Sensorveiledning: skoleeksamen i SOS Kvantitativ metode
|
|
|
- Hans-Petter Holm
- 8 år siden
- Visninger:
Transkript
1 Sensorveiledning: skoleeksamen i SOS Kvantitativ metode Tirsdag 30. mai 2016 (4 timer) Poenggivning og karakter I del 1 gis det ett poeng for hvert riktige svar. Ubesvart eller feil svar gis 0 poeng. Det er bare ett riktig svaralternativ. Det skal ikke legges ved noen utregninger i denne delen. Riktig svaralternativ er markert med grønt. I del 2 gis det hovedsakelig 1 poeng for hvert riktig svar, unntatt der det er nærmere angitt. Merk at det i flere oppgaver skal regne konfidensintervall og gi en tolkning. Her gis det 1 poeng for riktig utregning og 0.5 poeng for riktig tolkning siden tilsvarende tolkning kommer igjen flere ganger. Delvis riktig kan da gis f.eks. ¼ poeng. Forståelse skal generelt gi noe uttelling selv hvis svaret er feil. Hvis det fremkommer av utregninger og/eller tekst at kandidaten har en god forståelse på tross av en mindre feil skal dette gi poeng, men ikke full uttelling. Det samme gjelder slurvefeil. Det er få muligheter for følgefeil, men hvis det forekommer skal det gis full uttelling hvis ikke følgefeilen er såpass stor/rar at kandidaten absolutt burde sett at noe var galt. Del 1 og 2 vektes likt slik at poengene bare summeres over de to delene for total poengsum. Det er mulig å få max 39.5 poeng. Følgende karaktergrenser gjelder: Poeng A 36 B 30 C 22 D 14 E 10 F 1
2 Kandidatnummer Skoleeksamen SOS1120 Del 1: Flervalgsoppgaver Del 1 besvares på oppgavearket ved å krysse av for ett svaralternativ. Det skal ikke legges ved noen utregninger i denne delen. Oppgave 1.1. En student noterer hvor mange timer hun studerer hver dag i løpet av ni dager og får følgende resultat: Hva er gjennomsnitt og median for denne perioden? a. gjennomsnitt = 6.15 og median = 6.20 b. gjennomsnitt = 5.76 og median = 6.20 c. gjennomsnitt = 6.20 og median = 5.76 d. gjennomsnitt = 5.76 og median = 6.15 e. gjennomsnitt = 6.15 og median = 5.76 Oppgave 1.2. En student noterer hvor mange timer hun studerer hver dag i løpet av ni dager og får følgende resultat: Hva betyr det at standardavviket er 2.11? (engelsk: "standard deviation") a. Gjennomsnittet ligger 2.11 fra null b. p-verdien er c. Datapunktene ligger i gjennomsnitt 2.11 timer fra gjennomsnittet d. 95% av dagene jobber hun mellom x ± timer e. At dataene er normalfordelt 2
3 Kandidatnummer Oppgave 1.3. På en eksamen i kvantitative metoder er det mulig å få opptil 100 poeng. Boksplotet nedenfor viser fordelingen for alle som tok eksamen. Omtrent 25% av studentene fikk mindre enn a. 30 poeng b. 53 poeng c. 62 poeng d. 70 poeng e. 59 poeng 3
4 Oppgave 1.4. Histogrammet nedenfor viser inntektsfordelingen i et utvalg. Kandidatnummer Hvilket av følgende utsagn er riktige: a. gjennomsnittet er lavere enn medianen b. gjennomsnittet er lik 2 ganger standardavviket c. gjennomsnittet er høyere enn medianen d. gjennomsnittet er lik medianen e. man ikke si noe om gjennomsnittet fra figuren Oppgave 1.5. Bruk standard normalfordelingen. (engelsk: "normal distribution"). Hvilken sannsynlighet tilsvarer Z > 1.62? Med andre ord: hvor stor andel av fordelingen ligger over -1.62? a b c d e. 62% Oppgave 1.6. Bruk standard normalfordelingen. Hvilken sannsynlighet tilsvarer Z < 1.62? Med andre ord: hvor stor andel av fordelingen ligger under 1.62? a b c d e. 62% 4
5 Kadidatnummer Oppgave 1.7. Bruk standard normalfordelingen. Hvilken Z-verdi gir at andelen med lavere verdi enn Z er 0.975? a b c d e Oppgave 1.8. Gjennomsnittlig samlet inntekt i Norge, var i 2014 kr med standardavvik Hvis man trekker et tilfeldig utvalg personer vil målingen ha en usikkerhet uttrykt ved standardfeilen. (Engelsk: "standard error"). Hvis man trekker et utvalg på 200 personer, hva er da standardfeilen? a b c d e Oppgave 1.9. Gjennomsnittlig samlet inntekt i Norge, var i 2002 kr med standardavvik Hvis man trekker et tilfeldig utvalg på 200 personer, hva er da sannsynligheten for at gjennomsnittet x i dette utvalget er høyere enn kr ? Vi kan skrive dette som: P(x > )? a b c d e. praktisk talt null Oppgave Hva betyr det når vi snakker om samplingfordelingen til et gjennomsnitt? (Engelsk: samplingfordelingen = "Sampling distribution", utvalg = "sample") a. Fordelingen i utvalget b. Vår beste gjetning på fordelingen i populasjonen ut fra utvalget c. Ved et enkelt tilfeldig utvalg fra en normal populasjon d. Fordelingen av alle gjennomsnitt det er mulig å få hvis man trakk utvalget veldig mange ganger e. Den fordelingen vi bruker for å regne ut standardfeilen 5
