MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 1. n + (x 0 x) 1 2 ) = 1 γ
|
|
- Monica Borge
- 8 år siden
- Visninger:
Transkript
1 MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave (11.27, 11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal nne kondensintervall for forventa mengde konvertert sukker ved temperatur x 0 = 1.6, dvs nne kondensintervall for µ Y x0 = α + βx 0. Estimator: ˆµ Y x0 = A + Bx 0 E(ˆµ Y x0 ) = E(A) + E(B)x 0 = α + βx 0 = µ Y x0 Var(ˆµ Y x0 ) = Var(A + Bx 0 ) = Var(Ȳ B x + Bx 0) = Var(Ȳ + B(x 0 x)) uavh = Var(Ȳ ) + (x 0 x) 2 Var(B) = σ2 n + (x 0 x) 2 σ2 T = ˆµ Y x0 µ Y x0 S 1 n + (x 0 x) 2 1 t n 2 Merk, n 2 frihetsgrader p.g.a. vi nå har en modell med to parametre i forventingsverdien. P ( t γ/2,n 2 T t γ/2,n 2 ) = 1 γ P ( t γ/2,n 2 ˆµ Y x0 µ Y x0 S 1 + (x t γ/2,n 2 ) = 1 γ n 0 x) 2 1 Tallsvar:. 1 P (ˆµ Y x0 t γ/2,n 2 S n + (x 0 x) 1 2 µ Y x0 1 ˆµ Y x0 + t γ/2,n 2 S n + (x 0 x) 1 2 ) = 1 γ Fra tidligere oppgaver har vi at a = og b = 1.809, dvs ˆµ Y 1.6 = a + b 1.6 = = 9.31, fra 11.6:5 har vi at s = 0.40 = og = 1.1, og videre blir (x 0 x) 2 = ( ) 2 = 0.01 og t 0.025,9 = Dvs et 95% kondensintervall for µ Y 1.6 er gitt ved: [ , ] = [8.86, 9.76] Vi går nå videre og nner prediksjonsintervall for mengden konvertert sukker i ett forsøk ved x 0 = 1.6, dvs nner prediksjonsintervall for Y 0 = α + βx 0 + ε. Tar utgangspunkt i: ˆµ Y x0 Y 0 E(ˆµ Y x0 Y 0 ) = E(A + Bx 0 ) E(Y 0 ) = α + βx 0 (α + βx 0 ) = 0 Var(ˆµ Y x0 Y 0 ) uavh = Var(ˆµ Y x0 ) + Var(Y 0 ) = σ2 n + (x 0 x) 2 σ2 + σ 2 T = ˆµ Y x0 Y 0 S n + (x 0 x) 2 1 t n 2
2 MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 2) P ( t γ/2,n 2 T t γ/2,n 2 ) = 1 γ P ( t γ/2,n 2 ˆµ Y x0 Y 0 S (x t γ/2,n 2 ) = 1 γ n 0 x) 2 1 Tallsvar:. P (ˆµ Y x0 t γ/2,n 2 S n + (x 0 x) 1 2 Y 0 ˆµ Y x0 + t γ/2,n 2 S n + (x 0 x) 1 2 ) = 1 γ Innsatt samme tall som over gir dette følgende 95% prediksjonsintervall for Y 0 : [ , ] = [7.81, 10.81] Oppgave a) La estimert regresjonslinje være ŷ = bx. Minste kvadratsumsestimat for β er det estimatet b som minimerer: SSE = (y i ŷ i ) 2 = (y i bx i ) 2 SSE b = 2(y i bx i )( x i ) = 0 y i x i b = 0 n b = n Dvs.: b = n n er minstekvadratersestimatet av β i når vi legger modellen uten konstantledd til grunn. Dermed er minstekvadraters estimatoren for β: β = n x i Y i n x 2. i b) Var( β ) ( n = Var x i Y ) ( i 1 n = x 2 n i = ( 1 n ) 2 n ) 2Var( n σ 2 = σ2 n ( n ) 2 = σ2 n x i Y i ) = ( 1 n ) n 2 Var(Y i) Husk at Var(Y i ) = Var(βx i + ϵ i ) = σ 2.
