspunkt: Fredag 18. mai 2018 14.00 17.30 (3.5 timer) Kursansvarlig: Trygve Almøy 95141344 Tillatte hjelpemidler: C3. Alle typer kalkulatorer, alle andre hjelpemidler.
Detaljeri x i
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale
DetaljerTMA4240 Statistikk Høst 2016
TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper
DetaljerTMA4240 Statistikk 2014
TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten
DetaljerTilleggsoppgaver for STK1110 Høst 2015
Tilleggsoppgaver for STK0 Høst 205 Geir Storvik 22. november 205 Tilleggsoppgave Anta X,..., X n N(µ, σ) der σ er kjent. Vi ønsker å teste H 0 : µ = µ 0 mot H a : µ µ 0 (a) Formuler hypotesene som H 0
DetaljerEKSAMENSOPPGAVE. B154 «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004 Dato: 29.september 2016 Klokkeslett: 09 13 Sted: Tillatte hjelpemidler: B154 «Tabeller og formler i statistikk» av Kvaløy og
DetaljerEksamen i : STA-1002 Statistikk og. Eksamensdato : 26. september 2011. Sted : Administrasjonsbygget. Tillatte hjelpemidler : - Godkjent kalkulator
Side 1 av 11 sider EKSAMENSOPPGAVE I STA-1002 Eksamen i : STA-1002 Statistikk og sannsynlighet 2 Eksamensdato : 26. september 2011. Tid : 09-13. Sted : Administrasjonsbygget. Tillatte hjelpemidler : -
DetaljerInferens i regresjon
Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Det er to populasjoner som vi ønsker å sammenligne. Vi trekker da et utvalg
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ...
ÅMA Sannsynlighetsregning med statistikk, våren 6 Kp. 6 (kp. 6)... Begrep: nullhypotese alternativhypotese ensidig, tosidig teststørrelse (testobservator) nullfordeling kritisk verdi, forkastningsområde
DetaljerEksamensoppgave i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Ingelin Steinsland a, Øyvind Bakke b Tlf: a 73 59 02 39, 926 63 096, b 73 59 81 26, 990 41 673 Eksamensdato:
Detaljerår i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9
TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører
DetaljerAndre sett med obligatoriske oppgaver i STK1110 høsten 2010
Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis
DetaljerKp. 13. Enveis ANOVA
-tabell Bjørn H. Auestad Kp. 13: Én-faktor eksperiment 1 / 13 Kp. 13: Én-faktor -tabell 13.1 Analysis-of-Variance Technique 13.2 The Strategy of Experimental Design 13.3 One-Way Analysis of Variance: Completely
DetaljerMOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:
MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,
DetaljerKvinne Antall Tabell 1a. Antall migreneanfall i året før kvinnene fikk medisin.
Eksamen STAT100, Høst 2011 (lettere revidert). Tillatte hjelpemidler: C3: alle typer kalkulator, alle andre hjelpemidler Ved alle hypotesetester skal både nullhypotese og alternativ hypotese skrives ned.
DetaljerHypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk
ÅMA Sannsynlighetsregning med statistikk, våren 2 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk 2. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk
DetaljerTillatte hjelpemidler: C3: alle typer kalkulator, alle andre hjelpemidler
EKSAMENSOPPGAVER Institutt: Eksamen i: Tid: Emneansvarlig: IKBM STAT100 Tirsdag 28.mai 2013 Solve Sæbø STATISTIKK 09.00-12.30 (3.5 timer) Tillatte hjelpemidler: C3: alle typer kalkulator, alle andre hjelpemidler
DetaljerEKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE
DetaljerKontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.
Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4. juni 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.
DetaljerEKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag
DetaljerEksamensoppgave i ST3001
Det medisinske fakultet Institutt for kreftforskning og molekylær medisin Eksamensoppgave i ST3001 fredag 25. mai 2012, kl. 9.00 13:00 Antall studiepoeng: 7.5 Tillatte hjelpemidler: Kalkulator og alle
DetaljerUNIVERSITETET I OSLO
Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1110 FASIT. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider. Vedlegg: Tillatte
DetaljerSensorveiledning: skoleeksamen i SOS Kvantitativ metode
Sensorveiledning: skoleeksamen i SOS1120 - Kvantitativ metode Tirsdag 30. mai 2016 (4 timer) Poenggivning og karakter I del 1 gis det ett poeng for hvert riktige svar. Ubesvart eller feil svar gis 0 poeng.
DetaljerOppgave 1. a) Anlysetype: enveis variansanalyse (ANOVA). Modell for y ij = ekspedisjonstid nr. j for skrankeansatt nr. i:
MOT310 tatistiske metoder 1 Løsningsforslag til eksamen høst 010, s 1 Oppgave 1 a) Anlysetype: enveis variansanalyse (ANOVA) Modell for y ij ekspedisjonstid nr j for skrankeansatt nr i: Y ij µ i + ε ij,
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.
ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk
DetaljerBokmål. Eksamen i: Stat100 Statistikk Tid: 18. mai Emneansvarlig: Trygve Almøy:
Bokmål Institutt: IKBM Eksamen i: Stat100 Statistikk Tid: 18. mai 2010 09.00-12.30 Emneansvarlig: Trygve Almøy: 64 96 58 20 Tillatte hjelpemidler: C3: alle typer kalkulatorer, alle andre hjelpemiddel Oppgaveteksten
DetaljerStatistikk og dataanalyse
Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel
DetaljerEKSAMEN I TMA4255 ANVENDT STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Mette Langaas (988 47 649) BOKMÅL EKSAMEN I TMA4255 ANVENDT STATISTIKK Onsdag 8. august
Detaljer2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.
H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.
DetaljerEKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST00 STATISTIKK FOR SAMFUNNSVITERE Torsdag
DetaljerEKSAMENSOPPGAVE STA «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark/ 4 sider med egne notater. Godkjent kalkulator. Rute.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-1001. Dato: Tirsdag 26. september 2017. Klokkeslett: 09 13. Sted: Åsgårdvegen 9. Tillatte hjelpemidler: «Tabeller og formler i statistikk»
DetaljerHypotesetesting. Formulere en hypotesetest: Når vi skal test om en parameter θ kan påstås å være større enn en verdi θ 0 skriver vi dette som:
Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.
DetaljerIntroduksjon til inferens
Introduksjon til inferens Hittil: Populasjon der verdien til et individ/enhet beskrives med en fordeling. Her inngår vanligvis ukjente parametre, μ, p,... Enkelt tilfeldig utvalg (SRS), observator p =
DetaljerTMA4240 Statistikk Høst 2007
TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,
DetaljerKan vi stole på resultater fra «liten N»?
Kan vi stole på resultater fra «liten N»? Olav M. Kvalheim Universitetet i Bergen Plan for dette foredraget Hypotesetesting og p-verdier for å undersøke en variabel p-verdier når det er mange variabler
DetaljerHØGSKOLEN I STAVANGER
HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 5. JUNI 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET
DetaljerEksamensoppgave i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
DetaljerEksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (fra til): 09:00
Detaljer