6 Kandidatnummer Oppgave Hva er standardfeil? (Engelsk: "standard error") a. Et mål på hvor mye vi har bommet på den sanne verdien b. Et mål på standardavviket i populasjonen c. Vår beste gjetning på standardavviket i samplingfordelingen d. Det kvadrerte avviket fra gjennomsnittet e. Vår beste gjetning på gjennomsnittet i samplingfordelingen Oppgave Se for deg at du intervjuer et tilfeldig utvalg på 10 arbeidstakere og spør hvor lang reisevei de har til jobben (f.eks. målt i antall kilometer). For disse 10 kan du regne gjennomsnittlig reisevei. Se så for deg at du gjentar denne prosedyren veldig mange ganger med nye tilfeldige utvalg, og for hver gang noterer deg gjennomsnittet i hvert av utvalgene. Hvis du så lager et histogram av disse gjennomsnittene, så representerer dette histogrammet a. en eventuell skjevhet i utvalgsmetoden b. den sanne reiseveien i populasjonen c. et enkelt tilfeldig utvalg d. samplingfordelingen til gjennomsnittet e. de store talls lov Oppgave Når man regner et 95% konfidensintervall sier man ofte at man er «95% sikker». Hva mener man egentlig med dette? a. 95% av observasjonene ligger innenfor dette intervallet b. Sannsynligheten for at man tar feil er 0.05 c. Intervallet er regnet ut med en metode som fanger den sanne verdien 95% av gangene d. At man bruker normalfordelingen e. At intervallet er ±1.96 ganger standardfeilen 6
7 Del 2: Utregningsoppgaver Del 2 besvares på eget ark. For alle oppgaver der det er utregninger skal utregningen vises. Konklusjoner og begrunnelser skrives med fullstendige setninger. Oppgave Tabellen viser andel menn år som vurderer egen helse som god eller mindre god. Utvalget er et tilfeldig utvalg menn i Oslo i alderen år. (Kilde: Humbro undersøkelsen). Mindre God god (N) Ytre vest Indre vest Ytre øst Indre øst a. Formuler en nullhypotese og alternativ hypotese om sammenhengen mellom bosted og helse. Svar: nullhypotese: det er ingen sammenheng mellom bosted og egenvurdering av helse. alternativ hypotese: det er en sammenheng mellom bosted og egenvurdering av helse. b. Hvis nullhypotesen er sann, hvor mange ville du da forvente i tabellcellen for god helse i ytre øst? (Dette er første trinn du må gjøre for å regne kji-kvadrattesten). Vis utregningen. Svar: (1960*982)/2501 = Merk: må kunne forvente at de finner marginalfordelingen selv. c. Hvis nullhypotesen er sann, hvor mange ville du da forvente i tabellcellen for mindre god helse i ytre vest? Vis utregningen. Svar: (541*712)/2501 = d. Hvor mange frihetsgrader har kji-kvadrattesten for denne tabellen? Svar: (4-1)*(2-1)=3 e. Kjikvadrattesten gir χ 2 = Hva er konklusjonen på testen? Svar: Verdien ligger godt utenfor hva som vises i kji-kvadrattabellen, og p-verdien er praktisk talt lik null. Nullhypotesen kan da forkastes. Om det vises til p-verdi eller kritisk grense går ut på ett her. Oppgave I en levekårsundersøkelse blant innsatte i norske fengsler (N= 264) ble det oppgitt at 38 prosent hadde vokst opp i en familie der noen hadde narkotika eller alkoholproblemer. a. Hva er standardfeilen til dette estimatet? Vis utregningen. 7
8 Svar: p (1 p ) n = 0.38 (1 0.38) 264 = b. Regn ut et 95% konfidensintervall for dette estimatet og gi en tolkning av resultatet. Svar: p ± z SE = 0.38 ± = [0.32, 0.44] Tolkning: Vi er 95% sikker på at andelen innsatte som vokste opp i en familie med rusproblemer ligger mellom 32 og 44 prosent. Vi bruker altså en metode som gir riktig intervall 95% av gangene i det lange løp. Svaret bør angi noe om hva «95% sikker» betyr å få full uttelling på tolkningen. Det gis 1 poeng for utregningen og 1/2 poeng for korrekt tolkning. (Til sammen 1.5 poeng). Oppgave I en amerikansk studie ble det trukket et tilfeldig utvalg på 105 ungdommer som så ble fulgt til de avsluttet høyere utdanning. Det ble undersøkt sammenhengen