3 MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 3) c) E( β ) ( n = E x i Y ) i 1 n = x 2 n E( x i Y i ) = i = 1 n Husk at E(Y i ) = E(βx i + ϵ i ) = βx i. x i βx i = β n n = β 1 n x i E(Y i ) Oppgave (11.35, 11.9:1) Modell: Y i = βx i + ε i (dvs α = 0) a) La estimert regresjonslinje være ŷ = bx. Minste kvadratsumsestimat for β er det estimatet b som minimerer: SSE = (y i ŷ i ) 2 = (y i bx i ) 2 SSE b = 2(y i bx i )( x i ) = 0 y i x i b = 0 n b = n Dvs.: b = grunn. n n er minstekvadratersestimatet av β i når vi legger modellen uten konstantledd til Data: b = 6 6 = = dvs. regresjonslinjen er: ŷ = 2.003x b) Vi tenker at vi ikke vet om α er null eller ei. Vi legger da modellen Y i = α + βx i + ϵ i til grunn, estimerer denne og tester H 0 : α = 0 mot H 1 : α 0. Nå er estimatoren for β: β = S xy = 6 (x i x)y i 6 (x i x) 2. Utskrift fra regresjonsanalyse med denne modellen: Koeffisienter Standardfeil t Stat P verdi Nederste 95% Øverste 95% Skjæringspunkt 0,349 0,253 1,378 0,240 0,354 1,053 X variabel 1 1,929 0,062 30,871 0,000 1,755 2,102
4 MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 4) Estimert regresjonslinje: ŷ i = x i. Skjæringspunktet/konstantleddet (α) er estimert til Dette har en p-verdi på 0.24 > 0.10; konklusjonen blir: behold H 0, dataene gir ikke grunn til å hevde at konstantleddet er ulik null. Oppgave (11.38, 11.9:4) Vi skal teste H 0 : β = 0 mot H 1 : β 0 i modellen Y i = α + βx i + ε i ved bruk av variansanlyse. Vi har da at vi forkaster H 0 dersom F = Dvs på 5% nivå dersom F f 0.05,1,9 = SSR/1 SSE/(n 2) = MSR MSE f γ,1,n 2 Denne oppgaven er det aller lettest å løse ved å bruke Excel til å regne ut variansanalysetabellen, men den er også fullt mulig å gjøre for hånd (se under). Se Excel-utskriften (som du nner på Excel-sidene til faget). Se i løsningsforslaget til forrige øving hvordan datautskriften til en regresjonsmodell skal tolkes. Ut fra plottet over sammenhørende verdier av temperatur og sukker ser det ut for å være en sammenheng mellom det to variablene. Fra datautskriften ( F under ) har vi at f obs = 9.00, dvs vi forkaster H 0. Alternativt kunne vi gått direkte inn i datautskriften og lest ut p-verdien for testen Signifikans-F. Vi ser at testen har p-verdi=0.015 som er lavere enn 0.05, dvs vi forkaster H 0 på 5% nivå. Det er også fullt mulig å regne ut de nødvendige kvadratsummene SSE = n (Y i Ŷi) 2 og SSR = n (Ŷi Ȳ )2 for hånd. I oppgave 11.6:5 på forrige øving regnet vi ut at SSE = 11 (y i ŷ i ) 2 = 11 e 2 i = 3.60 og en tilsvarende utregning gir at SSR = 11 (ŷ i ȳ) 2 = 11 ( x i 9.127) 2 = 3.60 (ved en tilfeldighet samme som SSE) der ŷ i og ȳ ble regnet ut i oppgave 11.3:3 på forrige øving. Vi får da at f obs = dvs vi forkaster H 0 på 5% nivå. SSR/1 SSE/(11 2) = 3.60/1 3.60/9 = 9.00 > f 0.05,1,9 = 5.12,
5 MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 5) Oppgave O Time Multippel R 0,81 R kvadrat 0,66 Justert R kvadrat 0,64 Standardfeil 3,49 Observasjoner 24 fg SK GK F Signifkans F Regresjon 1 520, ,873 42,685 0,000 Residualer ,457 12,203 Totalt ,330 Koeffisienter Standardfeil t Stat P verdi Nederste 95% Øverste 95% Skjæringspunkt 90,890 6,533 13,912 0,000 77, ,439 X variabel 1 0,051 0,008 6,533 0,000 0,068 0,035 a) Modell: Y i = α + βx i + ϵ i, ϵ i 'ene N(0, σ 2 ), u.i.f. Fra utskriften: Estimat av α: 90.89; Estimat av β: ; Estimat av σ 2 : b) Utfall av teststørrelse kan leses av utskriften: ; dette har en p-verdi som er mindre enn , og det vil si forkast H 0 ; det å løpe to mile har en signikant eekt på oksygenopptaket. c) Residual: e i = y i ŷ i = y i ( x i ), i = 1, 2,..., 24. Plott i guren til høyre; det kan se ut som om det er mindre spredning for tid omkring 900, Residualplott men det er ikke så mye data og det er vanskelig å si noe denitivt. Man kunne etterspurt fagfolk (på trening, O2-opptak) om det kan være grunner for slike eekter. Det er også en tendens til usymmetri i fordelingen av residualene: en del store positive avvik, men ikke så store negative. Normalfordelingen som for- residual utsettes for residualene, er jo symmetrisk, Time og derfor kan også dette være et problem. Dette siste punktet kan være av mindre betydning siden vi h ar så mye som 24 målinger. Ellers får man betrakte plottet av residualene som tilfredsstillende.