mellom gjennomsnittlig karakterer i videregående skole med gjennomsnittlig karakter etter endt høyere utdanning ved hjelp av lineær regresjon. Begge karakterskalaer går fra 0 til 4, der 4 er best. Plottet nedenfor viser dataene og tilpasset regresjonslinje, y = α + β x. I regresjonslinja er Y- variabelen karakter ved høyere utdanning, og x er karakter fra videregående skole. Regresjonslinja er estimert til å være: y = x. Standardfeilen for β er a. Ved å se på plottet, er en lineær regresjon en rimelig metode for å beskrive sammenhengen? Begrunn svaret. Svar: Ja. Sammenhengen ser ut til å passe godt med en rett linje. (Dette er tilstrekkelig begrunnelse, men ok om de også påpeker at det er større variasjon ved lavere verdier enn 8
9 ved høyere verdier, men det er ikke i seg selv til hinder for å beskrive sammenhengen). b. Beskriv med egne ord hva estimatet for β betyr. Svar: Personer med en hel karakter forskjell fra videregående har i gjennomsnitt karakterer forskjell i høyere utdanning. Formuleringer av typen «en økning på 1 i karakter fra vgs gir økt karakter» godtas også. c. Formuler en nullhypotese og en alternativ hypotese for β. Svar: Nullhypotese: Det er ingen sammenheng mellom vgs karakter og karakter ved høyere utdanning. Dvs. β = 0 Alternativ hypotese: Det er en sammenheng mellom vgs karakter og karakter ved høyere utdanning. Dvs. β 0. Hvis det formuleres som en ensidig test er det ok, men da bør de også gjøre det i neste deloppgave også. Hvis konsistent med oppgave d) gis full pott, hvis ikke trekkes d. Gjør en t-test for nullhypotesen og konkluder med valgt signifikansnivå. (Engelsk: "significance level"). Vis utregningen. Svar: t = = Det er 103 frihetsgrader, og denne t-verdien tilsvarer en svært lav p verdi. Uansett hvilken signifikansnivå (innenfor rimelighetens grenser) som velges, så vil nullhypotesen forkastes, og vi konkluderer med at det er en sammenheng mellom karakterene. e. Regn ut et 99 prosent konfidensintervall for β. (Engelsk: "confidence interval"). Vis utregningen og si hva intervallet betyr med egne ord. Svar: Viktig her er å finne riktig t-verdi for 99% KI: ± 2.626*0.053 = [0.536, 814]. Hvis det brukes z-verdi, er det også ok. Svaret bør angi noe om hva «99% sikker» betyr å få full uttelling på tolkningen. Det gis 1 poeng for utregningen og 1/2 poeng for korrekt tolkning. (Til sammen 1.5 poeng). f. Hva er den predikerte karakteren fra høyere utdanning for en person som har 3.4 fra videregående skole? Svar: y = = g. R 2 for denne regresjonsmodellen er Gi en tolkning av R 2. I hvilke sammenhenger er R 2 nyttig? Svar: Angir at andelen av variasjonen i utfallsvariabelen som forklares av variablene i modellen er «Forklart varians» etc. Dette er nyttig hvis man ønsker å vite hvor presist man kan predikere karakter ved høyere utdanning utfra karakter fra vgs. Man kan for så vidt også bruke R 2 til å sammenligne modeller. Formuleringer av typen «se hvilken modell som er best» uten nærmere presisering skal ikke gi poeng da dette ikke viser noen egentlig forståelse av R 2. h. Forklar med egne ord hva en residual er. Hvilken nytte kan vi ha av å se nærmere på residualene? Svar: En residual er avstanden mellom den observerte verdien og den predikerte verdien ut fra regresjonen. Med andre ord: avstanden mellom datapunktene og regresjonslinja. Ved å se 9
10 nærmere på residualene kan vi sjekke noen forutsetninger for regresjonsmodellen: linearitet, uavhengighet, og normalfordelte residualer. Oppgave I et tilfeldig utvalg personer fra norske befolkning var det to grupper på henholdsvis 30 og 35 år gamle. Tabellen gir gjennomsnittlig inntekt, standardavvik og utvalgsstørrelse for begge grupper. 