6 MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 6) Med alle re x-variable i modellen: Regression Statistics Multiple R 0,5494 R Square 0,3019 Adjusted R Square 0,2904 Standard Error 0,8582 Observations 248 Oppgave 1 ANOVA df SS MS F Signicance F Regression 4 77, , ,2692 0,0000 Residual ,9567 0,7364 Total ,3403 Coecients Standard Error t Stat P-value Lower 95% Upper 95% Intercept 5,6324 1,5136 3,7212 0,0002 2,6509 8,6138 alder 0,0290 0,0033 8,8948 0,0000 0,0226 0,0354 kjønn -0,0383 0,1587-0,2412 0,8096-0,3508 0,2742 høyde -0,0147 0,0092-1,6015 0,1106-0,0329 0,0034 vekt 0,0105 0,0056 1,8877 0,0603-0,0005 0,0215 Med kun alder: Multippel R 0,5360 R-kvadrat 0,2873 Justert R-kvadrat 0,2844 Standardfeil 0,8618 Observasjoner 248 Regresjon 1 73, , ,1471 0,0000 Residualer ,7039 0,7427 Totalt ,3403 Koesienter Standardfeil t-stat P-verdi Nederste 95% Øverste 95% Skjæringspunkt 3,7638 0, ,6141 0,0000 3,4626 4,0650 alder 0,0306 0,0031 9,9573 0,0000 0,0245 0,0366
7 MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 7) Med kun kjønn: Multippel R 0,0227 R-kvadrat 0,0005 Justert R-kvadrat -0,0035 Standardfeil 1,0205 Observasjoner 248 Regresjon 1 0,1316 0,1316 0,1264 0,7225 Residualer ,2087 1,0415 Totalt ,3403 Koesienter Standardfeil t-stat P-verdi Nederste 95% Øverste 95% Skjæringspunkt 5,2089 0, ,3767 0,0000 5,0269 5,3909 kjønn -0,0461 0,1296-0,3555 0,7225-0,3014 0,2092 Med kun høyde: Multippel R 0,1881 R-kvadrat 0,0354 Justert R-kvadrat 0,0314 Standardfeil 1,0026 Observasjoner 248 Regresjon 1 9,0668 9,0668 9,0201 0,0029 Residualer ,2735 1,0052 Totalt ,3403 Koesienter Standardfeil t-stat P-verdi Nederste 95% Øverste 95% Skjæringspunkt 8,8415 1,2190 7,2533 0,0000 6, ,2424 høyde -0,0212 0,0071-3,0034 0,0029-0,0351-0,0073 Med kun vekt:
8 MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr. 7 (s. 8) Multippel R 0,0348 R-kvadrat 0,0012 Justert R-kvadrat -0,0028 Standardfeil 1,0202 Observasjoner 248 Regresjon 1 0,3106 0,3106 0,2984 0,5854 Residualer ,0297 1,0408 Totalt ,3403 Koesienter Standardfeil t-stat P-verdi Nederste 95% Øverste 95% Skjæringspunkt 4,9801 0, ,0507 0,0000 4,2285 5,7317 vekt 0,0028 0,0052 0,5463 0,5854-0,0074 0,0130
MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: n + (x 0 x) 2 σ2
MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 7 (s. 1) Oppgaver fra boka: Oppgave 11.27 (11.6:13) Modell: Y i = α + βx i + ε i der ε 1,..., ε n u.i.f. N(0, σ 2 ). Skal finne konfidensintervall
DetaljerMOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:
MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,
DetaljerOppgave N(0, 1) under H 0. S t n 3
MOT310 Statistiske metoder 1, høsten 2011 Løsninger til regneøving nr 9 (s 1) Oppgave 1 Modell: Y i β 0 + β 1 x i + β 2 x 2 i + ε i der ε 1,, ε n uif N(0, σ 2 ) e) Y Xβ + ε der Y Y 1 Y n, X 1 x 1 x 2 1
DetaljerOppgave 1. Vi må forutsette at dataene kommer fra uavhengige og normalfordelte tilfeldige variable,
MOT30 Statistiske metoder Løsningsforslag til eksamen vår 0 s. Oppgave a Vi har x = 6. og x i x = 4.6. Herav s x = n Et 90% kondensintervall er gitt ved x i x = 4.6 = 0.89 6 SX X t 0.056 X + t S X 0.056