30-åringer 35-åringer Gjennomsnitt Standardavvik N a. Regn ut standardfeilen til gjennomsnittet for 30-åringer. Svar: s = = n 3500 b. Gi et 90% konfidensintervall for gjennomsnittlig inntekt for gruppen av 30-åringer. Gi en tolkning av hva dette konfidensintervallet betyr. Svar: ±1.64* = [404384, ]. Vi er «95% sikre» på at det sanne gjennomsnittet ligger i dette intervallet. Vi bruker altså en metode som gir riktig intervall 95% av gangene i det lange løp. Svaret bør angi noe om hva «95% sikker» betyr å få full uttelling på tolkningen. Det gis 1 poeng for utregningen og 1/2 poeng for korrekt tolkning. (Til sammen 1.5 poeng). c. Regn ut differansen for gruppene og standardfeilen til denne differansen. Svar: Differansen er = SE = = = = Her er det primært utregning av standardfeilen som skal gi poeng, så la den veie 2/3. d. Regn ut et 95% konfidensintervall for differansen mellom gruppene. Si med egne ord hva dette intervallet betyr. Svar: ±1.96*5155 = [ , ] Vi er «90% sikre» på at den sanne differansen i gjennomsnitt mellom de to gruppene ligger i dette intervallet. Vi bruker altså en metode som gir riktig intervall 90% av gangene i det lange løp. Svaret bør angi noe om hva «90% sikker» betyr å få full uttelling på tolkningen. Det gis 1 poeng for utregningen og 1/2 poeng for korrekt tolkning. (Til sammen 1.5 poeng). e. Er forskjellen statistisk signifikant på signifikansnivå 0.01? Gjør en t-test og konkluder. Svar: =
11 Den yngre gruppen tjener mindre enn den eldre gruppen i snitt. Absoluttverdien 13 er langt over kritisk grense for signifikansnivå enten vi velger α=0.05 eller α=0.01. Hvis det begrunnes med p-verdi er det også ok. Oppgave I en britisk studie av alkoholkonsum (Britton et al 2015, BMC Medicine, 13:47) ble det estimert hvordan alkoholkonsum endret seg med alderen. Dataene er fra et tilfeldig utvalg (N=1485) av befolkningen bosatt på vestkysten av Skottland, og det var omtrent like mange av hvert kjønn. I aldersgruppen 50 til 80 år, ble det konsumert i gjennomsnitt færre alkoholenheter i uka for hvert år eldre man ble. Dette estimatet har standardfeil Menn på 50 år drakk i gjennomsnitt 15 enheter i uka. 50-årige kvinner drakk i gjennomsnitt 3.5 enheter i uka. (En alkoholenhet tilsvarer 33cl øl eller et lite glass vin). Ta utgangspunkt i at variabelen for alder er omkodet slik at den tar verdien 0 ved 50 år og øker med 1 for hvert år. Med andre ord: variabelen alder har verdier fra 0 til 30. Variabelen kjønn er en indikatorvariabel med verdiene 0 for menn og 1 for kvinner. a. Skriv opp formelen for en multippel lineær regresjonsmodell som beskriver hvordan alkoholkonsumet for menn og kvinner varierer med alder i denne aldersgruppen. Angi regresjonsparameterne med tall. Svar: y = α + β 1 alder + β 2 kjønn = alder (15 3.5) kjønn b. Det er noe usikkerhet i hvor mye alkoholkonsumet øker med alderen. Gi et 95 prosent konfidensintervall for dette estimatet. Forklar med egne ord hva dette intervallet betyr når det gjelder alkoholkonsum. Svar: Siden antall frihetsgrader er høyt (N=1485) kan vi bruke normalfordelingen. Vi får da: ±1.96*0.051 = [-0.287, ]. Vi er da «95% sikre» på at alkoholkonsumet reduseres med mellom 0.09 og 0.29 enheter for hvert år eldre de blir. Svaret bør angi noe om hva «95% sikker» betyr å få full uttelling på tolkningen. Det gis 1 poeng for utregningen og 1/2 poeng for korrekt tolkning. (Til sammen 1.5 poeng). Merk at det er en liten skrivefeil i oppgaveteksten. Det spørres om hvor mye alkoholkonsumet «øker», mens det skulle stått f.eks. «endres». De fleste vil nok skjønne dette likevel. Vær raus. c. Gjør en hypotesetest av den estimerte regresjonsparameteren. Sett opp hypoteser og gjennomfør testen, og konkluder. Svar: = Det bør presiseres et valgt signifikansnivå og at det brukes z- fordelingen. Uansett får man en p-verdi som er lavere enn enhver vanlig konfidensgrad å velge. Nullhypotesen forkastes da det er lite sannsynlig å få en slik observasjon hvis nullhypotesen er riktig. d. Det viser seg at kvinner ikke reduserer alkoholbruket like mye med alderen som menn. For hvert år eldre de blir reduserer de i gjennomsnitt alkoholforbruket med enheter i uka. Skriv nå en regresjonsmodell som viser endringer for menn og kvinner som viser denne forskjellen. Svar: 11
12 y = α + β 2 alder + β 2 kjønn + β 3 kjønn alder = alder (15 3.5) kjønn + ( ) kjønn alder = alder 11.5 kvinne kjønn alder 12
Skoleeksamen i SOS Kvantitativ metode
Skoleeksamen i SOS1120 - Kvantitativ metode Hjelpemidler Ordbok Alle typer kalkulatorer Tirsdag 30. mai 2017 (4 timer) Lærerbok (det er mulig mulig å ha med en annen, tilsvarende pensumbok, som erstatning
Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.
SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
Oppgave 1. T = 9 Hypotesetest for å teste om kolesterolnivået har endret seg etter dietten: T observert = 2.16 0
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
Statistikk og dataanalyse
Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel
Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir
Kapittel 3: Studieopplegg
Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere
Tid: 29. mai (3.5 timer) Ved alle hypotesetester skal både nullhypotese og alternativ hypotese skrives ned.
EKSAMENSOPPGAVE, bokmål Institutt: IKBM Eksamen i: STAT100 STATISTIKK Tid: 29. mai 2012 09.00-12.30 (3.5 timer) Emneansvarlig: Trygve Almøy (Tlf: 95141344) Tillatte hjelpemidler: C3: alle typer kalkulator,
Tillatte hjelpemidler: C3: alle typer kalkulator, alle andre hjelpemidler
EKSAMENSOPPGAVER Institutt: Eksamen i: Tid: IKBM STAT100 Torsdag 13.des 2012 STATISTIKK 09.00-12.30 (3.5 timer) Emneansvarlig: Solve Sæbø ( 90065281) Tillatte hjelpemidler: C3: alle typer kalkulator, alle
Skoleeksamen i SOS Kvantitativ metode
Eksamensinformasjon Skoleeksamen i SOS1120 - Kvantitativ metode 2. juni 2016 (4 timer) Informasjonskriv for deg som svarer på vanlig PC og ikke i Inspera: Hjelpemidler Ordbok Alle pensumbøker (inkl. kompendiet
HØGSKOLEN I STAVANGER
EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN
OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 6 SIDER MERKNADER: Alle deloppgaver vektlegges likt.
EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 08. mai 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir forlag) OPPGAVESETTET
Gruppe 1 Gruppe 2 Gruppe a) Finn aritmetisk gjennomsnitt, median, modus og standardavvik for gruppe 2.
Sensurveiledning Ped 3001 h12 Oppgave 1 Er det sammenheng mellom støtte fra venner og selvaktelse hos ungdom? Dette spørsmålet ønsket en forsker å undersøke. Han samlet data på 9. klassingers opplevde
EKSAMENSOPPGAVER STAT100 Vår 2011
EKSAMENSOPPGAVER STAT100 Vår 2011 Løsningsforslag Oppgave 1 (Med referanse til Tabell 1) a) De 3 fiskene på 2 år hadde lengder på henholdsvis 48, 46 og 35 cm. Finn de manglende tallene i Tabell 1. Test
QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode
QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1 La være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling
ECON240 VÅR / 2016 BOKMÅL
ECON240 VÅR / 2016 BOKMÅL UNIVERSITETET I BERGEN EKSAMEN UNDER SAMFUNNSVITENSKAPELIG GRAD [ DATO og KLOKKESLETT FOR EKSAMEN (START OG SLUTT) ] Tillatte hjelpemidler: Matematisk formelsamling av K. Sydsæter,
MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00
MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden
SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005
SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000
Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger
Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 1. juni 2006. Tid for eksamen: 09.00 12.00. Oppgavesettet er på
Oppgaver til Studentveiledning 3 MET 3431 Statistikk
Oppgaver til Studentveiledning 3 MET 3431 Statistikk 24. april 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 01/06/2011: Oppgave 1-7. Eksamensoppgaven fra 06/2011
EKSAMEN I SOSIOLOGI SOS KVANTITATIV METODE. ORDINÆR SKOLEEKSAMEN 4. april 2011 (4 timer)
EKSAMEN I SOSIOLOGI SOS4020 - KVANTITATIV METODE ORDINÆR SKOLEEKSAMEN 4. april 20 (4 timer) Tillatt hjelpemiddel: Ikke-programmerbar kalkulator. Opplysninger bakerst i oppgavesettet Sensur på eksamen faller
Fordelinger, mer om sentralmål og variasjonsmål. Tron Anders Moger
Fordelinger, mer om sentralmål og variasjonsmål Tron Anders Moger 20. april 2005 1 Forrige gang: Så på et eksempel med data over medisinerstudenter Lærte hvordan man skulle få oversikt over dataene ved
EKSAMEN I SOS4020 KVANTITATIV METODE (MASTER) 14. MAI 2004 (4 timer)
EKSAMEN I SOS4020 KVANTITATIV METODE (MASTER) 14. MAI 2004 (4 timer) Bruk av ikke-programmerbar kalkulator er tillatt under eksamen. Utover det er ingen hjelpemidler tillatt. Sensur faller mandag 7. juni