DetaljerOppgave 1. a) Anlysetype: enveis variansanalyse (ANOVA). Modell for y ij = ekspedisjonstid nr. j for skrankeansatt nr. i:
MOT310 tatistiske metoder 1 Løsningsforslag til eksamen høst 010, s 1 Oppgave 1 a) Anlysetype: enveis variansanalyse (ANOVA) Modell for y ij ekspedisjonstid nr j for skrankeansatt nr i: Y ij µ i + ε ij,
DetaljerLøsningsforslag eksamen 27. februar 2004
MOT30 Statistiske metoder Løsningsforslag eksamen 7 februar 004 Oppgave a) Y ij = µ i + ε ij, der ε ij uavh N(0, σ ) der µ i er forventa kopperinnhold for legering i og ε ij er feilleddet (tilfeldig variasjon)
DetaljerOppgave 1. Kilde SS df M S F Legering Feil Total
MOT30 Statistiske metoder, høste0 Løsninger til regneøving nr. 0 (s. ) Oppgave Y ij = µ i + ε ij, der ε ij uavh. N(0, σ ) der µ i er forventa kopperinnhold for legering i og ε ij er feilleddet (tilfeldig
DetaljerKp. 11 Enkel lineær regresjon (og korrelasjon) Kp. 11 Regresjonsanalyse; oversikt
Bjørn H. Auestad Kp. 11: Regresjonsanalyse 1 / 57 Kp. 11 Regresjonsanalyse; oversikt 11.1 Introduction to Linear Regression 11.2 Simple Linear Regression 11.3 Least Squares and the Fitted Model 11.4 Properties
Detaljer+ S2 Y ) 2. = 6.737 6 (avrundet nedover til nærmeste heltall) n Y 1
Løsningsforslag for: MOT10 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 6. november 007 TILLATTE HJELPEMIDLER: Kalkulator: HP0S, Casio FX8 eller TI-0 Tabeller og formler i statistikk (Tapir forlag) MERKNADER:
DetaljerLøsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y
Statistiske metoder 1 høsten 004. Løsningsforslag Oppgave 1: a) Begge normalplottene gir punkter som ligger omtrent på ei rett linje så antagelsen om normalfordeling ser ut til å holde. Konfidensintervall
DetaljerLøsningsforslag eksamen 25. november 2003
MOT310 Statistiske metoder 1 Løsningsforslag eksamen 25. november 2003 Oppgave 1 a) Vi har µ D = µ X µ Y. Sangere bruker generelt trapesius-muskelen mindre etter biofeedback dersom forventet bruk av trapesius
DetaljerOppgave 14.1 (14.4:1)
MOT30 Statistiske metoder, høste006 Løsninger til regneøving nr. 0 (s. ) Modell: Oppgave 4. (4.4:) Y ijk = µ + α i + β j + (αβ) ij + ε ijk, der ε ijk uavh. N(0, σ ) der µ er gjennomsnittseffekten, α i
DetaljerKp. 12 Multippel regresjon
Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt Kp 12 Multippel Bjørn H Auestad Kp 11: Regresjonsanalyse 1 / 46 Kp 12 Multippel ; oversikt Kp 12 Multippel Bruk av Kp 12 Multippel ; oversikt 121 Introduction
DetaljerMOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1. Oppgave 1
MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Oppgave 1 a) Normalantakelse: Målingene x 1,..., x 21 og y 1,..., y 8 betraktes som utfall av tilfeldige variable X 1,..., X 21
DetaljerTMA4240 Statistikk Høst 2009
TMA440 Statistikk Høst 009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Løsningsskisse Oppgave a) n 8, i x i 675, x 37.5, i y i 488, i x i 375, i x iy i
DetaljerOppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir
DetaljerKandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert!