Fasit for tilleggsoppgaver
Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x
STUDIEÅRET 2016/2017. Individuell skriftlig eksamen i STA 200- Statistikk. Torsdag 27. april 2017 kl
STUDIEÅRET 2016/2017 Individuell skriftlig eksamen i STA 200- Statistikk Torsdag 27. april 2017 kl. 10.00-12.00 Hjelpemidler: Kalkulator og formelsamling som blir delt ut på eksamen Eksamensoppgaven består
I enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x
Multiple regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable.det er fortsatt en responsvariabel. Måten dette gjøre på er nokså naturlig. Prediktoren
UNIVERSITETET I OSLO
Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1110 FASIT. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 5 sider. Vedlegg: Tillatte
Løsningsforslag eksamen 25. november 2003
MOT310 Statistiske metoder 1 Løsningsforslag eksamen 25. november 2003 Oppgave 1 a) Vi har µ D = µ X µ Y. Sangere bruker generelt trapesius-muskelen mindre etter biofeedback dersom forventet bruk av trapesius
i x i
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale
SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2003
SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 003 Oppgave 1 Tabell 1 gjengir data fra en spørreundersøkelse blant personer mellom 17 og 66 år i et sannsynlighetsutvalg fra SSB sitt sentrale personregister.
OPPGAVEHEFTE I STK1000 TIL KAPITTEL Regneoppgaver til kapittel 7. X 1,i, X 2 = 1 n 2. D = X 1 X 2. På onsdagsforelesningen påstod jeg at da må
OPPGAVEHEFTE I STK000 TIL KAPITTEL 7 Regneoppgaver til kapittel 7 Oppgave Anta at man har resultatet av et randomisert forsøk med to grupper, og observerer fra gruppe, mens man observerer X,, X,2,, X,n
Kort overblikk over kurset sålangt
Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Tirsdag 11. desember 2012. Tid for eksamen: 14.30 18.30. Oppgavesettet
QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode
QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1. La x være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling
SENSORVEILEDNING FOR SKOLEEKSAMEN I SOS KVANTITATIV METODE. 11. mars 2015 (4 timer)
SENSORVEILEDNING FOR SKOLEEKSAMEN I SOS4020 - KVANTITATIV METODE 11. mars 2015 (4 timer) Tillatte hjelpemidler: Alle skriftlige hjelpemidler og kalkulator. Sensur for eksamen faller 7. april klokken 14.00.
TMA4240 Statistikk Høst 2016
TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper
UTDRAG FRA SENSORVEILEDNINGEN FOR EKSAMENSOPPGAVEN I SVSOS107 HØSTEN 2001
UTDRAG FRA SENSORVEILEDNINGEN FOR EKSAMENSOPPGAVEN I SVSOS107 HØSTEN 001 Generell informasjon Da denne eksamensoppgaven ble gitt var SVSOS107 inne i en overgangsordning mellom gammelt og nytt pensum. Denne
2. Forklar med egne ord de viktigste forutsetningene for regresjonen og diskuter om forutsetningene er oppfylt i oppgave 1.
Oppgave 1 (maks 14 poeng): 1. Forklar hvorfor vi bruker et utvalg fra populasjonen (og ikke hele populasjonen) for statistiske tester og hvordan man gjøre det å trekke et utvalg (angi et eksempel). 2.
Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1
ECON 0 EKSAMEN 004 VÅR SENSORVEILEDNING Oppgaven består av 0 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom
SKOLEEKSAMEN I. SOS1120 Kvantitativ metode. 13. desember 2012 4 timer
SKOLEEKSAMEN I SOS1120 Kvantitativ metode 13. desember 2012 4 timer Det er lov å bruke ikke-programmerbar kalkulator som hjelpemiddel Sensur for eksamen faller 11.januar kl. 14.00. Sensuren publiseres
Løsningsforslag. n X. n X 1 i=1 (X i X) 2 og SY 2 = 1 ny S 2 X + S2 Y
Statistiske metoder 1 høsten 004. Løsningsforslag Oppgave 1: a) Begge normalplottene gir punkter som ligger omtrent på ei rett linje så antagelsen om normalfordeling ser ut til å holde. Konfidensintervall
2. Hva er en sampelfordeling? Nevn tre eksempler på sampelfordelinger.
H12 - Semesteroppgave i statistikk - sensurveiledning Del 1 - teori 1. Gjør rede for resonnementet bak ANOVA. Enveis ANOVA tester om det er forskjeller mellom gjennomsnittene i tre eller flere populasjoner.