MOT 310 Statistiske metoder 1 Løsningsforslag til eksamen høst 2006, s. 1 Flott! Samlet sett leverer dere gode resultater. Kandidatene 4507, 4542, 4545 og 4569 har meget gode besvarelser supert! Totalt
DetaljerHØGSKOLEN I STAVANGER
EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN
DetaljerSTK juni 2016
Løsningsforslag til eksamen i STK220 3 juni 206 Oppgave a N i er binomisk fordelt og EN i np i, der n 204 Hvis H 0 er sann, er forventningen lik E i n 204/6 34 for i, 2,, 6 6 Hvis H 0 er sann er χ 2 6
DetaljerLøsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010
Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100
DetaljerGruvedrift. Institutt for matematiske fag, NTNU. Notat for TMA4240/TMA4245 Statistikk
Gruvedrift Notat for TMA/TMA Statistikk Institutt for matematiske fag, NTNU I forbindelse med planlegging av gruvedrift i et område er det mange hensyn som må tas når en skal vurdere om prosjektet er lønnsomt.
DetaljerOPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.
EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET
DetaljerÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.
ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35
Detaljervekt. vol bruk
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: 10. desember 2010. Tid for eksamen: 14.30 18.30. Oppgavesettet er
DetaljerOppgave 1. (x i x)(y i Y ) (Y i A Bx i ) 2 er estimator for σ 2 (A er minstek-
MOT310 Statitike metoder 1 Løningforlag til ekamen vår 010,. 1 Oppgave 1 a) Modell: Y i α + βx i + ε i der ε 1,..., ε n u.i.f. N 0, σ ). b) Vil tete: Tettørrele H 0 : β 0 mot H 1 : β 0 B β T t n under
DetaljerOppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)
MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.
Detaljer10.1 Enkel lineær regresjon Multippel regresjon
Inferens for regresjon 10.1 Enkel lineær regresjon 11.1-11.2 Multippel regresjon 2012 W.H. Freeman and Company Denne uken: Enkel lineær regresjon Litt repetisjon fra kapittel 2 Statistisk modell for enkel
DetaljerTMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Oppgave 1 Oppgave 11.5 fra læreboka. Oppgave 2 Oppgave 11.21 fra læreboka. Oppgave
DetaljerOppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir
DetaljerTMA4240 Statistikk Høst 2016
TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 12 Denne øvingen består av oppgaver om enkel lineær regresjon. De handler blant
DetaljerEKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE
DetaljerLøsningsforslag STK1110-h11: Andre obligatoriske oppgave.
Løsningsforslag STK1110-h11: Andre obligatoriske oppgave. Oppgave 1 a) Legg merke til at X er gamma-fordelt med formparameter 1 og skalaparameter λ. Da er E[X] = 1/λ. Små verdier av X tyder derfor på at
DetaljerSnøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk
Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor
Detaljer(Det tas forbehold om feil i løsningsforslaget.) Oppgave 1
ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 2011, s. 1 (Det tas forbehold om feil i løsningsforslaget.) Oppgave 1 a) Data: x 1, x 2, x 3, x 4, x 5 Gjennomsnitt: x = 1 5 (x 1
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Løsningsforslag: Statistiske metoder og dataanalys Eksamensdag: Fredag 9. desember 2011 Tid for eksamen: 14.30 18.30
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 13: Lineær korrelasjons- og regresjonsanalyse Kap. 13.1-13.3: Lineær korrelasjonsanalyse. Disse avsnitt er ikke pensum,
DetaljerInferens i regresjon
Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons
DetaljerST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon
ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Kap. 13: Lineær korrelasjons-
DetaljerTilleggsoppgaver for STK1110 Høst 2015
Tilleggsoppgaver for STK0 Høst 205 Geir Storvik 22. november 205 Tilleggsoppgave Anta X,..., X n N(µ, σ) der σ er kjent. Vi ønsker å teste H 0 : µ = µ 0 mot H a : µ µ 0 (a) Formuler hypotesene som H 0
DetaljerOppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y =
MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. ) Oppgavr fra boka: Oppgav 2. (utg. 9) Modll: Y = µ Y x,x 2 + ε = β 0 + β x + β 2 x 2 + ε, dvs md n obsrvasjonr får vi n ligningr Y = β
DetaljerEKSAMENSOPPGAVER STAT100 Vår 2011
EKSAMENSOPPGAVER STAT100 Vår 2011 Løsningsforslag Oppgave 1 (Med referanse til Tabell 1) a) De 3 fiskene på 2 år hadde lengder på henholdsvis 48, 46 og 35 cm. Finn de manglende tallene i Tabell 1. Test
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2 Eksamensdag: Mandag 4. juni 2007. Tid for eksamen: 14.30 17.30. Oppgavesettet er
DetaljerTMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 0, blokk II Løsningsskisse Oppgave Surhetsgrad i ferskvann Eksamen august 00, oppgave av 3 a) En god estimator
DetaljerOppgave 1 (25 %) Resultater fra QM: a) Maximin = 0 ved ikke å lansere. b) Maximax = 27000000 for produkt 2.
Oppgave 1 (25 %) Resultater fra QM: a) Maximin = 0 ved ikke å lansere. b) Maximax = 27000000 for produkt 2. c) EMV max = 1000000 * 0.8 + 27000000 * 0.2 = 4600000 for produkt 2. d) 0.2 * 27000000 4600000
DetaljerTillatte hjelpemidler: C3: alle typer kalkulator, alle andre hjelpemidler
EKSAMENSOPPGAVER Institutt: Eksamen i: Tid: IKBM STAT100 Torsdag 13.des 2012 STATISTIKK 09.00-12.30 (3.5 timer) Emneansvarlig: Solve Sæbø ( 90065281) Tillatte hjelpemidler: C3: alle typer kalkulator, alle
DetaljerOppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32).
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 16. november 2009 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir
DetaljerMOT310 Statistiske metoder 1, høsten 2011
MOT310 Statistiske metoder 1, høsten 2011 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 30. oktober, 2011 Bjørn H. Auestad Kp. 13: Én-faktor eksperiment 1 / 15 -tabell
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er
DetaljerKort overblikk over kurset sålangt
Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente
DetaljerI enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x
Multiple regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable.det er fortsatt en responsvariabel. Måten dette gjøre på er nokså naturlig. Prediktoren
DetaljerOppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1)
MOT30 Statistiske metoder, høste00 Løsiger til regeøvig r. 5 (s. ) Oppgaver fra boka: Oppgave 0.36 (0.0:8) Dekkslitasje X,..., X u.i.f. N(µ, σ ) og X,..., X u.i.f. N(µ, σ ) og alle variable er uavhegige.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet
DetaljerKp. 14 Flerfaktoreksperiment. Kp. 14: Flerfaktor-eksperiment; oversikt
uten med Kp 14 Flerfaktor-eksperiment Bjørn H Auestad Kp 14: To-faktor eksperiment 1 / 20 Kp 14: Flerfaktor-eksperiment; oversikt uten med 141 Introduction 142 Interaction in the Two-Factor Experiment
DetaljerEksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00
DetaljerFasit og løsningsforslag STK 1110
Fasit og løsningsforslag STK 1110 Uke 36: Eercise 8.4: a) (57.1, 59.5), b) (57.7, 58, 9), c) (57.5, 59.1), d) (57.9, 58.7) og e) n 239. (Hint: l(n) = 1 = 2z 1 α/2 σ/n 1/2 ). Eercise 8.10: a) (2.7, 7.5),
DetaljerLØSNINGSFORSLAG ) = Dvs