(b) På slutten av dagen legger sekretæren inn all innsamlet informasjon i en ny JMP datafil. Hvor mange rader og søyler(kolonner) har datafila?
Institutt for samfunnsøkonomi Skriftlig eksamen i: MET 34311 Statistikk Eksamensdato: 01.06.11, kl. 09.00-14.00 Tillatte hjelpemidler: Alle + BI-definert eksamenskalkulator : TEXAS INTRUMENTS BA II Plus
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 Ei bedrift produserer elektriske komponentar. Komponentane kan ha to typar
Løsningsforslag eksamen STAT100 Høst 2010
Løsningsforslag eksamen STAT100 Høst 2010 Oppgave 1 a) To-utvalg, parvise data. La Y være tilfeldig variabel som angir antall drepte i periode 1 og tilsvarende X for periode 2. Vi antar parvise avhengigheter
Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
ECON 0 EKSAMEN 0 VÅR TALLSVAR Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
Kan vi stole på resultater fra «liten N»?
Kan vi stole på resultater fra «liten N»? Olav M. Kvalheim Universitetet i Bergen Plan for dette foredraget Hypotesetesting og p-verdier for å undersøke en variabel p-verdier når det er mange variabler
EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag
6.2 Signifikanstester
6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon
Sammenlikninger av gjennomsnitt. SOS1120 Kvantitativ metode. Kan besvare to spørsmål: Sammenlikning av to gjennomsnitt
SOS1120 Kvantitativ metode Forelesningsnotater 10. forelesning høsten 2005 Per Arne Tufte Sammenlikninger av gjennomsnitt Sammenlikner gjennomsnittet på avhengig variabel for ulike grupper av enheter Kan
SKOLEEKSAMEN 29. september 2006 (4 timer)
EKSAMEN I SOS400 KVANTITATIV METODE SKOLEEKSAMEN 9. september 006 (4 timer) Ikke-programmerbar kalkulator er tillatt under eksamen. Ingen andre hjelpemidler er tillatt. Sensuren faller fredag 0. oktober
STK juni 2016
Løsningsforslag til eksamen i STK220 3 juni 206 Oppgave a N i er binomisk fordelt og EN i np i, der n 204 Hvis H 0 er sann, er forventningen lik E i n 204/6 34 for i, 2,, 6 6 Hvis H 0 er sann er χ 2 6
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1 Eksamensdag: Mandag 30. november 2015. Tid for eksamen: 14.30 18.00. Oppgavesettet
Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)
Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens
UNIVERSITETET I OSLO
Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13. oktober 2010. Tid for eksamen: 15:00 17:00. Oppgavesettet
MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12.
MASTR I IDRTTSVITNSKAP 2014/2016 Utsatt individuell skriftlig eksamen i STA 400- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator ksamensoppgaven består av 10 sider inkludert
Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.
Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4. juni 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis
Eksamensoppgave i TMA4255 Anvendt statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4255 Anvendt statistikk Faglig kontakt under eksamen: Anna Marie Holand Tlf: 951 38 038 Eksamensdato: 30. mai 2014 Eksamenstid (fra til): 09:00-13:00
Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.
EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ
INSTITUTT FOR SOSIOLOGI OG SAMFUNNSGEOGRAFI EKSAMEN I SOSIOLOGI (MASTER) SOS KVANTITATIV METODE. SKOLEEKSAMEN 11. mai 2005 (4 timer)
EKSAMEN I SOSIOLOGI (MASTER) SOS400 - KVANTITATIV METODE SKOLEEKSAMEN 11. mai 005 (4 timer) Tillatt hjelpemiddel: Ikke-programmerbar kalkulator. Oppgavesettet består av 6 sider inkludert denne. Kandidaten
Eksamensoppgåve i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgåve i TMA4240 Statistikk Fagleg kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk
Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor
UTDRAG FRA SENSORVEILEDNINGEN FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2001
UTDRAG FRA SENSORVEILEDNINGEN FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2001 Generell informasjon Vi er for tiden inne i en overgangsordning mellom gammelt og nytt pensum i SVSOS107. Denne eksamensoppgaven
Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013
1 Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 013. Skrevet av Stian Lydersen 16 januar 013 Vi antar at vårt utvalg er et tilfeldig og representativt utvalg for
PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014
Psykologisk institutt PSY2012 Forskningsmetodologi III: Statistisk analyse, design og måling Eksamen vår 2014 Skriftlig skoleeksamen fredag 2. mai, 09:00 (4 timer). Kalkulator uten grafisk display og tekstlagringsfunksjon
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1000 Innføring i anvendt statistikk Eksamensdag: Fredag 28. oktober 2016 Tid for eksamen: 14.00 16.00 Oppgavesettet er på
Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister.