LØSNINGSFORSLAG 12 OPPGAVE 1 D j er differansen mellom måling j med metode A og metode B. D j N(µ D, 0.1 2 ). H 0 : µ D = 0 mot alternativet H 1 : µ D > 0. Vi forkaster om ˆµ D > k Under H 0 er ˆµ D =
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet
DetaljerLøsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007
Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren
DetaljerUniversitetet i Agder Fakultet for økonomi og samfunnsfag E K S A M E N
1 Universitetet i Agder Fakultet for økonomi og samfunnsfag E K S A M E N Emnekode: Emnenavn: BE-34 Statistikk og finans Dato: 6. desember 21 Varighet: 9-13 Antall sider inkl. forside 6 Tillatte hjelpemidler:
DetaljerDatamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)
Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens
DetaljerVariansanalyse og lineær regresjon notat til STK2120
Variansanalyse og lineær regresjon notat til STK2120 Ørulf Borgan februar 2013 Formålet med dette notatet er å beskrive sammenhengen mellom variansanalyse med faste effekter og multippel lineær regresjon
DetaljerEKSAMEN I TMA4255 ANVENDT STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 11 Faglig kontakt under eksamen: Mette Langaas (988 47 649) BOKMÅL EKSAMEN I TMA4255 ANVENDT STATISTIKK Fredag 7.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Mandag 1. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting
DetaljerEksamensoppgave i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 3. juni 2016 Eksamenstid (fra til): 09:00-13:00
DetaljerEKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag
DetaljerTMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
DetaljerEKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE STATISTISKE METODER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 FORSØKSPLANLEGGING OG ANVENDTE
DetaljerKap. 12: Variansanalyse
2 Kap. 12: Variansanalyse Situasjon: c populasjoner, hver med sitt populasjonsgjennomsnitt μ i. Vi tester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag H 0 : Alle populasjonene
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 12: Variansanalyse Situasjon: c populasjoner, hver med sitt populasjonsgjennomsnitt μ i. Vi tester H 0 : Alle populasjonene
DetaljerSOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005
SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000
DetaljerTMA4240 Statistikk 2014
TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten
DetaljerTMA4245 Statistikk Eksamen august 2014
TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 En bedrift produserer en type medisin i pulverform Medisinen selges på flasker
DetaljerEksamensoppgave i TMA4267 Lineære statistiske modeller
Institutt for matematiske fag Eksamensoppgave i TMA4267 Lineære statistiske modeller Faglig kontakt under eksamen: Mette Langaas Tlf: 988 47 649 Eksamensdato: 4. juni 2016 Eksamenstid (fra til): 09.00
DetaljerEKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER Torsdag 14. desember 2006 Tid: 09:0013:00
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist, tlf. 975 89 418 EKSAMEN I FAG TMA4315 GENERALISERTE LINEÆRE MODELLER
Detaljern n i=1 x2 i n x2 n i=1 Y i og x = 1 n i=1 (x i x)y i = 5942 og n T = i=1 (x i x) 2 t n 2
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 12, blokk II Denne øvingen består av oppgaver om enkel lineær regresjon. De handler
DetaljerKapittel 2: Hendelser
Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en
DetaljerEksamensoppgave i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: August 2016 Eksamenstid (fra til): Hjelpemiddelkode/Tillatte
DetaljerEKSAMEN I TMA4255 ANVENDT STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Mette Langaas (988 47 649) BOKMÅL EKSAMEN I TMA4255 ANVENDT STATISTIKK Fredag 25.
Detaljerår i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9
TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører
DetaljerEr det enklere å anslå timelønna hvis vi vet utdanningslengden? Forelesning 14 Regresjonsanalyse
Forelesning 4 Regresjonsanalyse To typer bivariat analyse: Bivariat tabellanalyse: Har enhetenes verdi på den uavhengige variabelen en tendens til å gå sammen med bestemte verdier på den avhengige variabelen?
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting
DetaljerInstitutt for økonomi og administrasjon
Fakultet for samfunnsfag Institutt for økonomi og administrasjon Statistiske metoder Bokmål Dato: Torsdag 19. desember Tid: 4 timer / kl. 9-13 Antall sider (inkl. forside): 8 Antall oppgaver: 3 Oppsettet
DetaljerForelesning 8 STK3100/4100
Forelesning STK300/400 Plan for forelesning: 0. oktober 0 Geir Storvik. Lineære blandede modeller. Eksempler - data og modeller 3. lme 4. Indusert korrelasjonsstruktur. Marginale modeller. Estimering -
DetaljerLøsningsforslag: STK2120-v15.
Løsningsforslag: STK2120-v15 Oppgave 1 a) Den statistiske modellen er: X ij = µ i + ϵ ij, j = 1,, J, i = 1,, I Her indekserer i = 1,, I gruppene og j = 1,, J observasjone innen hver gruppe Feilleddene
DetaljerTil nå, og så videre... TMA4240 Statistikk H2010 (25) Mette Langaas. Foreleses mandag 15.november, 2010
TMA4240 Statistikk H2010 (25) 11.4: Egeskaper til MKE 11.5: Iferes om α og β 11.6: Prediksjo Mette Lagaas Foreleses madag 15.ovember, 2010 2 Til å, og så videre... Modell ekel lieær regresjo: Y = α + βx
DetaljerLøsningsforslag til oppgaver brukt i STA100
Universitetet i Stavanger Løsningsforslag til oppgaver brukt i STA100 Oppgave 1 a) Populasjonen er alle studenter ved Universitetet i Stavanger, og utvalget er de (ca 100) studentene hun velger ut i undersøkelsen
DetaljerForelesning 13 Regresjonsanalyse
Forelesning 3 Regresjonsanalyse To typer bivariat analyse: Bivariat tabellanalyse: Har enhetenes verdi på den uavhengige variabelen en tendens til å gå sammen med bestemte verdier på den avhengige variabelen?
DetaljerTid: Torsdag 11.desember 9:00 12:30 (3.5 timer) Emneansvarlig: Solve Sæbø, Tlf
EKSAMENSOPPGAVE Institutt: IKBM Eksamen i: STAT 100 STATISTIKK Tid: Torsdag 11.desember 9:00 12:30 (3.5 timer) Emneansvarlig: Solve Sæbø, Tlf 67232561 Tillatte hjelpemidler: C3: alle typer kalkulatorer,
DetaljerHØGSKOLEN I STAVANGER
EKSAMEN I: MOT310 STATISTISKE METODER VARIGHET: 4 TIMER DATO: 27. FEBRUAR 2004 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 5
DetaljerEKSAMEN I TMA4255 ANVENDT STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Mette Langaas (988 47 649) BOKMÅL EKSAMEN I TMA4255 ANVENDT STATISTIKK Onsdag 8. august
DetaljerTMA4245 Statistikk Eksamen august 2014
TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 Ei bedrift produserer ein type medisin i pulverform Medisinen seljast på flasker
DetaljerTMA4240 Statistikk 2014
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Løsningsskisse Oppgave Scriptet run confds.m simulerer n data x,..., x n fra en normalfordeling med
DetaljerEKSAMENSOPPGAVE. B154 «Tabeller og formler i statistikk» av Kvaløy og Tjelmeland. To A4-ark (4 sider) med egne notater. Godkjent kalkulator.
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: STA-2004 Dato: 29.september 2016 Klokkeslett: 09 13 Sted: Tillatte hjelpemidler: B154 «Tabeller og formler i statistikk» av Kvaløy og
DetaljerÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. 12 (s. 34)
ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. s. 34 Oppgave.1 Situasjon betraktes som 7 Bernoulliforsøk; Suksess: dyr velger belønning 1, motsatt fiasko. P suksess = p;
DetaljerEksamensoppgave i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 30. mai 2014 Eksamenstid (fra til): 09:00-13:00
DetaljerMOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) der
MOT310 Statistiske metoder 1, høsten 2010 Løsninger til regneøving nr. 11 (s. 1) Oppgave 13.1 Modell: Y ij = µ i + ε ij, der ε ij uavh. N(0, σ 2 ) Boka opererer her med spesialtilfellet der man har like
DetaljerUNIVERSITETET I OSLO
Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1110 FASIT. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider. Vedlegg: Tillatte
DetaljerECON240 VÅR / 2016 BOKMÅL
ECON240 VÅR / 2016 BOKMÅL UNIVERSITETET I BERGEN EKSAMEN UNDER SAMFUNNSVITENSKAPELIG GRAD [ DATO og KLOKKESLETT FOR EKSAMEN (START OG SLUTT) ] Tillatte hjelpemidler: Matematisk formelsamling av K. Sydsæter,
Detaljer