ECON230: EKSAMEN 20 VÅR - UTSATT PRØVE 2 TALLSVAR. Oppgave Da Anne var på besøk i Roma, fikk hun raskt problemer med språket. Anne snakker engelsk, men ikke italiensk, og kun av 5 italienere behersker
MOT310 Statistiske metoder 1, høsten 2006 Løsninger til regneøving nr. 8 (s. 1) Oppgaver fra boka:
MOT30 Statistiske metoder, høsten 2006 Løsninger til regneøving nr. 8 (s. ) Oppgaver fra boka: Oppgave.5 (.3:5) ) Først om tolking av datautskriften. Sammendrag gir følgende informasjon: Multippel R =R,
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1000 Innføring i anvendt statistikk Eksamensdag: Onsdag 12. oktober 2016 Tid for eksamen: 10.00 12.00 Oppgavesettet er på
Inferens i regresjon
Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons
ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon
ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere
Bruk data fra tabellen over (utvalget) og opplysninger som blir gitt i oppgavene og svar på følgende spørsmål:
Frafall fra videregende skole (VGS) er et stort problem. Bare ca 70% av elevene som begynner p VGS fullfører og bestr i løpet av 5 r. For noen elever er skolen s lite attraktiv at de velger slutte før
Forelesning 9 Kjikvadrattesten. Kjikvadrattest for bivariate tabeller (klassisk variant) Når kan vi forkaste H 0?
Forelesning 9 Kjikvadrattesten Kjikvadrattesten er den mest benyttede metoden for å utføre statistiske generaliseringer fra bivariate tabeller. Kjikvadrattesten brukes til å teste nullhypotesen om at det
UNIVERSITETET I OSLO
Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk Eksamensdag: Mandag 3. desember 2018. Tid for eksamen: 14.30 18.30. Oppgavesettet er på
STUDIEÅRET 2014/2015. Utsatt individuell skriftlig eksamen i. STA 200- Statistikk. Mandag 24. august 2015 kl. 10.00-12.00
STUDIEÅRET 2014/2015 Utsatt individuell skriftlig eksamen i STA 200- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator. Formelsamling blir delt ut på eksamen Eksamensoppgaven består
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 22 18 96, b 99 40 33 30 Eksamensdato: 30. november 2017 Eksamenstid
TMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Oppgave 1 Oppgave 11.5 fra læreboka. Oppgave 2 Oppgave 11.21 fra læreboka. Oppgave
Introduksjon til inferens
Introduksjon til inferens Hittil: Populasjon der verdien til et individ/enhet beskrives med en fordeling. Her inngår vanligvis ukjente parametre, μ, p,... Enkelt tilfeldig utvalg (SRS), observator p =
MASTER I IDRETTSVITENSKAP 2013/2015 MASTER I IDRETTSFYSIOTERAPI 2013/2015. Utsatt individuell skriftlig eksamen. STA 400- Statistikk
MSTR I IRTTSVITNSKP 013/015 MSTR I IRTTSFYSIOTRPI 013/015 Utsatt individuell skriftlig eksamen i ST 400- Statistikk Mandag 5. august 014 kl. 10.00-1.00 Hjelpemidler: kalkulator ksamensoppgaven består av
Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere
2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende
EKSAMEN I TMA4255 ANVENDT STATISTIKK
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 11 Faglig kontakt under eksamen: Mette Langaas (988 47 649) BOKMÅL EKSAMEN I TMA4255 ANVENDT STATISTIKK Mandag 6.
A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25
1 ECON21: ESAEN 215v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i > Grensen til bestått bør ligge på ca
SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002
SENSORVEILEDNING FOR EKSAMENSOPPGAVEN I SVSOS107 VÅREN 2002 Generell informasjon Dette er den siste eksamensoppgaven under overgangsordningen mellom gammelt og nytt pensum i SVSOS107. Eksamensoppgaven
EKSAMEN I SOS4020 KVANTITATIV METODE 8. april (4 timer)
EKSAMEN I SOS4020 KVANTITATIV METODE 8. april 200 (4 timer) Tillatte hjelpemidler: Ikke-programmerbar kalkulator Liste med matematiske uttrykk/andeler i fordelinger (bakerst i oppgavesettet) Sensur på
Løsningsforslag til obligatorisk innlevering 3.
svar3.nb 1 Løsningsforslag til obligatorisk innlevering 3. Oppgave 1 * Vi skal sammenlikne to sensoere A og B. Begge har rettet den samme oppgaven. Hvis populasjonen er eksamensoppgavene, har vi altså
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1110 Statistiske metoder og dataanalyse 1. Eksamensdag: Mandag 1. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet
